Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (876)

Search Parameters:
Keywords = impedance mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Viewed by 115
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 404
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 271
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

32 pages, 10857 KiB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 343
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 404
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

19 pages, 12234 KiB  
Article
Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
by Abdullah M. Noman, Abu Sufyan, Mohsin Jamil and Sulaiman Z. Almutairi
Electronics 2025, 14(14), 2894; https://doi.org/10.3390/electronics14142894 - 19 Jul 2025
Viewed by 180
Abstract
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly [...] Read more.
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly into the grid. The control performance of a GCI equipped with an LCL filter is greatly reduced when it is operating in a power grid with varying impedance and fluctuating grid voltages, which may result in poor current quality and possible instability in the system. A non-singular double integral terminal sliding mode (DIT-SMC) control is presented in this paper for a three-phase GCI with an LCL filter. The proposed method is presented in the α, β frame of reference without adopting an active or passive damping approach, reducing the computational burden. MATLAB/Simulink Version R2023b is leveraged to simulate the mathematical model of the proposed control system. The capability of the DIT-SMC method is validated through the OPAL-RT hardware-in-loop (HIL) platform. The effectiveness of the proposed method is first compared with SMC and integral terminal SMC, and then the DIT-SMC method is rigorously analyzed under resonance frequency events, grid impedance variation, and grid voltage distortions. It is demonstrated by the experimental results that the proposed control is highly effective in delivering a high-quality current into the grid, in spite of the simultaneous occurrence of power grid impedance variations in 6 mH and large voltage distortions. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

20 pages, 16651 KiB  
Article
Modelling the Spatiotemporal Coordination Between Ecosystem Services and Socioeconomic Development to Enhance Their Synergistic Development Based on Water Resource Zoning in the Yellow River Basin, China
by Lingang Hao, Enhui Jiang, Bo Qu, Chang Liu, Ying Liu and Jiaqi Li
Sustainability 2025, 17(14), 6588; https://doi.org/10.3390/su17146588 - 18 Jul 2025
Viewed by 312
Abstract
The synergistic development of ecosystems and socioeconomic systems constitutes a critical foundation for achieving Sustainable Development Goals (SDGs). Large river basins characterized by ecological and socioeconomic spatial heterogeneity frequently present contradictions and conflicts in regional sustainable development, thereby impeding the realization of SDGs. [...] Read more.
The synergistic development of ecosystems and socioeconomic systems constitutes a critical foundation for achieving Sustainable Development Goals (SDGs). Large river basins characterized by ecological and socioeconomic spatial heterogeneity frequently present contradictions and conflicts in regional sustainable development, thereby impeding the realization of SDGs. This study employed the Yellow River Basin (YRB), a typical large sediment-laden river system, as a case study. Based on the secondary water resource zones, the spatial variability and temporal evolution of ecosystem service value (ESV), population (POP), GDP, nighttime light (NTL), and Human Development Index (HDI) were analyzed at the water resource partition scale. A consistent mode was applied to quantify the spatiotemporal consistency between ESV and socioeconomic indicators across water resource partitions. The results indicated that from 1980 to 2020, the ESV of the YRB increased from 1079.83 × 109 to 1139.20 × 109 yuan, with no notable spatial pattern variation. From upstream to downstream, the population density, GDP per unit area, and NTL per unit area displayed increasing trends along the river course, whereas the total population, GDP, and NTL initially increased and then declined. Temporally, the population fluctuated with an overall upward tendency, while GDP and NTL experienced significant growth. The spatial distribution and temporal evolution of HDI remained comparatively stable. The coefficients of variation for population, GDP, and NTL were significantly higher than those for ecosystem services and HDI. The study highlighted an overall lack of coordination between ESV and socioeconomic development in the YRB, with relatively stable spatial patterns. These findings could offer a theoretical reference for the formulation of policies to enhance the synergistic development of ecosystems and socioeconomic systems in the YRB. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

24 pages, 7332 KiB  
Article
High-Performance Natural Dye-Sensitized Solar Cells Employing a New Semiconductor: Gd2Ru2O7 Pyrochlore Oxide
by Assohoun F. Kraidy, Abé S. Yapi, Joseph K. Datte, Michel Voue, Mimoun El Marssi, Anthony Ferri and Yaovi Gagou
Condens. Matter 2025, 10(3), 38; https://doi.org/10.3390/condmat10030038 - 14 Jul 2025
Viewed by 623
Abstract
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films [...] Read more.
We investigated a novel natural dye-sensitized solar cell (DSSC) utilizing gadolinium ruthenate pyrochlore oxide Gd2Ru2O7 (GRO) as a photoanode and compared its performance to the TiO2-Gd2Ru2O7 (TGRO) combined-layer configuration. The films were fabricated using the spin-coating technique, resulting in spherical grains with an estimated mean diameter of 0.2 µm, as observed via scanning electron microscopy (SEM). This innovative photoactive gadolinium ruthenate pyrochlore oxide demonstrated strong absorption in the visible range and excellent dye adhesion after just one hour of exposure to natural dye. X-ray diffraction confirmed the presence of the pyrochlore phase, where Raman spectroscopy identified various vibration modes characteristic of the pyrochlore structure. Incorporating Gd2Ru2O7 as the photoanode significantly enhanced the overall efficiency of the DSSCs. The device configuration FTO/compact-layer/Gd2Ru2O7/Hibiscus-sabdariffa/electrolyte(I/I3)/Pt achieved a high efficiency of 9.65%, an open-circuit voltage (Voc) of approximately 3.82 V, and a current density of 4.35 mA/cm2 for an active surface area of 0.38 cm2. A mesoporous TiO2-based DSSC was fabricated under the same conditions for comparison. Using impedance spectroscopy and cyclic voltammetry measurements, we provided evidence of the mechanism of conductivity and the charge carrier’s contribution or defect contributions in the DSSC cells to explain the obtained Voc value. Through cyclic voltammetry measurements, we highlight the redox activities of hibiscus dye and electrolyte (I/I3), which confirmed electrochemical processes in addition to a photovoltaic response. The high and unusual obtained Voc value was also attributed to the presence in the photoanode of active dipoles, the layer thickness, dye concentration, and the nature of the electrolyte. Full article
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 280
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
A Wideband Circularly Polarized Metasurface Antenna with High Gain Using Characteristic Mode Analysis
by Zijie Li, Yuechen Liu, Mengfei Zhao, Weihua Zong and Shi He
Electronics 2025, 14(14), 2818; https://doi.org/10.3390/electronics14142818 - 13 Jul 2025
Viewed by 414
Abstract
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to [...] Read more.
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to enhance the desired modes and suppress the unwanted modes. Subsequently, a feeding network that merges a ring slot with an L-shaped microstrip line is utilized to excite two orthogonal modes with a 90° phase difference, thereby achieving CP and high-gain radiation. Finally, a prototype with dimensions of 0.9λ0 × 0.9λ0 × 0.05λ0 is fabricated and tested. The measured results demonstrate an impedance bandwidth (IBW) of 39.5% (4.92–7.37 GHz), a 3 dB axial ratio bandwidth (ARBW) of 33.1% (5.25–7.33 GHz), and a peak gain of 9.4 dBic at 6.9 GHz. Full article
Show Figures

Figure 1

15 pages, 5752 KiB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 263
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

40 pages, 2353 KiB  
Review
Electrochemical Impedance Spectroscopy-Based Biosensors for Label-Free Detection of Pathogens
by Huaiwei Zhang, Zhuang Sun, Kaiqiang Sun, Quanwang Liu, Wubo Chu, Li Fu, Dan Dai, Zhiqiang Liang and Cheng-Te Lin
Biosensors 2025, 15(7), 443; https://doi.org/10.3390/bios15070443 - 10 Jul 2025
Viewed by 598
Abstract
The escalating threat of infectious diseases necessitates the development of diagnostic technologies that are not only rapid and sensitive but also deployable at the point of care. Electrochemical impedance spectroscopy (EIS) has emerged as a leading technique for the label-free detection of pathogens, [...] Read more.
The escalating threat of infectious diseases necessitates the development of diagnostic technologies that are not only rapid and sensitive but also deployable at the point of care. Electrochemical impedance spectroscopy (EIS) has emerged as a leading technique for the label-free detection of pathogens, offering a unique combination of sensitivity, non-invasiveness, and adaptability. This review provides a comprehensive overview of the design and application of EIS-based biosensors tailored for pathogen detection, focusing on critical components such as biorecognition elements, electrode materials, nanomaterial integration, and surface immobilization strategies. Special emphasis is placed on the mechanisms of signal generation under Faradaic and non-Faradaic modes and how these underpin performance characteristics such as the limit of detection, specificity, and response time. The application spectrum spans bacterial, viral, fungal, and parasitic pathogens, with case studies highlighting detection in complex matrices such as blood, saliva, food, and environmental water. Furthermore, integration with microfluidics and point-of-care systems is explored as a pathway toward real-world deployment. Emerging strategies for multiplexed detection and the utilization of novel nanomaterials underscore the dynamic evolution of the field. Key challenges—including non-specific binding, matrix effects, the inherently low ΔRct/decade sensitivity of impedance transduction, and long-term stability—are critically evaluated alongside recent breakthroughs. This synthesis aims to support the future development of robust, scalable, and user-friendly EIS-based pathogen biosensors with the potential to transform diagnostics across healthcare, food safety, and environmental monitoring. Full article
(This article belongs to the Special Issue Material-Based Biosensors and Biosensing Strategies)
Show Figures

Figure 1

12 pages, 2348 KiB  
Article
A Compact Self-Decoupled In-Band Full-Duplex Monopole Antenna Based on Common- and Differential-Mode Theory
by Yuejian Li, Yao Hu and Yu Luo
Electronics 2025, 14(14), 2770; https://doi.org/10.3390/electronics14142770 - 10 Jul 2025
Viewed by 254
Abstract
In-band full-duplex (IBFD) technology has attracted significant attention for its potential to double the spectral efficiency by enabling a simultaneous transmission and reception over the same frequency channel. However, achieving high isolation between closely spaced transmit and receive paths remains a critical challenge. [...] Read more.
In-band full-duplex (IBFD) technology has attracted significant attention for its potential to double the spectral efficiency by enabling a simultaneous transmission and reception over the same frequency channel. However, achieving high isolation between closely spaced transmit and receive paths remains a critical challenge. In this paper, a novel compact co-polarized monopole antenna with self-decoupling capability is proposed based on common-mode/differential-mode (CM/DM) theory. By innovatively folding the ends of the monopole elements, the antenna exploits the distinct behaviors under CM and DM excitations at a close spacing to achieve simultaneous impedance matching in both modes. This effectively enhances the isolation between antenna elements. The design enables self-interference suppression without requiring any additional decoupling structures, even under compact antenna and port spacing. Measurement results confirm that the proposed antenna achieves over 20 dB isolation within the 3.4–3.6 GHz operating band, with a compact spacing of 0.008 λ00 corresponds to the wavelength at the center frequency). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 397 KiB  
Review
Compliant Force Control for Robots: A Survey
by Minglei Zhu, Dawei Gong, Yuyang Zhao, Jiaoyuan Chen, Jun Qi and Shijie Song
Mathematics 2025, 13(13), 2204; https://doi.org/10.3390/math13132204 - 6 Jul 2025
Viewed by 715
Abstract
Compliant force control is a fundamental capability for enabling robots to interact safely and effectively with dynamic and uncertain environments. This paper presents a comprehensive survey of compliant force control strategies, intending to enhance safety, adaptability, and precision in applications such as physical [...] Read more.
Compliant force control is a fundamental capability for enabling robots to interact safely and effectively with dynamic and uncertain environments. This paper presents a comprehensive survey of compliant force control strategies, intending to enhance safety, adaptability, and precision in applications such as physical human–robot interaction, robotic manipulation, and collaborative tasks. The review begins with a classification of compliant control methods into passive and active approaches, followed by a detailed examination of direct force control techniques—including hybrid and parallel force/position control—and indirect methods such as impedance and admittance control. Special emphasis is placed on advanced compliant control strategies applied to structurally complex robotic systems, including aerial, mobile, cable-driven, and bionic robots. In addition, intelligent compliant control approaches are systematically analyzed, encompassing neural networks, fuzzy logic, sliding mode control, and reinforcement learning. Sensorless compliance techniques are also discussed, along with emerging trends in hardware design and intelligent control methodologies. This survey provides a holistic view of the current landscape, identifies key technical challenges, and outlines future research directions for achieving more robust, intelligent, and adaptive compliant force control in robotic systems. Full article
(This article belongs to the Special Issue Intelligent Control and Applications of Nonlinear Dynamic System)
Show Figures

Figure 1

24 pages, 4035 KiB  
Article
Coordinated Optimization Scheduling Method for Frequency and Voltage in Islanded Microgrids Considering Active Support of Energy Storage
by Xubin Liu, Jianling Tang, Qingpeng Zhou, Jiayao Peng and Nanxing Huang
Processes 2025, 13(7), 2146; https://doi.org/10.3390/pr13072146 - 5 Jul 2025
Cited by 1 | Viewed by 340
Abstract
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy [...] Read more.
In islanded microgrids with high-proportion renewable energy, the disconnection from the main grid leads to the characteristics of low inertia, weak damping, and high impedance ratio, which exacerbate the safety risks of frequency and voltage. To balance the requirements of system operation economy and frequency–voltage safety, a coordinated optimization scheduling method for frequency and voltage in islanded microgrids considering the active support of battery energy storage (BES) is proposed. First, to prevent the state of charge (SOC) of BES from exceeding the frequency regulation range due to rapid frequency adjustment, a BES frequency regulation strategy with an adaptive virtual droop control coefficient is adopted. The frequency regulation capability of BES is evaluated based on the capacity constraints of grid-connected converters, and a joint frequency and voltage regulation strategy for BES is proposed. Second, an average system frequency model and an alternating current power flow model for islanded microgrids are established. The influence of steady-state voltage fluctuations on active power frequency regulation is analyzed, and dynamic frequency safety constraints and node voltage safety constraints are constructed and incorporated into the optimization scheduling model. An optimization scheduling method for islanded microgrids that balances system operation costs and frequency–voltage safety is proposed. Finally, the IEEE 33-node system in islanded mode is used as a simulation case. Through comparative analysis of different optimization strategies, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

Back to TopTop