Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,750)

Search Parameters:
Keywords = impact hazard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

29 pages, 14336 KiB  
Article
Geospatial Mudflow Risk Modeling: Integration of MCDA and RAMMS
by Ainur Mussina, Assel Abdullayeva, Victor Blagovechshenskiy, Sandugash Ranova, Zhixiong Zeng, Aidana Kamalbekova and Ulzhan Aldabergen
Water 2025, 17(15), 2316; https://doi.org/10.3390/w17152316 - 4 Aug 2025
Abstract
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial [...] Read more.
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial assessment of mudflow hazard and susceptibility using GIS technologies and MCDA. The key condition for evaluating mudflow hazard is the identification of factors influencing the formation of mudflows. The susceptibility assessment was based on viewing the area as an object of spatial and functional analysis, enabling determination of its susceptibility to mudflow impacts across geomorphological zones: initiation, transformation, and accumulation. Relevant criteria were selected for analysis, each assigned weights based on expert judgment and the Analytic Hierarchy Process (AHP). The results include maps of potential mudflow hazard and susceptibility, showing areas of hazard occurrence and risk impact zones within the Talgar River basin. According to the mudflow hazard map, more than 50% of the basin area is classified as having a moderate hazard level, while 28.4% is subject to high hazard, and only 1.8% falls under the very high hazard category. The remaining areas are categorized as very low (4.1%) and low (14.7%) hazard zones. In terms of susceptibility to mudflows, 40.1% of the territory is exposed to a high level of susceptibility, 35.6% to a moderate level, and 5.5% to a very high level. The remaining areas are classified as very low (1.8%) and low (15.6%) susceptibility zones. The predictive performance was evaluated through Receiver Operating Characteristic (ROC) curves, and the Area Under the Curve (AUC) value of the mudflow hazard assessment is 0.86, which indicates good adaptability and relatively high accuracy, while the AUC value for assessing the susceptibility of the territory is 0.71, which means that the accuracy of assessing the susceptibility of territories to mudflows is within the acceptable level of model accuracy. To refine the spatial risk assessment, mudflow modeling was conducted under three scenarios of glacial-moraine lake outburst using the RAMMS model. For each scenario, key flow parameters—height and velocity—were identified, forming the basis for classification of zones by impact intensity. The integration of MCDA and RAMMS results produced a final mudflow risk map reflecting both the likelihood of occurrence and the extent of potential damage. The presented approach demonstrates the effectiveness of combining GIS analysis, MCDA, and physically-based modeling for comprehensive natural hazard assessment and can be applied to other mountainous regions with high mudflow activity. Full article
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Effectiveness of the Human Papillomavirus Vaccine in Extended Age Groups: A Real-World Analysis Based on the Korean HPV Cohort Study
by Heekyoung Song, Sanha Lee, Suein Choi and Soo Young Hur
Cancers 2025, 17(15), 2561; https://doi.org/10.3390/cancers17152561 - 3 Aug 2025
Viewed by 101
Abstract
Background/Objectives: This study evaluated the real-world effectiveness of prophylactic Human Papillomavirus (HPV) vaccination in Korean women aged over 26 years, focusing on its impact on persistent HPV infection and disease progression. Methods: This multicenter prospective study analyzed data from the Korea HPV Cohort [...] Read more.
Background/Objectives: This study evaluated the real-world effectiveness of prophylactic Human Papillomavirus (HPV) vaccination in Korean women aged over 26 years, focusing on its impact on persistent HPV infection and disease progression. Methods: This multicenter prospective study analyzed data from the Korea HPV Cohort (2010–2021). After applying exclusion criteria, the final analytical cohort included 1,231 women aged ≥ 27 years with cytologic findings of atypical squamous cells of undetermined significance/low-grade squamous intraepithelial lesions and HPV infection. Propensity score matching was used to compare vaccinated (n = 340) and unvaccinated (n = 891) participants. After matching, 273 vaccinated and 273 unvaccinated individuals were included in the final analysis. The primary outcomes were persistent HPV infection and progression to biopsy-confirmed cervical intraepithelial neoplasia grade 2 or worse (CIN2+). Logistic and Cox regression models were employed, with additional age-stratified analyses. Results: Among women aged 27–39 years, vaccination was significantly associated with a 54% reduction in the odds of persistent HPV infection (odds ratio = 0.46; 95% CI: 0.22–0.96; p = 0.040). In the full cohort, vaccinated participants had a 62% lower risk of progression to CIN2+ compared with unvaccinated participants (hazard ratio = 0.38; 95% CI: 0.18–0.81; p = 0.011). Body mass index had a notable impact on HPV persistence in HPV 16/18 genotype groups. Conclusions: HPV vaccination effectively reduced persistent infection and progression to CIN2+ in Korean women, particularly those vaccinated before age 40. These findings support the age-extended HPV vaccination policies in South Korea. Full article
(This article belongs to the Section Cancer Epidemiology and Prevention)
Show Figures

Figure 1

21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 215
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

32 pages, 2702 KiB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 - 2 Aug 2025
Viewed by 259
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 6443 KiB  
Article
The Effects of the Choice of Liquefaction Criteria on Liquefaction in Soils with Plastic Fines
by Carmine Polito
J 2025, 8(3), 27; https://doi.org/10.3390/j8030027 - 1 Aug 2025
Viewed by 87
Abstract
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation [...] Read more.
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation of test results and subsequent engineering analyses. This study evaluates the impact of different liquefaction criteria by analyzing 42 cyclic triaxial tests performed on soil mixtures containing plastic fines. Both stress-based and strain-based liquefaction criteria were applied to assess their influence on test outcomes. The analyses focused on two key parameters: the number of loading cycles required to initiate liquefaction and the normalized dissipated energy per unit volume needed for liquefaction to occur. Results indicate that for soils susceptible to liquefaction failures, these parameters remain relatively consistent across different failure criteria. However, for soils prone to cyclic mobility failures, the number of loading cycles and the dissipated energy required for liquefaction vary significantly depending on the selected failure criterion. These findings highlight the importance of carefully selecting a liquefaction criterion, as it directly affects the assessment of soil behavior under cyclic loading. A better understanding of these variations can improve the accuracy of liquefaction susceptibility evaluations and inform geotechnical design and hazard mitigation strategies. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

25 pages, 1473 KiB  
Review
Environmental Hazards and Glial Brain Tumors: Association or Causation?
by Robert P. Ostrowski, Albert Acewicz, Zhaohui He, Emanuela B. Pucko and Jakub Godlewski
Int. J. Mol. Sci. 2025, 26(15), 7425; https://doi.org/10.3390/ijms26157425 - 1 Aug 2025
Viewed by 132
Abstract
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient [...] Read more.
Progress in establishing environmental risk factors and, consequently, prophylactic measures for glial tumors, particularly for glioblastomas, is of utmost importance, considering the dismal prognosis and limited treatment options. This report surveyed updates on established and recently identified factors that can predispose a patient to glioma formation while highlighting possible mechanistic links and further research directions. In addition to established factors that increase the risk of glioma, i.e., brain irradiation and several genetic syndromes, another group consists of likely factors contributing to such risks, such as the use of tobacco and those yielding ambiguous results (e.g., UV exposure). Oxidative stress is a common denominator for several types of exposure, and a mechanistic background for other factors remains elusive. Nevertheless, the analysis of clinical and basic research strongly suggests that, apart from the effect of environmental stressors on DNA alterations and mutation burden, the impact of modifying the tumor microenvironment should be considered. Identifying the involvement of environmental hazards in gliomagenesis and glial tumor progression would lower overall risk by modifying clinical practice, patient management, and lifestyle choices. Further verifying the environmental hazards in glioma formation and progression would have far-reaching implications for neurologists, neurosurgeons, and patients. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

15 pages, 490 KiB  
Article
The Labour Conditions and Health of Migrant Agricultural Workers in Spain: A Qualitative Study
by Vanesa Villa-Cordero, Amalia Sillero Sillero, María del Mar Pastor-Bravo, Iratxe Pérez-Urdiales, María del Mar Jiménez-Lasserrotte and Erica Briones-Vozmediano
Healthcare 2025, 13(15), 1877; https://doi.org/10.3390/healthcare13151877 - 31 Jul 2025
Viewed by 147
Abstract
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions [...] Read more.
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions affect the physical health of this population. Methods: A qualitative descriptive study was conducted through 92 semi-structured interviews with professionals from six provinces in Spain. Data were analysed using thematic analysis following Braun and Clarke’s six-phase framework. Rigour was ensured through triangulation, independent coding, and interdisciplinary consensus. Results: Two overarching themes were identified: (1) the health consequences of workplace demands and environmental hazards, and (2) navigating health services such as sick leave and disability permits. These findings highlight how the impact of precarious working conditions and limited access to healthcare affect the physical health of migrant agricultural workers. Conclusions: The professionals interviewed described and relate precarious working conditions with adverse health outcomes among migrant agricultural workers. Their insights reveal the need for systemic reforms to enforce labour rights, ensure access to health services, and address the structural factors that contribute to exclusion and vulnerability. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Evaluating the Therapeutic Role of Lymph Node Dissection in Variant Subtype Bladder Cancer
by Syed Nahiyaan Rahman, Darryl T. Martin, Kandala Keervani, Spencer James, Peter Humphrey, David Hesse, Wei Shen Tan, Sunil Patel, Jonathan Wright and Fady Ghali
Cancers 2025, 17(15), 2536; https://doi.org/10.3390/cancers17152536 - 31 Jul 2025
Viewed by 136
Abstract
Background: The importance of lymph node dissection (LND) at the time of radical cystectomy for urothelial carcinoma (UC) is widely accepted despite known risks. The therapeutic benefits of LND for variant subtype bladder cancer (VBC), a heterogenous and distinct set of diseases, are [...] Read more.
Background: The importance of lymph node dissection (LND) at the time of radical cystectomy for urothelial carcinoma (UC) is widely accepted despite known risks. The therapeutic benefits of LND for variant subtype bladder cancer (VBC), a heterogenous and distinct set of diseases, are not well established. We aim to characterize the impact of LND on overall survival across VBC subtypes. Methods: The National Cancer Database was queried for all cases of variant subtype bladder cancer managed with radical cystectomy between 2004 and 2020, using the International Classification of Disease-O-3 morphological codes. The cases were stratified by receipt of individual variant subtypes. The primary outcome was overall survival associated with pathologic nodal status and receipt of nodal dissection. A Kaplan–Meier analysis and Cox proportional hazards analysis were used for survival analyses. Results: A total of 30,911 patients with VBC that were managed with radical cystectomy were included in our analysis. The pNx rates ranged from 33.1% in the micropapillary subtype, 42.2% in the sarcomatoid subtype, 68.4% in the squamous subtype, 48.9% in the adenocarcinoma subtype, and 56.2% in the neuroendocrine subtype. The median OS was higher in those that received a nodal dissection across subtypes but was statistically significant only for the squamous (71.0 [68.0 vs. 74.0] vs. 37.2 [33.6 vs. 40.9] months p < 0.001) and adenocarcinoma (45.9 [32.9 vs. 59.0] vs. 37.9 [28.6 vs. 47.1] months p = 0.037) subtypes. Using Cox proportional hazards regression, LN dissection was associated with improved OS for the squamous (0.50 (0.44–0.58) p < 0.001) and adenocarcinoma (0.65 [0.45–0.93) p = 0.030) subtypes. Conclusions: The role of LND across VBC subtypes is not clearly defined and warrants further investigation to develop a more risk-adaptive approach. We demonstrate heterogeneity with respect to the OS benefit associated with LND at the time of surgery. Among certain VBC subtypes, LND may not offer a significant therapeutic benefit, while LND in squamous and adenocarcinoma VBCs is correlated with improved survival. Full article
Show Figures

Figure 1

22 pages, 3483 KiB  
Review
The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches
by Ángela Franco and Salvador García-Ayllón
Water 2025, 17(15), 2276; https://doi.org/10.3390/w17152276 - 31 Jul 2025
Viewed by 277
Abstract
Floods are natural hazards that have the greatest socioeconomic impact worldwide, given that 23% of the global population live in urban areas at risk of flooding. In this field of research, the analysis of flood risk has traditionally been studied based mainly on [...] Read more.
Floods are natural hazards that have the greatest socioeconomic impact worldwide, given that 23% of the global population live in urban areas at risk of flooding. In this field of research, the analysis of flood risk has traditionally been studied based mainly on approaches specific to civil engineering such as hydraulics and hydrology. However, these patterns of approaching the problem in research seem to be changing in recent years. During the last few years, a growing trend has been observed towards the use of methodology-based approaches oriented towards urban planning and land use management. In this context, this study analyzes the evolution of these research patterns in the field by developing a bibliometric meta-analysis of 2694 scientific publications on this topic published in recent decades. Evaluating keyword co-occurrence using VOSviewer software version 1.6.20, we analyzed how phenomena such as climate change have modified the way of addressing the study of this problem, giving growing weight to the use of integrated approaches improving territorial planning or implementing adaptive strategies, as opposed to the more traditional vision of previous decades, which only focused on the construction of hydraulic infrastructures for flood control. Full article
(This article belongs to the Special Issue Spatial Analysis of Flooding Phenomena: Challenges and Case Studies)
Show Figures

Figure 1

21 pages, 5188 KiB  
Article
Radar Monitoring and Numerical Simulation Reveal the Impact of Underground Blasting Disturbance on Slope Stability
by Chi Ma, Zhan He, Peitao Wang, Wenhui Tan, Qiangying Ma, Cong Wang, Meifeng Cai and Yichao Chen
Remote Sens. 2025, 17(15), 2649; https://doi.org/10.3390/rs17152649 - 30 Jul 2025
Viewed by 213
Abstract
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, [...] Read more.
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, this research develops a dynamic mechanical response model of slope stability that accounts for blasting loads. By integrating slope radar remote sensing data and applying the Pearson correlation coefficient, this study quantitatively evaluates—for the first time—the correlation between underground blasting activity and slope surface deformation. The results reveal that blasting vibrations are characterized by typical short-duration, high-amplitude pulse patterns, with horizontal shear stress identified as the primary trigger for slope shear failure. Both elevation and lithological conditions significantly influence the intensity of vibration responses: high-elevation areas and structurally loose rock masses exhibit greater dynamic sensitivity. A pronounced lag effect in slope deformation was observed following blasting, with cumulative displacements increasing by 10.13% and 34.06% at one and six hours post-blasting, respectively, showing a progressive intensification over time. Mechanistically, the impact of blasting on slope stability operates through three interrelated processes: abrupt perturbations in the stress environment, stress redistribution due to rock mass deformation, and the long-term accumulation of fatigue-induced damage. This integrated approach provides new insights into slope behavior under blasting disturbances and offers valuable guidance for slope stability assessment and hazard mitigation. Full article
Show Figures

Graphical abstract

27 pages, 8496 KiB  
Article
Comparative Performance of Machine Learning Models for Landslide Susceptibility Assessment: Impact of Sampling Strategies in Highway Buffer Zone
by Zhenyu Tang, Shumao Qiu, Haoying Xia, Daming Lin and Mingzhou Bai
Appl. Sci. 2025, 15(15), 8416; https://doi.org/10.3390/app15158416 - 29 Jul 2025
Viewed by 151
Abstract
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, [...] Read more.
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, including Naïve Bayes (NB), Support Vector Machine (SVM), SVM-Random Forest hybrid (SVM-RF), and XGBoost. The study area is a 2 km buffer zone along the Duku Highway in Xinjiang, China, with 102 landslide and 102 non-landslide points extracted by aforementioned sampling methods. Models were tested using ROC curves and non-parametric significance tests based on 20 repetitions of 5-fold spatial cross-validation data. GLHM sampling consistently improved AUROC and accuracy across all models (e.g., AUROC gains: NB +8.44, SVM +7.11, SVM–RF +3.45, XGBoost +3.04; accuracy gains: NB +11.30%, SVM +8.33%, SVM–RF +7.40%, XGBoost +8.31%). XGBoost delivered the best performance under both sampling strategies, reaching 94.61% AUROC and 84.30% accuracy with GLHM sampling. SHAP analysis showed that GLHM sampling stabilized feature importance rankings, highlighting STI, TWI, and NDVI as the main controlling factors for landslides in the study area. These results highlight the importance of hazard-informed sampling to enhance landslide susceptibility modeling accuracy and interpretability. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 183
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

12 pages, 2831 KiB  
Article
IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations
by Shunjie Yu, Lijuan Hu, Yazhen Qin, Guorui Ruan, Yazhe Wang, Hao Jiang, Feifei Tang, Ting Zhao, Jinsong Jia, Jing Wang, Qiang Fu, Xiaohui Zhang, Lanping Xu, Yu Wang, Yuqian Sun, Yueyun Lai, Hongxia Shi, Xiaojun Huang and Qian Jiang
Cancers 2025, 17(15), 2494; https://doi.org/10.3390/cancers17152494 - 29 Jul 2025
Viewed by 313
Abstract
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from [...] Read more.
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from consecutive patients with CEBPAbZIP-inf were reviewed. A Cox proportional hazards regression was used to identify the variables associated with event-free survival (EFS), relapse-free survival (RFS) and survival. Results: 224 CEBPAbZIP-inf patients were included in this study. In the 201 patients, except for the 19 receiving the transplant in the first complete remission with no events (the transplant cohort), multivariate analyses showed that IKZF1 mutations/deletions were significantly associated with poor EFS (p = 0.001) and RFS (p < 0.001); FLT3-ITD mutations, poor RFS (p = 0.048). In addition, increasing WBC count, lower hemoglobin concentration, non-intensive induction, and MRD positivity after first consolidation predicted poor outcomes. On the basis of the number of adverse prognostic covariates for RFS, the 201 patients were classified into low-, intermediate- or high-risk subgroups, and there were significant differences in the 3-year EFS, RFS and survival rates (all p < 0.001); however, except for survival in the low-risk group, these metrics were lower than those in the transplant cohort. Conclusions: We identified a potential high-risk population with adverse prognostic factors in CEBPAbZIP-inf AML patients for which transplantation should be considered. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

Back to TopTop