Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = in situ hydrogen formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

18 pages, 3089 KiB  
Article
Biomass-Derived Catalysts with Dual Functions for Electrochemical Water Splitting
by Wangchuang Zhu, Xinghua Zhang, Qi Zhang, Lungang Chen, Xiuzheng Zhuang and Longlong Ma
Energies 2025, 18(14), 3592; https://doi.org/10.3390/en18143592 - 8 Jul 2025
Viewed by 253
Abstract
With the continuous consumption of fossil energy and the related environmental problems, clean energy, especially the hydrogen energy-derived water electrolysis, has attracted wide attention. However, as a result of the high energy consumption of water electrolysis and the limitations of single-function catalysts, there [...] Read more.
With the continuous consumption of fossil energy and the related environmental problems, clean energy, especially the hydrogen energy-derived water electrolysis, has attracted wide attention. However, as a result of the high energy consumption of water electrolysis and the limitations of single-function catalysts, there is an urgent need for cheap and simple-to-make bifunctional catalysts. In this work, based on the NiFe-LDH that is usually used for OER (Oxygen Evolution Reaction), doping of heteroatoms was carried out and a bifunctional catalyst could be then prepared using biomass as the carbon source. The preparation of catalyst precursors and in situ reduction were performed through the coupling process of hydrothermal and pyrolysis to enhance the electrolytic activity of the catalyst. Results showed that the overpotentials required to reach a current density of 10 mA·cm−2 for the HER and OER processes were 305.2 mV and 310.4 mV, respectively, which are superior to the commercial catalysts. In the subsequent characterization, the structural characteristics of the catalyst support and their structure–activity correlation with active metals were systematically investigated by TEM, XRD, and XPS analysis, providing mechanistic insights into the catalytic behavior. The basic catalytic mechanisms of HER and OER were also obtained: the HER process was due to the formation of a Ni3Fe alloy structure during catalyst preparation, which changed the electronic structure of the catalyst, while the OER process was induced by the formation of a NiOOH intermediate. The research results are expected to provide new ideas and data support for the preparation of bifunctional catalysts. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

20 pages, 925 KiB  
Review
Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production
by Khalid Al Sadi, Ebrahim Nadimi and Dawei Wu
Energies 2025, 18(13), 3505; https://doi.org/10.3390/en18133505 - 2 Jul 2025
Cited by 1 | Viewed by 411
Abstract
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and [...] Read more.
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and the formation of nitrogen oxides (NOX). This review explores catalytic ammonia cracking as a viable method to enhance combustion through in situ hydrogen production. It evaluates traditional catalytic burner designs originally developed for hydrocarbon fuels and assesses their adaptability for ammonia-based applications. Special attention is given to ruthenium- and nickel-based catalysts supported on various oxides and nanostructured materials, evaluating their ammonia conversion efficiency, resistance to sintering, and thermal stability. The impact of the main operational parameters, including reaction temperature and gas hourly space velocity (GHSV), is also discussed. Strategies for combining partial ammonia cracking with stable combustion are studied, with practical issues such as catalyst degradation, NOX regulation, and system scalability. The analysis highlights recent advancements in structural catalyst support, which have potential for industrial-scale application. This review aims to provide future development of low-emission, high-efficiency catalytic burner systems and advance ammonia’s role in next-generation hydrogen energy technologies. Full article
Show Figures

Figure 1

22 pages, 3175 KiB  
Article
Understanding the Light-Driven Enhancement of CO2 Hydrogenation over Ru/TiO2 Catalysts
by Yibin Bu, Kasper Wenderich, Nathália Tavares Costa, Kees-Jan C. J. Weststrate, Annemarie Huijser and Guido Mul
Molecules 2025, 30(12), 2577; https://doi.org/10.3390/molecules30122577 - 13 Jun 2025
Viewed by 947
Abstract
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, [...] Read more.
Ru/TiO2 catalysts are well known for their high activity in the hydrogenation of CO2 to CH4 (the Sabatier reaction). This activity is commonly attributed to strong metal–support interactions (SMSIs), associated with reducible oxide layers partly covering the Ru-metal particles. Moreover, isothermal rates of formation of CH4 can be significantly enhanced by the exposure of Ru/TiO2 to light of UV/visible wavelengths, even at relatively low intensities. In this study, we confirm the significant enhancement in the rate of formation of methane in the conversion of CO2, e.g., at 200 °C from ~1.2 mol gRu−1·h−1 to ~1.8 mol gRu−1·h−1 by UV/Vis illumination of a hydrogen-treated Ru/TiOx catalyst. The activation energy does not change upon illumination—the rate enhancement coincides with a temperature increase of approximately 10 °C in steady state (flow) conditions. In-situ DRIFT experiments, performed in batch mode, demonstrate that the Ru–CO absorption frequency is shifted and the intensity reduced by combined UV/Vis illumination in the temperature range of 200–350 °C, which is more significant than can be explained by temperature enhancement alone. Moreover, exposing the catalyst to either UV (predominantly exciting TiO2) or visible illumination (exclusively exciting Ru) at small intensities leads to very similar effects on Ru–CO IR intensities, formed in situ by exposure to CO2. This further confirms that the temperature increase is likely not the only explanation for the enhancement in the reaction rates. Rather, as corroborated by photophysical studies reported in the literature, we propose that illumination induces changes in the electron density of Ru partly covered by a thin layer of TiOx, lowering the CO coverage, and thus enhancing the methane formation rate upon illumination. Full article
(This article belongs to the Special Issue Metallic Nanoclusters and Their Interaction with Light)
Show Figures

Graphical abstract

24 pages, 6108 KiB  
Review
In Situ Characterization Method to Reveal the Surface Reconstruction Process of an Electrocatalyst
by Yiqin Zhan, Tao Yang, Shuang Liu, Liming Yang, Enhui Wang, Xiangtao Yu, Hongyang Wang, Kuo-Chih Chou and Xinmei Hou
Nanomaterials 2025, 15(12), 917; https://doi.org/10.3390/nano15120917 - 12 Jun 2025
Viewed by 501
Abstract
Renewable energy-driven water electrolysis is widely regarded as a pivotal approach for achieving carbon-free hydrogen production. The development of highly efficient electrocatalysts is crucial to advancing the efficiency and scalability of electrolytic water splitting. Recent advancements in characterization techniques have revealed that catalysts [...] Read more.
Renewable energy-driven water electrolysis is widely regarded as a pivotal approach for achieving carbon-free hydrogen production. The development of highly efficient electrocatalysts is crucial to advancing the efficiency and scalability of electrolytic water splitting. Recent advancements in characterization techniques have revealed that catalysts often undergo surface reconstruction during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to the formation of real active species. Understanding the surface reconstruction process through advanced characterization methods is essential for the rational design of high-performance catalysts. However, the surface reconstruction of catalysts is a highly complex phenomenon, and conventional ex situ characterization techniques often fall short of capturing the dynamic evolution of the catalyst surface. Consequently, in situ characterization methods have emerged as indispensable tools for elucidating the surface reconstruction process. This paper provides a detailed review of the process of surface reconstruction, the reasons behind it, and the in situ characterization methods, and finally discusses the challenges faced by the characterization methods for the reconstruction of water electrolysis catalysts in future development. Full article
Show Figures

Figure 1

26 pages, 3377 KiB  
Article
Which Offers Greater Techno-Economic Potential: Oil or Hydrogen Production from Light Oil Reservoirs?
by Chinedu J. Okere, James J. Sheng and Princewill M. Ikpeka
Geosciences 2025, 15(6), 214; https://doi.org/10.3390/geosciences15060214 - 9 Jun 2025
Cited by 1 | Viewed by 532
Abstract
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil, the question of which offers greater economic potential, oil, or hydrogen, [...] Read more.
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil, the question of which offers greater economic potential, oil, or hydrogen, remains central to ongoing discussions, especially as researchers explore ways to produce hydrogen exclusively from petroleum reservoirs. This study presents the first integrated techno-economic model comparing oil and hydrogen production under varying injection strategies, using CMG STARS for reservoir simulations and GoldSim for economic modeling. Key technical factors, including injection compositions, well configurations, reservoir heterogeneity, and formation damage (issues not addressed in previous studies), were analyzed for their impact on hydrogen yield and profitability. The results indicate that CO2-enriched injection strategies enhance hydrogen production but are economically constrained by the high costs of CO2 procurement and recycling. In contrast, air injection, although less efficient in hydrogen yield, provides a more cost-effective alternative. Despite the technological promise of hydrogen, oil revenue remains the dominant economic driver, with hydrogen co-production facing significant economic challenges unless supported by policy incentives or advancements in gas lifting, separation, and storage technologies. This study highlights the economic trade-offs and strategic considerations crucial for integrating hydrogen production into conventional petroleum extraction, offering valuable insights for optimizing hydrogen co-production in the context of a sustainable energy transition. Additionally, while the present work focuses on oil reservoirs, future research should extend the approach to natural gas and gas condensate reservoirs, which may offer more favorable conditions for hydrogen generation. Full article
Show Figures

Figure 1

21 pages, 3651 KiB  
Article
Graphene Oxide-Anchored Cu–Co Catalysts for Efficient Electrochemical Nitrate Reduction
by Haosheng Lan, Yi Zhang, Le Ding, Xin Li, Zhanhong Zhao, Yansen Qu, Yingjie Xia and Xinghua Chang
Materials 2025, 18(11), 2495; https://doi.org/10.3390/ma18112495 - 26 May 2025
Viewed by 583
Abstract
Electrocatalytic nitrate reduction to ammonia (ENRA) presents a promising strategy for simultaneous environmental remediation and sustainable ammonia synthesis. In this work, a Cu–Co bimetallic catalyst supported on functionalized reduced graphene oxide (RGO) was systematically designed to achieve efficient and selective ammonia production. Surface [...] Read more.
Electrocatalytic nitrate reduction to ammonia (ENRA) presents a promising strategy for simultaneous environmental remediation and sustainable ammonia synthesis. In this work, a Cu–Co bimetallic catalyst supported on functionalized reduced graphene oxide (RGO) was systematically designed to achieve efficient and selective ammonia production. Surface oxygen functional groups on graphene oxide (GO) were optimized through alkaline hydrothermal treatments, enhancing the anchoring capacity for metal active sites. Characterization indicated the successful formation of uniform Cu–Co bimetallic heterointerfaces comprising metallic and oxide phases, which significantly improved catalyst stability and performance. Among the studied compositions, Cu6Co4/RGO exhibited superior catalytic activity, achieving a remarkable ammonia selectivity of 99.86% and a Faradaic efficiency of 96.54% at −0.6 V (vs. RHE). Long-term electrocatalysis demonstrated excellent durability, with over 90% Faradaic efficiency maintained for ammonia production after 20 h of operation. In situ FTIR analysis revealed that introducing Co effectively promoted water dissociation, facilitating hydrogen generation (*H) and accelerating the transformation of nitrate intermediates. This work offers valuable mechanistic insights and paves the way for the design of highly efficient bimetallic electrocatalysts for nitrate reduction and ammonia electrosynthesis. Full article
(This article belongs to the Special Issue Eco-Nanotechnology in Materials)
Show Figures

Graphical abstract

16 pages, 1781 KiB  
Article
Sensitive Hydrogen Peroxide Sensor Based on Hexacyanoferrate Nickel–Carbon Nanodots
by Emiliano Martínez-Periñán, Juan Manuel Hernández-Gómez, Encarnación Lorenzo and Cristina Gutiérrez-Sánchez
Chemosensors 2025, 13(6), 195; https://doi.org/10.3390/chemosensors13060195 - 22 May 2025
Viewed by 742
Abstract
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a [...] Read more.
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) based on the in situ formation of a nickel hexacyanoferrate complex on the electrode surface. Screen-printed carbon electrodes were modified with nickel-doped carbon nanodots (Ni-CNDs), and a nickel hexacyanoferrate complex was electrogenerated over the nickel carbon nanodots. Ni-CNDs were synthetized “a la carte” in one step by including nickel (II) acetate as precursor and characterized using different techniques: transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, atomic force microscopy (AFM), and infrared spectroscopy (FTIR). The electrocatalytic activity toward H2O2 reduction and the oxidation of the resulting modified electrodes was studied. The developed sensor had a strong electrocatalytic effect on the oxidation and reduction of H2O2, yielding detection limits of 3.22 and 0.49 μM, respectively. The H2O2 content of a tap water sample was determined, confirming the viability of the developed electrochemical sensor. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

15 pages, 2194 KiB  
Article
Boosting C-C Coupling for Electrochemical CO2 Reduction over Novel Cu-Cubic Catalysts with an Amorphous Shell
by Hanlin Wang, Tian Wang, Gaigai Dong, Linbo Zhang, Fan Pan and Yunqing Zhu
Inorganics 2025, 13(5), 130; https://doi.org/10.3390/inorganics13050130 - 23 Apr 2025
Viewed by 629
Abstract
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s [...] Read more.
Currently, the electrochemical reduction of carbon dioxide faces significant challenges, including poor selectivity for C2 products and low conversion efficiency. An effective strategy for optimizing the reduction reaction pathway and enhancing catalytic performance involves manipulating highly unsaturated atomic sites on the catalyst’s surface, thereby increasing the number of active sites. In this study, we employed sodium dodecylbenzenesulfonate (SDBS) as a surfactant in the electrodeposition method to synthesize copper cubes encapsulated with an amorphous shell (100 nm–250 nm) containing numerous defect sites on its surface. The electrocatalytic CO2 reduction reactions in an H-type reactor showed that, compared to ED-Cu synthesized without additives, AS (amorphous shell)-Cu-5 exhibited a Faradaic efficiency value for ethylene that was 1.7 times greater than that of ED-Cu while significantly decreasing the Faradaic efficiency of hydrogen production. In situ attenuated total reflectance surface-enhanced infrared spectroscopy (ATR-SEIRAS) revealed that introducing an amorphous shell and abundant defects altered both the intermediate species and reaction pathways on the AS-Cu-5 catalyst’s surface, favoring C2H4 formation. The density functional theory (DFT) calculations further confirmed that amorphous copper lowers the energy barrier required for C-C coupling, resulting in a marked enhancement in FE-C2H4. Therefore, additive-assisted electrodeposition presents a simple and rapid synthesis method for improving ethylene selectivity in copper catalysts. Full article
Show Figures

Graphical abstract

18 pages, 9250 KiB  
Article
Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi2WO6 for Solar-Driven CO2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics
by Ting Liu, Yun Wu, Hao Wang, Jichang Lu and Yongming Luo
Nanomaterials 2025, 15(8), 618; https://doi.org/10.3390/nano15080618 - 17 Apr 2025
Viewed by 656
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic [...] Read more.
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production. Full article
Show Figures

Figure 1

17 pages, 8294 KiB  
Article
Aqueous Gel-Casting Synthesis and the Characterization of Cobalt Oxide as a Catalyst Precursor for Sodium Borohydride Hydrolysis
by Lan Zhang, Zhihua Deng, Bin Miao, Hongquan He, Chee Kok Poh, Lili Zhang and Siew Hwa Chan
Catalysts 2025, 15(4), 380; https://doi.org/10.3390/catal15040380 - 14 Apr 2025
Cited by 1 | Viewed by 628
Abstract
Aqueous gel-casting provides a cost-effective and scalable approach for synthesizing nano-spherical Co3O4 powders, enabling precise control over particle morphology. In this study, Co3O4 powders were prepared using this method and evaluated as a catalyst precursor for the [...] Read more.
Aqueous gel-casting provides a cost-effective and scalable approach for synthesizing nano-spherical Co3O4 powders, enabling precise control over particle morphology. In this study, Co3O4 powders were prepared using this method and evaluated as a catalyst precursor for the hydrolysis of sodium borohydride (NaBH4). The effects of the monomer (acrylamide, AM)-to-metal molar ratio and initiator content (ammonium persulphate, APS) on particle size and catalytic performance were systematically explored. X-ray diffraction (XRD) analysis confirmed the formation of the Co3O4 phase at 400 °C, while transmission electron microscopy (TEM) images revealed particle sizes ranging from 16 to 85 nm, with higher AM and APS concentrations promoting finer particles. The optimized catalyst achieved a high hydrogen generation rate (HGR) of 28.13 L min−1·cat.−1, demonstrating excellent catalytic activity. Moreover, in situ-formed cobalt boride, derived from Co3O4 calcined at 600 °C for 2 h, exhibited an activation energy of 51.81 kJ mol−1, comparable to Ru-based catalysts. This study underscores the aqueous gel-casting technique as a promising strategy for synthesizing efficient and low-cost hydrogen generation catalysts, offering an alternative to noble metal-based materials. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Figure 1

25 pages, 6515 KiB  
Article
Frequency-Resolved Modulation Excitation Spectroscopy Methodology for Identifying Surface Reaction Species in Ethanol Oxidation on Gold Catalysts
by Bhagyesha S. Patil, Alejandra Torres-Velasco and Juan J. Bravo-Suárez
Catalysts 2025, 15(4), 346; https://doi.org/10.3390/catal15040346 - 1 Apr 2025
Viewed by 611
Abstract
This study used in situ modulation excitation spectroscopy (MES) with varying frequencies in a single experiment to identify surface species during ethanol oxidation on Au/SiO2, Au/TiO2, Au/ZnO, and Au/SrTiO3. Fixed-bed reactor (FBR) tests (1 kPa ethanol, 1.5 [...] Read more.
This study used in situ modulation excitation spectroscopy (MES) with varying frequencies in a single experiment to identify surface species during ethanol oxidation on Au/SiO2, Au/TiO2, Au/ZnO, and Au/SrTiO3. Fixed-bed reactor (FBR) tests (1 kPa ethanol, 1.5 kPa O2, 513 K) showed that Au/SiO2 and Au/SrTiO3 had higher ethanol conversions. Au/SiO2 favored acetaldehyde, while Au/SrTiO3 yielded more acetates (acetic acid and ethyl acetate). Operando modulation excitation (ME)–phase sensitive detection (PSD)–DRIFTS, with ethanol and oxygen modulation, identified surface ethanol, acetaldehyde, acetates, ethoxy, and hydroxyl species. Oxygen modulation showed charge transfer to supports in Au/TiO2 and Au/ZnO. At the fundamental frequency (f0 = 1/90 Hz), ME–PSD–DRIFTS showed minimal adsorbed ethanol on Au/SiO2, indicating high ethanol conversion. Au/SrTiO3 had higher acetaldehyde consumption, correlating with increased acetates, consistent with FBR results. ME–PSD–DRIFTS at lower frequencies (0.07f0, 0.5 f0) and higher harmonics (2f0, 3f0) showed rapid ethoxy formation/decomposition, and slower acetaldehyde reactions, confirming acetaldehyde as a primary product and acetates as secondary products. Oxygen modulation revealed rapid hydrogen spillover and hydroxyl changes. Overall, operando spectroscopy via mass spectrometry confirmed the FBR findings. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Figure 1

17 pages, 2215 KiB  
Article
Hydrocracking of Polyethylene to Gasoline-Range Hydrocarbons over a Ruthenium-Zeolite Bifunctional Catalyst System with Optimal Synergy of Metal and Acid Sites
by Qing Du, Xin Shang, Yangyang Yuan, Xiong Su and Yanqiang Huang
Catalysts 2025, 15(4), 335; https://doi.org/10.3390/catal15040335 - 31 Mar 2025
Viewed by 987
Abstract
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. [...] Read more.
Chemical recycling of plastic waste, especially polyolefins, into valuable liquid fuels is of considerable significance to address the serious issues raised by their threat on environmental and human health. Nevertheless, the construction of efficient and economically viable catalytic systems remains a significant hurdle. Herein, we developed an efficient bifunctional catalyst system comprising γ-Al2O3-supported ruthenium nanoparticles (Ru/γ-Al2O3) and β-zeolite for the conversion of polyolefins into gasoline-range hydrocarbons. A yield of C5–12 paraffins up to 73.4% can be obtained with polyethene as the reactant at 250 °C in hydrogen. The Ru sites primarily activate the initial cleavage of C–H bonds of polymer towards the formation of olefin intermediates, which subsequently go through further cracking and isomerization over the acid sites in β-zeolite. Employing in situ infrared spectroscopy and probe–molecule model reactions, our investigation reveals that the optimized proportion and spatial distribution of the dual catalytic sites are pivotal in the tandem conversion process. This optimization synergistically regulates the cracking kinetics and accelerates intermediate transfer, thereby minimizing the production of side C1–4 hydrocarbons resulting from over-cracking at the Ru sites and enhancing the yield of liquid fuels. This research contributes novel insights into catalyst design for the chemical upgrading of polyolefins into valuable chemicals, advancing the field of plastic waste recycling and sustainable chemical production. Full article
Show Figures

Graphical abstract

11 pages, 1624 KiB  
Article
Local Interactions in Aqueous Ethanol Solution Revealed by the C=O Stretching Probe
by Zhiqiang Wang, Chi Chen, Ruiting Zhang, Lin Ma and Ke Lin
Molecules 2025, 30(7), 1524; https://doi.org/10.3390/molecules30071524 - 29 Mar 2025
Cited by 1 | Viewed by 597
Abstract
Accurately identifying local interactions such as hydrophilicity and hydrophobicity is of critical importance in regulating the functions of amphiphilic biomolecules, but in situ identification methods for such interactions are still lacking. This study proposes a probe based on carbonyl (C=O) stretching vibration to [...] Read more.
Accurately identifying local interactions such as hydrophilicity and hydrophobicity is of critical importance in regulating the functions of amphiphilic biomolecules, but in situ identification methods for such interactions are still lacking. This study proposes a probe based on carbonyl (C=O) stretching vibration to study the hydrophilic and hydrophobic interactions in amphiphilic alcohol–water systems. A combination of theoretical calculations and Raman spectroscopy experiments is employed to investigate the molecular interactions of ethyl acetate C=O in an ethanol aqueous solution, as well as the reasons behind the splitting of spectral peaks. The results indicate that the spectral peak splitting of the C=O stretching vibration is attributed to ethyl acetate existing in different hydrophilic and hydrophobic environments. Specifically, the two low-wavenumber components arise from the formation of double and single hydrogen bonds between C=O and water or ethanol, respectively, while the high-wavenumber component is attributed to the interaction between C=O and the hydrophobic alkyl group. These findings suggest that the C=O stretching vibration of esters is sensitive to the surrounding hydrophilic and hydrophobic environments, thereby indicating its potential as a useful probe for identifying hydrophilic and hydrophobic interactions. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 2707 KiB  
Article
Revealing the Electronic Effects Between Pt and W on the Performance of Selective Catalytic Reduction of NOx with H2 over Pt-W/SSZ-13
by Hongyan Zhao, Yan Li, Yan Huang, Jianli Wang, Yaoqiang Chen and Haidi Xu
Catalysts 2025, 15(3), 269; https://doi.org/10.3390/catal15030269 - 12 Mar 2025
Cited by 1 | Viewed by 867
Abstract
Selective catalytic reduction of NOx with H2 (H2-SCR) is crucial for eliminating NOx emissions from hydrogen internal combustion engines (H2-ICE). Although 1 wt.% Pt/SSZ-13 (Pt/SZ) is a promising H2-SCR catalyst, it faces challenges such [...] Read more.
Selective catalytic reduction of NOx with H2 (H2-SCR) is crucial for eliminating NOx emissions from hydrogen internal combustion engines (H2-ICE). Although 1 wt.% Pt/SSZ-13 (Pt/SZ) is a promising H2-SCR catalyst, it faces challenges such as a narrow operating window and low N2 selectivity. Herein, the effects of WO3 on improving the H2-SCR performance of Pt/SZ was investigated. Results showed that incorporating 5 wt.% WO3 significantly widened the temperature window for 80% NOx conversion and enhanced N2 selectivity at 90–180 °C. Several characterizations revealed that electrons transfer from W to Pt, so more active Pt0 species were formed on 1 wt.% Pt-5 wt.% W/SZ (Pt-5W/SZ). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis indicated that more active monodentate nitrates, nitrites, and NH4+ species were generated on Pt-5W/SZ, which are key intermediates for N2 formation. Consequently, the temperature windows for NOx conversion (over 80%) and N2 selectivity (over 70%) were widened by 65 °C and 66 °C, respectively. This work provides insights into the developing H2-SCR catalysts with broader operating windows and higher N2 selectivity. Full article
(This article belongs to the Special Issue Rare Metal Catalysis: From Synthesis to Sustainable Applications)
Show Figures

Graphical abstract

Back to TopTop