Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = in situ maintenance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1283 KB  
Review
Functional Nanomaterial-Based Electrochemical Biosensors Enable Sensitive Detection of Disease-Related Small-Molecule Biomarkers for Diagnostics
by Tongtong Xun, Jie Zhang, Xiaojuan Zhang, Min Wu, Yueyan Huang, Huanmi Jiang, Xiaoqin Zhang and Baoyue Ding
Pharmaceuticals 2026, 19(2), 223; https://doi.org/10.3390/ph19020223 - 27 Jan 2026
Viewed by 1
Abstract
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable [...] Read more.
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable detection platforms for these molecules is of significant value for drug discovery, pharmaceutical quality control, pharmacodynamic studies, and personalized medicine. In recent years, electrochemical biosensors, particularly those integrated with functional nanomaterials and biorecognition elements, have emerged as powerful analytical platforms in pharmaceutics and biomedical analysis, owing to their high sensitivity, exquisite selectivity, rapid response, simple operation, low cost and suitability for real-time or in situ monitoring in complex biological systems. This review summarizes recent progress in the electrochemical detection of representative biomolecules, including dopamine, glucose, uric acid, hydrogen peroxide, lactate, glutathione and cholesterol. By systematically summarizing and analyzing existing sensing strategies and nanomaterial-based sensor designs, this review aims to provide new insights for the interdisciplinary integration of pharmaceutics, nanomedicine, and electrochemical biosensing, and to promote the translational application of these sensing technologies in drug analysis, quality assessment, and clinical diagnostics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 4223 KB  
Article
Fabrication of Highly Sensitive Conformal Temperature Sensors on Stainless Steel via Aerosol Jet Printing
by Ziqi Wang, Jun Xu, Yingjie Niu, Yuanyuan Tan, Biqi Yang and Chenglin Yi
J. Manuf. Mater. Process. 2026, 10(1), 41; https://doi.org/10.3390/jmmp10010041 - 21 Jan 2026
Viewed by 113
Abstract
Promoting the development of aerospace vehicles toward structural–functional integration and intelligent sensing is a key strategy for achieving lightweight, high-reliability, and autonomous operation and maintenance of next-generation aircraft. However, traditional external sensors face significant limitations because of their bulky size, installation challenges, and [...] Read more.
Promoting the development of aerospace vehicles toward structural–functional integration and intelligent sensing is a key strategy for achieving lightweight, high-reliability, and autonomous operation and maintenance of next-generation aircraft. However, traditional external sensors face significant limitations because of their bulky size, installation challenges, and incompatibility with aerodynamic surfaces. These issues are particularly pronounced on complex, high-curvature substrates, where achieving conformal bonding is difficult, thus restricting their application in critical components. In this study, aerosol jet printing (AJP) was employed to directly fabricate silver nanoparticle-based temperature sensors with real-time monitoring capabilities on the surface of high-curvature stainless steel sleeves, which serve as typical engineering components. This approach enables the in situ manufacturing of high-precision conformal sensors. Through optimized structural design and thermal treatment, the sensors exhibit reliable temperature sensitivity. Microscopic characterization reveals that the printed sensors possess uniform linewidths and well-defined outlines. After gradient sintering at 250 °C, a dense and continuous conductive path is formed, ensuring strong adhesion to the substrate. Temperature-monitoring results indicate that the sensor exhibits a nearly linear resistance response (R2 > 0.999) across a broad detection range of 20–200 °C. It also demonstrates high sensitivity, characterized by a temperature coefficient of resistance (TCR) of 2.15 × 10−3/°C at 20 °C. In repeated thermal cycling tests, the sensor demonstrates excellent repeatability and stability over 100 cycles, with resistance fluctuations kept within 0.5% and negligible hysteresis observed. These findings confirm the feasibility of using AJP technology to fabricate high-performance conformal sensors on complex surfaces, offering a promising strategy for the development of intelligent structural components in next-generation aerospace engineering. Full article
(This article belongs to the Special Issue 3D Micro/Nano Printing Technologies and Advanced Materials)
Show Figures

Figure 1

14 pages, 390 KB  
Article
Molecular Features Associated with a High-Risk Clinical Course in Neuroblastomas Initially Diagnosed as Non-High-Risk
by Rixt S. Bruinsma, Wendy W. J. de Leng, Marta F. Fiocco, Miranda P. Dierselhuis, Karin P. Langenberg, Jan J. Molenaar, Lennart A. Kester, Max M. van Noesel, Godelieve A. M. Tytgat, Cornelis P. van de Ven, Marc H. W. A. Wijnen, Ronald R. de Krijger and Alida F. W. van der Steeg
Cancers 2026, 18(2), 235; https://doi.org/10.3390/cancers18020235 - 12 Jan 2026
Viewed by 199
Abstract
Background/Objectives: Some patients initially diagnosed with non-high-risk neuroblastoma follow a high-risk clinical course and have poor survival compared to those initially diagnosed with high-risk neuroblastoma. We aimed to identify molecular aberrations present at diagnosis that may explain the high-risk clinical course in [...] Read more.
Background/Objectives: Some patients initially diagnosed with non-high-risk neuroblastoma follow a high-risk clinical course and have poor survival compared to those initially diagnosed with high-risk neuroblastoma. We aimed to identify molecular aberrations present at diagnosis that may explain the high-risk clinical course in this patient group. Methods: Data were collected from non-high-risk neuroblastoma patients diagnosed at our center between 2014 and 2021. Segmental chromosomal aberrations (SCAs), gene amplifications and mutations at diagnosis were detected by a single-nucleotide polymorphism array and next-generation sequencing. Telomere maintenance mechanisms (TMMs) were investigated using fluorescent in situ hybridization, whole genome sequencing (WGS) and RNA sequencing. SCA counts were imputed by using multiple imputation. Results: The total cohort included 89 patients. Thirteen patients developed a high-risk clinical course (group A) due to progression (n = 4), local relapse (n = 4), refractory disease (n = 3) or metastases (n = 2). Seventy-six patients followed a non-high-risk clinical course (group B). An SCA profile (≥1 SCA) was present in 76% of patients in group A and only 15% in group B (p = 0.004). 1p deletion was associated with a high-risk clinical course (p = 0.034). Gains of 1q, 2p and 17q, and deletions of 4p and 11q were more common in group A. After imputation, SCA count was associated with a high-risk clinical course (pooled OR 1.256 with 95% CI 1.006–1.568, p = 0.044). Two patients, both group A, exhibited MDM2/CDK4 amplification. Alternative lengthening of telomeres (ALT) was activated in 57% of group A. Conclusions: SCA profile and 1p deletion are associated with a high-risk clinical course. ALT activation, MDM2/CDK4 co-amplification, SCA count, gains of 1q, 2p, and 17q, and deletions of 4p and 11q may also be relevant molecular markers. Larger studies are needed for confirmation of these findings. Full article
(This article belongs to the Special Issue Neuroblastoma: Molecular Insights and Clinical Implications)
Show Figures

Figure 1

19 pages, 5832 KB  
Article
Joint PS–SBAS Time-Series InSAR for Sustainable Urban Infrastructure Management: Tunnel Subsidence Mechanisms in Sanya, China
by Jun Hu, Zihan Song, Yamin Zhao, Kai Wei, Bing Liu and Qiong Liu
Sustainability 2026, 18(2), 688; https://doi.org/10.3390/su18020688 - 9 Jan 2026
Viewed by 251
Abstract
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation [...] Read more.
Monitoring construction-phase settlement of estuary-crossing tunnels founded on coastal soft soils is critical for risk management, yet dense in situ measurements are often unavailable along linear corridors. This study uses Sentinel-1A ascending SAR imagery (65 scenes, September 2022–August 2025) to retrieve time-series deformation along the Sanya Estuary Channel tunnel (China) using Permanent Scatterer InSAR (PS-InSAR) and Small Baseline Subset InSAR (SBAS-InSAR). The two approaches reveal a consistent subsidence hotspot at Tunnel Section D (DK0+000–DK0+330), while most of the corridor remains within ±5 mm/a. The line-of-sight deformation rates range from −24 to 17.7 mm/year (PS-InSAR) and −29.9 to 18.7 mm/a (SBAS-InSAR). Time-series analysis at representative points in Section D indicates a maximum cumulative settlement of −75.7 mm and a clear acceleration after May 2023. By integrating the deformation results with geological reports, construction logs and rainfall records, we infer that compressible marine clays and interbedded sand/aquifer zones control the hotspot, whereas excavation/dewatering and rainfall-related groundwater fluctuations further promote consolidation. The results provide a practical basis for subsidence risk screening and monitoring prioritization for estuary-crossing infrastructure in coastal soft-soil settings. From a sustainability perspective, the proposed joint PS–SBAS InSAR framework provides a scalable and cost-effective tool for continuous deformation surveillance, supporting preventive maintenance and risk-informed management of urban underground infrastructure. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

22 pages, 1697 KB  
Review
Advances in Reference Membranes for Potentiometric Sensing Applications
by Martyna Drużyńska, Nikola Lenar and Beata Paczosa-Bator
Membranes 2025, 15(12), 376; https://doi.org/10.3390/membranes15120376 - 6 Dec 2025
Viewed by 890
Abstract
Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and [...] Read more.
Accurate potentiometric sensing critically depends on the stability and reproducibility of the reference electrode potential. Conventional liquid-filled Ag/AgCl or calomel electrodes, though well-established, are poorly compatible with miniaturized, portable, or long-term in situ sensing devices due to electrolyte leakage, junction potential instability, and maintenance requirements. Recent advances in solid-state and membrane-based reference electrodes offer a promising alternative by eliminating the liquid junction while maintaining stable and well-defined potential. This review summarizes the advancements in polymer-based and composite reference membranes, focusing on material strategies, stabilization mechanisms, and integration approaches. Emphasis is placed on ionic-liquid-doped membranes, conducting polymers, lipophilic salts, and carbon nanomaterials as functional components enhancing interfacial stability and charge transfer. The performances of various architectures, solid-contact, liquid-junction-free, and quasi-reference systems, are compared in terms of potential drift, matrix resistance, biocompatibility, and manufacturability. Furthermore, recent developments in printed, microfluidic, and wearable potentiometric platforms demonstrate how reference membrane innovations enable reliable operation in compact, low-cost, and flexible analytical systems. The review outlines current trends, challenges, and future directions toward universal, miniaturized, and leak-free reference electrodes suitable for innovative sensing technologies. Full article
Show Figures

Figure 1

19 pages, 2045 KB  
Article
Evaluation of Emission Reduction Systems in Underground Mining Trucks: A Case Study at an Underground Mine
by Hector Garcia-Gonzalez and Pablo Menendez-Cabo
Clean Technol. 2025, 7(4), 107; https://doi.org/10.3390/cleantechnol7040107 - 1 Dec 2025
Viewed by 528
Abstract
Underground mining environments present elevated occupational health risks, primarily due to substantial exposure to diesel exhaust emissions within confined and poorly ventilated spaces. This study assesses the real-world performance of two advanced retrofit emission control systems—Proventia NOxBuster and Purifilter—installed on underground mining trucks [...] Read more.
Underground mining environments present elevated occupational health risks, primarily due to substantial exposure to diesel exhaust emissions within confined and poorly ventilated spaces. This study assesses the real-world performance of two advanced retrofit emission control systems—Proventia NOxBuster and Purifilter—installed on underground mining trucks operating in a Spanish mine. Emissions of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) were quantified using a Testo 350 multigas analyser, while ultrafine particle (UFP) concentrations were measured with an Engine Exhaust Particle Sizer (EEPS-3090) equipped with a thermodiluter. Controlled tests under both idling and acceleration conditions revealed substantial reductions in pollutant emissions: CO decreased by 60–98%, NO by 51–92%, and NO2 by 20–87%, depending on the system and operational phase. UFP concentrations during idling dropped by approximately 90%, from 542,000 particles/cm3 in untreated trucks to below 50,000 particles/cm3 in retrofitted vehicles. Under acceleration, the Proventia NOxBuster achieved reductions exceeding 95%. Conversely, Purifilter-equipped trucks exhibited a counterintuitive increase in UFPs within the 5.6–40 nm range, potentially due to ammonia slip events during selective catalytic reduction (SCR). Despite these discrepancies, both systems demonstrated considerable mitigation potential, albeit highly dependent on exhaust temperature (optimal: 200–450 °C), urea dosing precision, and maintenance protocols. This work underscores the necessity of in situ performance verification, regulatory vigilance, and targeted intervention strategies to protect underground workers effectively. Further investigation is warranted into the long-term health benefits, system durability, and nanoparticle emission dynamics under variable load conditions. Full article
Show Figures

Figure 1

96 pages, 10778 KB  
Review
Principles and Applications of Interferometry in Highly Segmented Mirrors Co-Phasing
by Shijun Song, Xinyue Liu, Tao Chen, Changhua Liu and Qichang An
Photonics 2025, 12(12), 1181; https://doi.org/10.3390/photonics12121181 - 29 Nov 2025
Viewed by 1131
Abstract
With advances in scientific foundations and engineering practice, segmented mirrors—a key architecture for realizing extremely large apertures and high-resolution imaging—have become foundational across space astronomy, ground-based telescopes, and advanced manufacturing. In recent years, interferometry, which leverages optical coherence and phase sensitivity, has become [...] Read more.
With advances in scientific foundations and engineering practice, segmented mirrors—a key architecture for realizing extremely large apertures and high-resolution imaging—have become foundational across space astronomy, ground-based telescopes, and advanced manufacturing. In recent years, interferometry, which leverages optical coherence and phase sensitivity, has become a powerful tool for inter-segment co-phasing. Its capabilities have advanced markedly owing to developments in multi-wavelength techniques, high-speed high-dynamic-range detectors, and instantaneous phase-shifting methods. Relative to non-interferometric sensing, interferometry directly encodes and unwraps phase. This enables a unified framework that combines millimeter-scale dynamic range with nanometer-level resolution throughout coarse acquisition, fine phasing, and in situ maintenance. This paper first outlines the degrees of freedom and error sources in segmented mirrors. It then reviews the configurations and acquisition strategies of shearing, Mach–Zehnder, Michelson, Fizeau, and PISTIL interferometers, and systematizes interferogram processing methods—such as phase-shifting, synthetic-wavelength techniques, and digital holography—for retrieving piston and tip/tilt. Accuracy of piston is λ/50–λ/100, and tip/tilt accuracy can reach the arcsecond level, with resolution at the nanometer scale. Finally, we discuss pathways to extend interferometric metrology from segmented mirrors to other discontinuous surfaces (e.g., segmented detectors, segmented gratings, microlens arrays) and outlines future research directions. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

20 pages, 3207 KB  
Article
Photosynthetic Homeostasis Mechanism and Configuration Application of Woody Plants in Green Wall Under Light Gradients of Building Facades with Different Orientations
by Qiang Xing, Dongfan Xu, Hongbing Wang, Jun Qin, Nannan Dong, Bin Zhao and Yonghong Hu
Plants 2025, 14(23), 3570; https://doi.org/10.3390/plants14233570 - 22 Nov 2025
Viewed by 429
Abstract
Under the dual pressures of urbanization and climate change, vertical greening plays a crucial role in compensating for limited urban green space and in enhancing both landscape quality and ecological functions. To improve plant selection strategies for vertical greening, this study quantified the [...] Read more.
Under the dual pressures of urbanization and climate change, vertical greening plays a crucial role in compensating for limited urban green space and in enhancing both landscape quality and ecological functions. To improve plant selection strategies for vertical greening, this study quantified the photosynthetic adaptability of ten green wall species across light gradients on all four building facades. Over three years of in situ monitoring, combined with analyses of photosynthetic parameter variation (Pmax, LCP, and LSP) and biomass, we evaluated the physiological and ecological response mechanisms of plants with different growth forms at multiple scales (“trait–species–community”). The main findings are as follows: (1) Photosynthetically active radiation intensity had the order of south wall > east wall > west wall > north wall, with differences of 3–5 fold. (2) Cluster analysis of photosynthetic traits revealed a sensitivity hierarchy: monocotyledonous herbs > dicotyledonous herbs and vines > woody species. Woody plants such as Ligustrum sinense, Ligustrum japonicum, and Rhododendron spp. showed significantly lower variability in photosynthetic parameters (45.8–64.5%) than herbaceous species, thereby maintaining strong stability under light gradients. Muehlenbeckia complexa (Mc) adapted to intense south-facing light, while Acorus gramineus ‘Ogon’ (Ag) preferred the weaker light of north-facing walls. In contrast, Farfugium japonicum (Fj), Carex oshimensis (Co), Trachelospermum jasminoides (Tj), and Vinca major (Vm) displayed substantial physiological fluctuations. (3) Based on three years of monitoring data, we developed a quantitative model of light adaptation driven by the coefficient of variation (CV) of photosynthetic parameters. Together with PCA-based clustering, we proposed a “growth form–orientation” synergistic configuration framework. Woody plants with high photosynthetic stability are recommended as the structural backbone for cost-efficient green walls, supplemented by vine/herbaceous species selected according to wall orientation. This study not only provides a scientific basis for accurate plant selection and low-maintenance design of green walls but also provides technical strategies for integrating multifunctional green infrastructure with low-carbon urban development. Furthermore, the proposed approach can be standardized as a Nature-Based Solutions (NbS) pathway for widespread application to building facades in high-density cities worldwide. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

34 pages, 3044 KB  
Article
A Whole-Genome Sequencing-Based SNP Protocol for Accurate Plant Variety Identification: Application in Blueberry
by Agnelo Furtado, Tom Gunther and Robert J. Henry
Appl. Biosci. 2025, 4(4), 51; https://doi.org/10.3390/applbiosci4040051 - 12 Nov 2025
Viewed by 995
Abstract
Plant variety/genotype identification has many applications in establishing the identity of plants, including the protection of intellectual property rights and the management of ex situ conservation of genetic resources. The variety may be important for operational reasons based on field performance or post-harvest [...] Read more.
Plant variety/genotype identification has many applications in establishing the identity of plants, including the protection of intellectual property rights and the management of ex situ conservation of genetic resources. The variety may be important for operational reasons based on field performance or post-harvest processing. Blueberry (Vaccinium corymbosum L.), an economically important crop, is propagated by cuttings and commercially important accessions require an accurate variety traceability regime for the maintenance of purity, protection and policing ownership. Genome sequencing methods have improved and are feasible for use, making examination of the whole genome for all possible information on the genotype the ultimate way to distinguish plant varieties. We identified 5.3–5.5 million high-confidence homozygous SNPs with over 99% accuracy, enabling the distinction of 41 blueberry varieties. We developed a novel data-noise identification and filtering framework, which correctly determined the identity of ten unknown samples to be the Masena variety with 100% accuracy. The approach of using a data-noise filtration step minimized the impact of sequencing errors and coincident sequencing of only one allele of any heterozygous base. This SNP-based protocol with the establishment of sequence databases for all varieties of important plant species can potentially be adopted in providing reliable variety identification in critical industrial or legal applications. Full article
Show Figures

Figure 1

24 pages, 4585 KB  
Article
Research on Energy-Efficient Retrofit Design and Thermal Load Characteristics of Public Buildings Based on Optimal Thermal Comfort
by Lu Chen, Zhipan Han, Yujie Wu, Zhongshan Zhang, Yu Liu, Xiaomeng Li, Hui Cao, Yongxu Chen and Kun Yang
Buildings 2025, 15(22), 4066; https://doi.org/10.3390/buildings15224066 - 12 Nov 2025
Viewed by 607
Abstract
The energy-saving performance of the building envelope, which plays a pivotal role in energy conservation and thermal insulation, has been the subject of extensive research. In the context of China’s high-quality green development, this study proposes a building energy-saving strategy based on optimal [...] Read more.
The energy-saving performance of the building envelope, which plays a pivotal role in energy conservation and thermal insulation, has been the subject of extensive research. In the context of China’s high-quality green development, this study proposes a building energy-saving strategy based on optimal thermal comfort. It analyzes the impact of factors such as regional dwell time and PMV types on energy-saving effects, summarizes the optimal comfort parameters under the highest energy efficiency rate, and sets relevant parameters in the DeST building energy simulation software to analyze a typical public building. The analysis examined the impact of changing the heat transfer coefficients of exterior walls and windows on the annual cumulative heating and cooling loads. It established the relationship between the thermal transmittance of building envelopes and energy consumption and assessed the carbon emissions during the building’s operation and maintenance phase. The results indicate that as building envelope thermal transmittance coefficient decreases, particularly that of external windows and walls, overall cumulative heating and cooling loads decline accordingly. Notably, the reduction in external windows’ thermal transmittance coefficient has the most significant impact on total building thermal load. Furthermore, as the envelope thermal transmittance coefficient decreases, seasonal heating and cooling demands decline simultaneously, with the most substantial effect on heating load reduction during winter. Total annual building carbon emissions also decrease with the reduction in envelope thermal transmittance coefficient, particularly external wall thermal transmittance coefficient. Based on the findings of this study, the building envelope of the public building was redesigned, taking into account construction costs, the owner’s requirements, and energy efficiency alongside the reduction in carbon emissions. Comparisons of the redesigned building’s envelope thermal performance, experimental testing, and in situ measurements confirmed that it fulfilled the engineering requirements. This study also demonstrates that DeST software provides reliable technological support for low-carbon building design, retrofitting, and operation. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 7666 KB  
Article
In-Situ Self-Assembling Oligomeric Collagen Scaffold Enhances Vaccine Retention and Vaccine-Induced Humoral Immunity
by Juan F. Hernandez-Franco, Sushma Gude, Rachel A. Morrison, Daniela Castillo Perez, Sherry L. Voytik-Harbin and Harm HogenEsch
Vaccines 2025, 13(11), 1146; https://doi.org/10.3390/vaccines13111146 - 8 Nov 2025
Viewed by 1012
Abstract
Background/Objectives: Subunit vaccines composed of purified proteins and adjuvants offer excellent safety, but often generate short-lived immunity due to rapid antigen clearance and limited antigen-presenting cell engagement. Sustained, localized delivery of antigen and adjuvant may improve the magnitude and durability of the [...] Read more.
Background/Objectives: Subunit vaccines composed of purified proteins and adjuvants offer excellent safety, but often generate short-lived immunity due to rapid antigen clearance and limited antigen-presenting cell engagement. Sustained, localized delivery of antigen and adjuvant may improve the magnitude and durability of the immune response without compromising safety. This study evaluated an in-situ polymerizing type I oligomeric collagen (Oligomer) scaffold to localize antigen/adjuvant at the injection site and prolong antigen presentation. Methods: Mice were immunized intramuscularly with ovalbumin (OVA) and CpG oligonucleotide adjuvant delivered alone or co-formulated with Oligomer. Antibody response and inflammation at the injection site were assessed post-booster at early (Day 32) and late (Day 68) time points. Antigen retention and dendritic cell trafficking to draining lymph nodes were evaluated using fluorescently labeled OVA. Results: The Oligomer scaffold retained vaccine antigen at the injection site without eliciting a material-mediated foreign body response. Co-delivery of OVA and CpG within the scaffold enhanced germinal center activity, increased follicular helper T cells and germinal center B cells, and skewed CD4+ T cells toward a Th1 phenotype. Humoral responses were greater and more durable, with higher OVA-specific IgG, IgG1, and IgG2a titers and an increased number of bone marrow antibody-secreting cells persisting through Day 68. Antigen-positive dendritic cells, including both resident and migratory subsets, were elevated in draining lymph nodes, indicating enhanced antigen transport. No anti-mouse collagen I antibodies were detected, confirming the maintenance of collagen self-tolerance. Conclusions: The Oligomer delivery platform functioned as a localized, immunotolerant vaccine depot, sustaining antigen availability and immune cell engagement. This spatiotemporal control enhanced germinal center responses and generated a more robust, durable humoral immune response, supporting its potential to improve subunit vaccine efficacy while maintaining an excellent safety profile. Full article
(This article belongs to the Special Issue Vaccine Design and Development)
Show Figures

Figure 1

21 pages, 4774 KB  
Article
Dynamic Performance and Seismic Response Analysis of Ming Dynasty Masonry Pagodas in the Jiangnan Region: A Case Study of the Great Wenfeng Pagoda
by Minhui Chen, Zhanjing Wu and Jinshuang Dong
Buildings 2025, 15(21), 3994; https://doi.org/10.3390/buildings15213994 - 5 Nov 2025
Viewed by 490
Abstract
To investigate the dynamic performance and seismic response of Ming dynasty masonry pagodas in the Jiangnan region of China, the Great Wenfeng Pagoda in Taizhou, Zhejiang Province, was selected as the study object. Based on on-site inspection and maintenance records, the in situ [...] Read more.
To investigate the dynamic performance and seismic response of Ming dynasty masonry pagodas in the Jiangnan region of China, the Great Wenfeng Pagoda in Taizhou, Zhejiang Province, was selected as the study object. Based on on-site inspection and maintenance records, the in situ compressive strength of masonry at each level was measured using a rebound hammer, considering that the pagoda was immovable and no destructive testing was permitted. A numerical model of the pagoda was established using the finite element software ABAQUS 2016 with a hierarchical modeling approach. The seismic response of the pagoda was computed by applying the El Centro wave, Taft wave, and artificial Ludian wave, and the seismic damage mechanism, the distribution of principal tensile stress, and seismic weak zones were analyzed. The results showed that the horizontal acceleration increased progressively along the height of the pagoda. Under minor earthquakes, the pagoda remained largely elastic, whereas under moderate and strong earthquakes, the acceleration at the top and bottom and the story drifts increased markedly, with the effects being most pronounced under the Taft wave. The damage was primarily concentrated in the first and second stories at the lower part of the pagoda and around the doorway. Tensile stress analysis indicated that the masonry blocks in the first and second stories were at risk of tensile failure under strong seismic action, whereas the lower-level stone blocks in the first story remained relatively safe due to their higher material strength. This study not only reveals the seismic weak points of Ming dynasty masonry pagodas in the Jiangnan region but also provides a scientific basis for seismic performance assessment, retrofitting design, and sustainable preservation of traditional historic buildings. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 7433 KB  
Article
Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements
by Jannik Jänichen, Jonas Ziemer, Carolin Wicker, Katja Last, Christiane Schmullius, Andre Cahyadi Kalia, Thomas Lege and Clémence Dubois
Remote Sens. 2025, 17(21), 3649; https://doi.org/10.3390/rs17213649 - 5 Nov 2025
Viewed by 750
Abstract
This study evaluates the applicability of Sentinel-1 Persistent Scatterer Interferometry (PSI) data from the Ground Motion Service Germany (BBD) for monitoring dams by comparing it with terrestrial measurements at dams of the Ruhrverband in North Rhine-Westphalia (NRW), Germany. The analysis focuses on the [...] Read more.
This study evaluates the applicability of Sentinel-1 Persistent Scatterer Interferometry (PSI) data from the Ground Motion Service Germany (BBD) for monitoring dams by comparing it with terrestrial measurements at dams of the Ruhrverband in North Rhine-Westphalia (NRW), Germany. The analysis focuses on the accuracy and reliability of BBD data in detecting movements, considering two observation periods and two satellite observation geometries (Ascending and Descending orbit). BBD data showed high correlations with in situ measurements, particularly for long-term deformation trends. However, weak correlations are observed, especially in the Ascending direction. These inconsistencies highlight the influence of structural characteristics of the dams, observation conditions like incidence angles and changes of the study period on data reliability. Key findings show that BBD data provides valuable insights for observing long-term deformation trends (r up to 0.7) but has limitations in capturing short-term deformations due to its annual update rate. A clear difference was observed when extending the observation period by one year, from 2015–2020 to 2015–2021: although the number of PS (Persistent Scatterers) decreased by up to 60%, the PS showed an improved agreement with in situ measurements, indicating higher data quality (r up to 0.8). However, the precision of BBD data depends on inherent factors from the PSI method such as the satellites’ observation geometry, observation period, and site-specific conditions, underscoring the importance of tailored feasibility assessments. The BBD offers a complementary tool to support the maintenance and safety of dam infrastructures. The study follows an observational multi-site design with predefined, DIN-aligned evaluation criteria and statistical tests and is intended as an assessment of operational support rather than a full operational qualification, outlining conditions under which BBD PSI can complement standards-aligned monitoring. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

17 pages, 9894 KB  
Article
Ultrasonic Evaluation of Mechanical Properties in Heritage Buildings Constructed with Córdoba Freestone
by Beatriz Zapico-Blanco, Jose Daniel Rodríguez-Mariscal and Mario Solis Muñiz
Heritage 2025, 8(11), 462; https://doi.org/10.3390/heritage8110462 - 5 Nov 2025
Viewed by 548
Abstract
This study characterises the natural stone used in the Great Mosque of Córdoba (Spain) and establishes correlations to enable non-destructive, in situ assessment of the mechanical strength of the material. Quarry ashlars of the same biocalcarenite were tested to determine bulk density, ultrasonic [...] Read more.
This study characterises the natural stone used in the Great Mosque of Córdoba (Spain) and establishes correlations to enable non-destructive, in situ assessment of the mechanical strength of the material. Quarry ashlars of the same biocalcarenite were tested to determine bulk density, ultrasonic wave propagation velocity (UWPV), and mechanical properties from uniaxial compression, splitting tension, and three-point bending tests (over 100 specimens). The stone showed no significant anisotropy or specimen size effects within the investigated ranges. Reference mechanical values were obtained, with a mean uniaxial compressive strength of about 6 MPa. A strong linear correlation was found between UWPV and compressive strength (R2 ≈ 0.86), supporting the use of ultrasonic testing to estimate compressive strength on site. In addition, flexural strength can be also estimated since it correlated strongly with compressive strength (R2 ≈ 0.95); in contrast, the correlation with tensile strength was moderate (R2 ≈ 0.31). The results provide validated relationships for Córdoba freestone that improve the reliability of ultrasonic tests for providing valuable information for structural analysis, maintenance, and conservation strategies for heritage buildings constructed with this kind of stone. The proposed approach offers a practical pathway for damage-free evaluation of mechanical performance in historical masonry. Full article
Show Figures

Figure 1

18 pages, 774 KB  
Review
Hepatic Zonation in MASLD: Old Question, New Challenge in the Era of Spatial Omics
by Erika Paolini, Miriam Longo, Marica Meroni and Paola Dongiovanni
Int. J. Mol. Sci. 2025, 26(21), 10701; https://doi.org/10.3390/ijms262110701 - 3 Nov 2025
Cited by 1 | Viewed by 2464
Abstract
Hepatic zonation reflects the concept that hepatocytes and nonparenchymal cells (NPCs) perform distinct metabolic functions, depending on their spatial localization along the porto-central axis. The maintenance of this fine-tuned organization is essential for liver homeostasis, and its disruption may contribute to liver diseases, [...] Read more.
Hepatic zonation reflects the concept that hepatocytes and nonparenchymal cells (NPCs) perform distinct metabolic functions, depending on their spatial localization along the porto-central axis. The maintenance of this fine-tuned organization is essential for liver homeostasis, and its disruption may contribute to liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Fat overload perturbs zonal gene signatures, lipid handling and oxygen/metabolite gradients progressively leading to steatohepatitis (MASH), fibrosis and HCC, conditions in which the hepatic architecture is lost. Traditional approaches have provided valuable insights into zonation, although they lack the spatial resolution and mask the heterogeneity of NPCs. Thus, the premise of this review is to discuss how spatial omics can redefine our understanding of hepatic zonation by integrating tissue mapping with metabolic organization, specifically focusing on MASLD. The advent of spatial omics accelerates knowledge regarding MASLD pathophysiology, providing more informative insights into transcriptional/translational/lipidomic/metabolomics zone-specific perturbations. Emerging spatial genomics and epigenomics applications further expand this scenario, allowing for the capture of chromatin remodeling in situ. The integration of these state-of-the-art approaches, coupled with artificial intelligence (AI)-based analyses, is promising in the clinic, as it may provide novel zonal prognostic biomarkers and pave the way for precision-medicine strategies targeting zonal switching. Full article
(This article belongs to the Special Issue Molecular Advances and Insights into Liver Diseases)
Show Figures

Figure 1

Back to TopTop