IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Immune, Cytogenetic, and Molecular Analyses and Next-Generation Sequencing (NGS)
2.3. Treatment
2.4. Definitions
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Mutation Topography
3.3. Outcomes
3.4. Impact of Co-Mutations and Cytogenetic Abnormalities on Outcomes
3.5. Identifying Covariates Associated with Outcomes
3.6. Risk Stratification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taube, F.; Georgi, J.A.; Kramer, M.; Stasik, S.; Middeke, J.M.; Röllig, C.; Krug, U.; Krämer, A.; Scholl, S.; Hochhaus, A.; et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: Differential impact of bZIP and TAD mutations on outcome. Blood 2022, 139, 87–103. [Google Scholar] [CrossRef]
- Wakita, S.; Sakaguchi, M.; Oh, I.; Kako, S.; Toya, T.; Najima, Y.; Doki, N.; Kanda, J.; Kuroda, J.; Mori, S.; et al. Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022, 6, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Tien, F.M.; Yao, C.Y.; Tsai, X.C.; Lo, M.Y.; Chen, C.Y.; Lee, W.H.; Lin, C.C.; Kuo, Y.Y.; Peng, Y.L.; Tseng, M.H.; et al. Dysregulated immune and metabolic pathways are associated with poor survival in adult acute myeloid leukemia with CEBPA bZIP in-frame mutations. Blood Cancer J. 2024, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Georgi, J.A.; Stasik, S.; Kramer, M.; Meggendorfer, M.; Röllig, C.; Haferlach, T.; Valk, P.; Linch, D.; Herold, T.; Duployez, N.; et al. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia 2024, 38, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Shen, Z.; Xie, J.; Zhang, J.; Wu, Q.; Jiang, R.; Zhao, X.; Yang, X.; Chen, S. CEBPA bZIP in-frame mutations in acute myeloid leukemia: Prognostic and therapeutic implications. Blood Cancer J. 2024, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Z.; Ruan, G.; Liu, Y.; Wang, Y.; Zhang, X.; Xu, L.; Huang, X.; Chang, Y. Impact of pre-transplantation minimal residual disease determined by multiparameter flow cytometry on the outcome of AML patients with FLT3-ITD after allogeneic stem cell transplantation. Ann. Hematol. 2018, 97, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, L.G.; McGowan-Jordan, J.; Schmid, M. ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013); Karger Medical and Scientific Publishers: Basel, Switzerland, 2013. [Google Scholar]
- Yu, S.; Yang, S.; Hu, L.; Duan, W.; Zhao, T.; Qin, Y.; Wang, Y.; Lai, Y.; Shi, H.; Tang, F.; et al. Genetic abnormalities predict outcomes in patients with core binding factor acute myeloid leukemia. Ann. Hematol. 2025, 104, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.B.; Mehta, V.; Girman, C.J.; Adhikari, D.; Johnson, M.L. Regression coefficient-based scoring system should be used to assign weights to the risk index. J. Clin. Epidemiol. 2016, 79, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Iba, K.; Shinozaki, T.; Maruo, K.; Noma, H. Re-evaluation of the comparative effectiveness of bootstrap-based optimism correction methods in the development of multivariable clinical prediction models. BMC Med. Res. Methodol. 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Harrell, F.E., Jr.; Borsboom, G.J.; Eijkemans, M.J.; Vergouwe, Y.; Habbema, J.D. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, K.; Yamaguchi, S.; Iwanaga, E.; Nanri, T.; Shimomura, T.; Suzushima, H.; Mitsuya, H.; Asou, N. High frequency of IKZF1 genetic alterations in adult patients with B-cell acute lymphoblastic leukemia. Eur. J. Haematol. 2013, 91, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Goorha, S.; Radtke, I.; Miller, C.B.; Coustan-Smith, E.; Dalton, J.D.; Girtman, K.; Mathew, S.; Ma, J.; Pounds, S.B.; et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007, 446, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Vairy, S.; Tran, T.H. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev. 2020, 44, 100677. [Google Scholar] [CrossRef] [PubMed]
- Simonin, M.; Lhermitte, L.; Dourthe, M.E.; Lengliné, E.; Graux, C.; Grardel, N.; Cayuela, J.M.; Arnoux, I.; Gandemer, V.; Ifrah, N.; et al. IKZF1 alterations predict poor prognosis in adult and pediatric T-ALL. Blood 2021, 137, 1690–1694. [Google Scholar] [CrossRef] [PubMed]
- Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 2009, 360, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, A.; Liu, L.; Qin, J.; Wang, C.; Yang, M.; Lou, Y.; Wang, L.; Ni, X.; Hu, X.; et al. The clinical impact of IKZF1 mutation in acute myeloid leukemia. Exp. Hematol. Oncol. 2023, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.N.; Stasik, S.; Röllig, C.; Petzold, A.; Sauer, T.; Scholl, S.; Hochhaus, A.; Crysandt, M.; Brümmendorf, T.H.; Naumann, R.; et al. Mutated IKZF1 is an independent marker of adverse risk in acute myeloid leukemia. Leukemia 2023, 37, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, X.; Li, X.; Lv, Y.; Zhu, Y.; Wang, J.; Jin, J.; Yu, W. The specific distribution pattern of IKZF1 mutation in acute myeloid leukemia. J. Hematol. Oncol. 2020, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Green, C.L.; Koo, K.K.; Hills, R.K.; Burnett, A.K.; Linch, D.C.; Gale, R.E. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: Impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 2739–2747. [Google Scholar] [CrossRef] [PubMed]
- Lachowiez, C.A.; Long, N.; Saultz, J.; Gandhi, A.; Newell, L.F.; Hayes-Lattin, B.; Maziarz, R.T.; Leonard, J.; Bottomly, D.; McWeeney, S.; et al. Comparison and validation of the 2022 European LeukemiaNet guidelines in acute myeloid leukemia. Blood Adv. 2023, 7, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Mrózek, K.; Kohlschmidt, J.; Blachly, J.S.; Nicolet, D.; Carroll, A.J.; Archer, K.J.; Mims, A.S.; Larkin, K.T.; Orwick, S.; Oakes, C.C.; et al. Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: An Alliance study. Leukemia 2023, 37, 788–798. [Google Scholar] [CrossRef] [PubMed]
Total (n = 224) | Nontransplant (n = 205) | Transplant (n = 19) | p Value | |
---|---|---|---|---|
Male sex, n (%) | 124 (55%) | 111 (54%) | 13 (68%) | 0.231 |
Age, years, median [Q1, Q3] | 42 (32, 54) | 44 (33, 55) | 30 (25, 38) | <0.001 |
AML history, n (%) | 0.989 | |||
De novo AML | 218 (97%) | 199 (97%) | 19 (100%) | |
Secondary AML | 6 (3%) | 6 (3%) | 0 (0%) | |
WBC, ×109/L, median [Q1, Q3] | 14.3 (7.6, 45.4) | 13.4 (7.3, 40.9) | 31.8 (17.9, 77.2) | 0.015 |
HGB, g/L, median [Q1, Q3] | 100.5 (84.0, 114.8) | 102.0 (84.0, 116.0) | 97.0 (82.0, 113.0) | 0.530 |
PLT, ×109/L, median [Q1, Q3] | 31.0 (17.0, 56.0) | 30.0 (16.0, 55.5) | 39 (17.0, 71.0) | 0.253 |
BM blast%, median [Q1, Q3] | 59.3 (46.0, 73.0) | 58.0 (45.3, 71.0) | 71.5 (58.0, 79.0) | 0.012 |
Cytogenetic risk | 0.353 | |||
Normal | 165 (74%) | 153 (75%) | 12 (63%) | |
Intermediate | 44 (20%) | 38 (19%) | 6 (32%) | |
Adverse | 15 (7%) | 14 (7%) | 1 (5%) | |
WT1 mutations | 63 (28%) | 56 (27%) | 7 (37%) | 0.377 |
GATA2 mutations | 54 (24%) | 49 (24%) | 5 (26%) | 1.000 |
NRAS mutations | 37 (17%) | 31 (15%) | 6 (32%) | 0.127 |
TET2 mutations | 24 (11%) | 23 (11%) | 1 (5%) | 0.678 |
KIT mutations | 16 (7%) | 11 (5%) | 5 (26%) | 0.003 |
FLT3-ITD mutations | 14 (6%) | 10 (5%) | 4 (21%) | 0.033 |
CSF3R mutations | 14 (6%) | 11 (5%) | 3 (16%) | 0.193 |
IKZF1 mutations/deletions | 13 (6%) | 13 (6%) | 0 (0%) | 0.536 |
DNMT3A mutations | 12 (5%) | 11 (5%) | 1 (5%) | 1.000 |
Myelodysplasia-related gene mutations | 16 (7%) | 14 (7%) | 2 (11%) | 0.894 |
Induction therapy, n (%) | 0.150 | |||
Intensive | 194 (87%) | 175 (85%) | 19 (100%) | |
Non-intensive | 30 (14%) | 30 (15%) | 0 (0%) | |
Follow-up time of survivor, months, median [Q1, Q3] | 25 (12, 43) | 22 (11, 39) | 42 (33, 61) | <0.001 |
EFS | RFS | Survival | ||||
---|---|---|---|---|---|---|
HR (95%CI) | p Value | HR (95%CI) | p Value | HR (95%CI) | p Value | |
WBC a | 1.8 (1.2–2.7) | 0.003 | 2.0 (1.3–3.0) | 0.002 | 1.7 (0.8–3.5) | 0.038 |
HGB a | 0.1 (0.01–0.3) | 0.001 | ||||
Non-intensive induction | 3.2 (1.8–5.6) | <0.001 | 3.9 (2.2–6.9) | <0.001 | ||
MRD positivity after first consolidation | 2.4 (1.3–4.2) | 0.005 | 4.9 (2.2–11.2) | <0.001 | ||
FLT3-ITD mutations | 2.5 (1.0–6.5) | 0.048 | ||||
IKZF1 mutations/deletions | 3.0 (1.6–5.8) | 0.001 | 3.8 (1.9–7.3) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Hu, L.; Qin, Y.; Ruan, G.; Wang, Y.; Jiang, H.; Tang, F.; Zhao, T.; Jia, J.; Wang, J.; et al. IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations. Cancers 2025, 17, 2494. https://doi.org/10.3390/cancers17152494
Yu S, Hu L, Qin Y, Ruan G, Wang Y, Jiang H, Tang F, Zhao T, Jia J, Wang J, et al. IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations. Cancers. 2025; 17(15):2494. https://doi.org/10.3390/cancers17152494
Chicago/Turabian StyleYu, Shunjie, Lijuan Hu, Yazhen Qin, Guorui Ruan, Yazhe Wang, Hao Jiang, Feifei Tang, Ting Zhao, Jinsong Jia, Jing Wang, and et al. 2025. "IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations" Cancers 17, no. 15: 2494. https://doi.org/10.3390/cancers17152494
APA StyleYu, S., Hu, L., Qin, Y., Ruan, G., Wang, Y., Jiang, H., Tang, F., Zhao, T., Jia, J., Wang, J., Fu, Q., Zhang, X., Xu, L., Wang, Y., Sun, Y., Lai, Y., Shi, H., Huang, X., & Jiang, Q. (2025). IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations. Cancers, 17(15), 2494. https://doi.org/10.3390/cancers17152494