Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = immunotherapy markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 28302 KiB  
Article
IGF2BP3 as a Novel Prognostic Biomarker and Therapeutic Target in Lung Adenocarcinoma
by Feiming Hu, Chenchen Hu, Yuanli He, Lin Guo, Yuanjie Sun, Chenying Han, Xiyang Zhang, Junyi Ren, Jinduo Han, Jing Wang, Junqi Zhang, Yubo Sun, Sirui Cai, Dongbo Jiang, Kun Yang and Shuya Yang
Cells 2025, 14(15), 1222; https://doi.org/10.3390/cells14151222 - 7 Aug 2025
Abstract
RNA-binding proteins (RBPs), particularly IGF2BP3, play critical but underexplored roles in lung adenocarcinoma (LUAD). This study investigated IGF2BP3′s clinical and functional significance using single-cell/RNA sequencing, validated by qPCR, Western blot, and immunohistochemistry. The results show IGF2BP3 was significantly upregulated in LUAD tissues and [...] Read more.
RNA-binding proteins (RBPs), particularly IGF2BP3, play critical but underexplored roles in lung adenocarcinoma (LUAD). This study investigated IGF2BP3′s clinical and functional significance using single-cell/RNA sequencing, validated by qPCR, Western blot, and immunohistochemistry. The results show IGF2BP3 was significantly upregulated in LUAD tissues and associated with advanced-stage, larger tumors, lymph node metastasis, and poor prognosis. A prognostic nomogram confirmed its independent predictive value. Functionally, IGF2BP3 knockdown suppressed proliferation, and induced G2/M arrest and apoptosis. GSEA linked high IGF2BP3 to cell cycle activation and low expression to metabolic pathways. Notably, high IGF2BP3 correlated with immune evasion markers (downregulated CD4+ effector T cells, upregulated Th2 cells), while TIDE analysis suggested a better immunotherapy response in low-expressing patients. Drug screening identified BI-2536 as a potential therapy for low-IGF2BP3 cases, supported by strong molecular docking affinity (−7.55 kcal/mol). These findings establish IGF2BP3 as a key driver of LUAD progression and a promising target for immunotherapy and precision medicine. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

26 pages, 1203 KiB  
Review
Deciphering the Role of Functional Ion Channels in Cancer Stem Cells (CSCs) and Their Therapeutic Implications
by Krishna Samanta, Gali Sri Venkata Sai Rishma Reddy, Neeraj Kumar Sharma and Pulak Kar
Int. J. Mol. Sci. 2025, 26(15), 7595; https://doi.org/10.3390/ijms26157595 - 6 Aug 2025
Abstract
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer [...] Read more.
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer treatment, often driven by cancer stem cells (CSCs). These rare, resilient cells can survive therapy and drive tumour regrowth, urging deeper investigation into the mechanisms underlying their persistence. CSCs express ion channels typical of excitable tissues, which, beyond electrophysiology, critically regulate CSC fate. However, the underlying regulatory mechanisms of these channels in CSCs remain largely unexplored and poorly understood. Nevertheless, the therapeutic potential of targeting CSC ion channels is immense, as it offers a powerful strategy to disrupt vital signalling pathways involved in numerous pathological conditions. In this review, we explore the diverse repertoire of ion channels expressed in CSCs and highlight recent mechanistic insights into how these channels modulate CSC behaviours, dynamics, and functions. We present a concise overview of ion channel-mediated CSC regulation, emphasizing their potential as novel diagnostic markers and therapeutic targets, and identifying key areas for future research. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Graphical abstract

17 pages, 902 KiB  
Review
Cancer Stem Cells in Melanoma: Drivers of Tumor Plasticity and Emerging Therapeutic Strategies
by Adrian-Horațiu Sabău, Andreea-Cătălina Tinca, Raluca Niculescu, Iuliu Gabriel Cocuz, Andreea Raluca Cozac-Szöke, Bianca Andreea Lazar, Diana Maria Chiorean, Corina Eugenia Budin and Ovidiu Simion Cotoi
Int. J. Mol. Sci. 2025, 26(15), 7419; https://doi.org/10.3390/ijms26157419 - 1 Aug 2025
Viewed by 176
Abstract
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack [...] Read more.
Cutaneous malignant melanoma is an extraordinarily aggressive and heterogeneous cancer that contains a small subpopulation of tumor stem cells (CSCs) responsible for tumor initiation, metastasis, and recurrence. Identification and characterization of CSCs in melanoma is challenging due to tumor heterogeneity and the lack of specific markers (CD271, ABCB5, ALDH, Nanog) and the ability of cells to dynamically change their phenotype. Phenotype-maintaining signaling pathways (Wnt/β-catenin, Notch, Hedgehog, HIF-1) promote self-renewal, treatment resistance, and epithelial–mesenchymal transitions. Tumor plasticity reflects the ability of differentiated cells to acquire stem-like traits and phenotypic flexibility under stress conditions. The interaction of CSCs with the tumor microenvironment accelerates disease progression: they induce the formation of cancer-associated fibroblasts (CAFs) and neo-angiogenesis, extracellular matrix remodeling, and recruitment of immunosuppressive cells, facilitating immune evasion. Emerging therapeutic strategies include immunotherapy (immune checkpoint inhibitors), epigenetic inhibitors, and nanotechnologies (targeted nanoparticles) for delivery of chemotherapeutic agents. Understanding the role of CSCs and tumor plasticity paves the way for more effective innovative therapies against melanoma. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Melanoma Immunotherapy)
Show Figures

Figure 1

35 pages, 887 KiB  
Review
Prognostic Factors in Colorectal Liver Metastases: An Exhaustive Review of the Literature and Future Prospectives
by Maria Conticchio, Emilie Uldry, Martin Hübner, Antonia Digklia, Montserrat Fraga, Christine Sempoux, Jean Louis Raisaro and David Fuks
Cancers 2025, 17(15), 2539; https://doi.org/10.3390/cancers17152539 - 31 Jul 2025
Viewed by 192
Abstract
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in [...] Read more.
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in tumor biology, patient factors, and institutional practices. Methods: This review synthesizes current evidence on prognostic factors influencing CRLM management, encompassing clinical (e.g., tumor burden, anatomic distribution, timing of metastases), biological (e.g., CEA levels, inflammatory markers), and molecular (e.g., RAS/BRAF mutations, MSI status, HER2 alterations) determinants. Results: Key findings highlight the critical role of molecular profiling in guiding therapeutic decisions, with RAS/BRAF mutations predicting resistance to anti-EGFR therapies and MSI-H status indicating potential responsiveness to immunotherapy. Emerging tools like circulating tumor DNA (ctDNA) and radiomics offer promise for dynamic risk stratification and early recurrence detection, while the gut microbiome is increasingly recognized as a modulator of treatment response. Conclusions: Despite advancements, challenges persist in standardizing resectability criteria and integrating multidisciplinary approaches. Current guidelines (NCCN, ESMO, ASCO) emphasize personalized strategies but lack granularity in terms of incorporating novel biomarkers. This exhaustive review underscores the imperative for the development of a unified, biomarker-integrated framework to refine CRLM management and improve long-term outcomes. Full article
Show Figures

Figure 1

28 pages, 2854 KiB  
Article
Real-Time Functional Stratification of Tumor Cell Lines Using a Non-Cytotoxic Phospholipoproteomic Platform: A Label-Free Ex Vivo Model
by Ramón Gutiérrez-Sandoval, Francisco Gutiérrez-Castro, Natalia Muñoz-Godoy, Ider Rivadeneira, Adolay Sobarzo, Jordan Iturra, Ignacio Muñoz, Cristián Peña-Vargas, Matías Vidal and Francisco Krakowiak
Biology 2025, 14(8), 953; https://doi.org/10.3390/biology14080953 - 28 Jul 2025
Viewed by 280
Abstract
The development of scalable, non-invasive tools to assess tumor responsiveness to structurally active immunoformulations remains a critical unmet need in solid tumor immunotherapy. Here, we introduce a real-time, ex vivo functional system to classify tumor cell lines exposed to a phospholipoproteomic platform, without [...] Read more.
The development of scalable, non-invasive tools to assess tumor responsiveness to structurally active immunoformulations remains a critical unmet need in solid tumor immunotherapy. Here, we introduce a real-time, ex vivo functional system to classify tumor cell lines exposed to a phospholipoproteomic platform, without relying on cytotoxicity, co-culture systems, or molecular profiling. Tumor cells were monitored using IncuCyte® S3 (Sartorius) real-time imaging under ex vivo neutral conditions. No dendritic cell components or immune co-cultures were used in this mode. All results are derived from direct tumor cell responses to structurally active formulations. Using eight human tumor lines, we captured proliferative behavior, cell death rates, and secretomic profiles to assign each case into stimulatory, inhibitory, or neutral categories. A structured decision-tree logic supported the classification, and a Functional Stratification Index (FSI) was computed to quantify the response magnitude. Inhibitory lines showed early divergence and high IFN-γ/IL-10 ratios; stimulatory ones exhibited a proliferative gain under balanced immune signaling. The results were reproducible across independent batches. This system enables quantitative phenotypic screening under standardized, marker-free conditions and offers an adaptable platform for functional evaluation in immuno-oncology pipelines where traditional cytotoxic endpoints are insufficient. This approach has been codified into the STIP (Structured Traceability and Immunophenotypic Platform), supporting reproducible documentation across tumor models. This platform contributes to upstream validation logic in immuno-oncology workflows and supports early-stage regulatory documentation. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

28 pages, 1210 KiB  
Review
Metformin Beyond Diabetes: A Precision Gerotherapeutic and Immunometabolic Adjuvant for Aging and Cancer
by Abdul Rehman, Shakta Mani Satyam, Mohamed El-Tanani, Sainath Prabhakar, Rashmi Kumari, Prakashchandra Shetty, Sara S. N. Mohammed, Zaina Nafees and Basma Alomar
Cancers 2025, 17(15), 2466; https://doi.org/10.3390/cancers17152466 - 25 Jul 2025
Viewed by 401
Abstract
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical [...] Read more.
Metformin, a long-established antidiabetic agent, is undergoing a renaissance as a prototype gerotherapeutic and immunometabolic oncology adjuvant. Mechanistic advances reveal that metformin modulates an integrated network of metabolic, immunological, microbiome-mediated, and epigenetic pathways that impact the hallmarks of aging and cancer biology. Clinical data now demonstrate its ability to reduce cancer incidence, enhance immunotherapy outcomes, delay multimorbidity, and reverse biological age markers. Landmark trials such as UKPDS, CAMERA, and the ongoing TAME study illustrate its broad clinical impact on metabolic health, cardiovascular risk, and age-related disease trajectories. In oncology, trials such as MA.32 and METTEN evaluate its influence on progression-free survival and tumor response, highlighting its evolving role in cancer therapy. This review critically synthesizes the molecular underpinnings of metformin’s polypharmacology, examines results from pivotal clinical trials, and compares its effectiveness with emerging gerotherapeutics and senolytics. We explore future directions, including optimized dosing, biomarker-driven personalization, rational combination therapies, and regulatory pathways, to expand indications for aging and oncology. Metformin stands poised to play a pivotal role in precision strategies that target the shared roots of aging and cancer, offering scalable global benefits across health systems. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 1198 KiB  
Article
Immune Cell–Cytokine Interplay in NSCLC and Melanoma: A Pilot Longitudinal Study of Dynamic Biomarker Interactions
by Alina Miruna Grecea-Balaj, Olga Soritau, Ioana Brie, Maria Perde-Schrepler, Piroska Virág, Nicolae Todor, Tudor Eliade Ciuleanu and Cosmin Andrei Cismaru
Immuno 2025, 5(3), 29; https://doi.org/10.3390/immuno5030029 - 24 Jul 2025
Viewed by 334
Abstract
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression [...] Read more.
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression is a marker of T cell dysfunction, while CTLA-4 upregulation correlates with suppressed early T cell activation. IL-10 has emerged as a potential biomarker for chemoresistance and tumor aggressivity, consistent with its role in promoting anti-apoptotic signaling in cancer stem cells (CSCs). Engineered IL-2 variants and TNF-α modulation are highlighted as promising strategies to revitalize exhausted CD8+ T cells and disrupt CSC niches. This prospective single-center study investigated the dynamic TME alterations in 16 patients with immunotherapy-naïve stage IV non-small-cell lung cancer (NSCLC) and metastatic melanoma treated with anti-PD-1 nivolumab. The longitudinal immunophenotyping of peripheral blood lymphocytes (via flow cytometry) and serum cytokine analysis (via ELISA) were performed at the baseline, >3, and >6 months post-treatment to evaluate immune checkpoint co-expression (PD-1/CD95 and CTLA-4/CD8+) and the cytokine profiles (IL-2, IL-10, and TNF-α). Full article
Show Figures

Figure 1

39 pages, 1137 KiB  
Review
Spatial Transcriptomics Decodes Breast Cancer Microenvironment Heterogeneity: From Multidimensional Dynamic Profiling to Precision Therapy Blueprint Construction
by Aolong Ma, Lingyan Xiang, Jingping Yuan, Qianwen Wang, Lina Zhao and Honglin Yan
Biomolecules 2025, 15(8), 1067; https://doi.org/10.3390/biom15081067 - 24 Jul 2025
Viewed by 600
Abstract
Background: Breast cancer, the most prevalent malignancy among women worldwide, exhibits significant heterogeneity, particularly in the tumor microenvironment (TME), which poses challenges for treatment. Spatial transcriptomics (ST) has emerged as a transformative technology, enabling gene expression analysis while preserving tissue spatial architecture. This [...] Read more.
Background: Breast cancer, the most prevalent malignancy among women worldwide, exhibits significant heterogeneity, particularly in the tumor microenvironment (TME), which poses challenges for treatment. Spatial transcriptomics (ST) has emerged as a transformative technology, enabling gene expression analysis while preserving tissue spatial architecture. This provides unprecedented insights into tumor heterogeneity, cellular interactions, and disease mechanisms, offering a powerful tool for advancing breast cancer research and therapy. This review aims to synthesize the applications of ST in breast cancer research, focusing on its role in decoding tumor heterogeneity, characterizing the TME, elucidating progression and metastasis dynamics, and predicting therapeutic responses. We also explore how ST can bridge molecular profiling with clinical translation to enhance precision therapy. The key scientific concepts of review included the following: We summarize the technological advancements in ST, including imaging-based and sequencing-based methods, and their applications in breast cancer. Key findings highlight how ST resolves spatial heterogeneity across molecular subtypes and histological variants. ST reveals the dynamic interplay between tumor cells, immune cells, and stromal components, uncovering mechanisms of immune evasion, metabolic reprogramming, and therapeutic resistance. Additionally, ST identifies spatial prognostic markers and predicts responses to chemotherapy, targeted therapy, and immunotherapy. We propose that ST serves as a hub for integrating multi-omics data, offering a roadmap for precision oncology and personalized treatment strategies in breast cancer. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Breast Cancer)
Show Figures

Figure 1

17 pages, 11573 KiB  
Article
IFNγ Expression Correlates with Enhanced Cytotoxicity in CD8+ T Cells
by Varsha Pattu, Elmar Krause, Hsin-Fang Chang, Jens Rettig and Xuemei Li
Int. J. Mol. Sci. 2025, 26(14), 7024; https://doi.org/10.3390/ijms26147024 - 21 Jul 2025
Viewed by 388
Abstract
CD8+ T lymphocytes (CTLs) act as serial killers of infected or malignant cells by releasing large amounts of interferon-gamma (IFNγ) and granzymes. Although IFNγ is a pleiotropic cytokine with diverse immunomodulatory functions, its precise spatiotemporal regulation and role in CTL-mediated cytotoxicity remain incompletely [...] Read more.
CD8+ T lymphocytes (CTLs) act as serial killers of infected or malignant cells by releasing large amounts of interferon-gamma (IFNγ) and granzymes. Although IFNγ is a pleiotropic cytokine with diverse immunomodulatory functions, its precise spatiotemporal regulation and role in CTL-mediated cytotoxicity remain incompletely understood. Using wild-type and granzyme B-mTFP knock-in mice, we employed a combination of in vitro approaches, including T cell isolation and culture, plate-bound anti-CD3e stimulation, degranulation assays, flow cytometry, immunofluorescence, and structured illumination microscopy, to investigate IFNγ dynamics in CTLs. IFNγ expression in CTLs was rapid, transient, and strictly dependent on T cell receptor (TCR) activation. We identified two functionally distinct IFNγ-producing subsets: IFNγhigh (IFNγhi) and IFNγlow (IFNγlo) CTLs. IFNγhi CTLs exhibited an effector/effector memory phenotype, significantly elevated CD107a surface expression (a marker of lytic granule exocytosis), and higher colocalization with cis-Golgi and granzyme B compared to IFNγlo CTLs. Furthermore, CRTAM, an early activation marker, correlated with IFNγ expression in naive CTLs. Our findings establish a link between elevated IFNγ production and enhanced CTL cytotoxicity, implicating CRTAM as a potential regulator of early CTL activation and IFNγ induction. These insights provide a foundation for optimizing T cell-based immunotherapies against infections and cancers. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 3009 KiB  
Article
PD-1-Positive CD8+ T Cells and PD-1-Positive FoxP3+ Cells in Tumor Microenvironment Predict Response to Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients
by Liubov A. Tashireva, Anna Yu. Kalinchuk, Elena O. Shmakova, Elisaveta A. Tsarenkova, Dmitriy M. Loos, Pavel Iamschikov, Ivan A. Patskan, Alexandra V. Avgustinovich, Sergey V. Vtorushin, Irina V. Larionova and Evgeniya S. Grigorieva
Cancers 2025, 17(14), 2407; https://doi.org/10.3390/cancers17142407 - 21 Jul 2025
Viewed by 409
Abstract
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive [...] Read more.
Background/Objectives: In gastric cancer, only a subset of patients benefit clinically from neoadjuvant chemoimmunotherapy, underscoring the need for robust biomarkers that can predict treatment responses and guide personalized immunotherapy. This study aimed to characterize the immune microenvironment of gastric tumors and identify predictive markers associated with therapeutic efficacy. Methods: We prospectively enrolled 16 patients with histologically confirmed, PD-L1–positive (CPS ≥ 1) gastric adenocarcinoma (T2–4N0–1M0). All patients received eight cycles of FLOT chemotherapy combined with pembrolizumab. Treatment response was assessed by Mandard tumor regression grading. Spatial transcriptomic profiling (10x Genomics Visium) and multiplex immunofluorescence were used to evaluate tumor-infiltrating immune cell subsets and PD-1 expression at baseline and after treatment. Results: Transcriptomic analysis differentiated the immune landscapes of responders from non-responders. Responders exhibited elevated expression of IL1B, CXCL5, HMGB1, and IFNGR2, indicative of an inflamed tumor microenvironment and type I/II interferon signaling. In contrast, non-responders demonstrated upregulation of immunosuppressive genes such as LGALS3, IDO1, and CD55, along with enrichment in oxidative phosphorylation and antigen presentation pathways. Multiplex immunofluorescence confirmed a higher density of FoxP3+ regulatory T cells in non-responders (median 5.36% vs. 2.41%; p = 0.0032). Notably, PD-1+ CD8+ T cell and PD-1+ FoxP3+ Treg frequencies were significantly elevated in non-responders, suggesting that PD-1 expression within cytotoxic and regulatory compartments may contribute to immune evasion. No substantial differences were observed in PD-L1 CPS or PD-1+ B cells and PD-1+ macrophages. Conclusions: Our findings identify PD-1+ CD8+ T cells and PD-1+ FoxP3+ Tregs as potential biomarkers of resistance to neoadjuvant chemoimmunotherapy in gastric cancer. Transcriptional programs centered on IL1B/CXCL5 and LGALS3/IDO1 define distinct immune phenotypes that may guide future combination strategies targeting both effector and suppressive arms of the tumor immune response. Full article
Show Figures

Figure 1

18 pages, 1553 KiB  
Article
Prognostic Impact of KRAS-TP53 Co-Mutations in Patients with Early-Stage Non-Small Cell Lung Cancer: A Single-Center Retrospective Study
by Lucia Motta, Francesca Molinari, Jana Pankovics, Benjamin Pedrazzini, Alexandra Valera, Samantha Epistolio, Luca Giudici, Stefania Freguia, Miriam Patella, Martina Imbimbo, Giovanna Schiavone, Milo Frattini and Patrizia Froesch
J. Clin. Med. 2025, 14(14), 5135; https://doi.org/10.3390/jcm14145135 - 19 Jul 2025
Viewed by 378
Abstract
Background/Objectives: The clinical value of KRAS mutations in lung adenocarcinoma, alone or in combination with other mutations, has been assessed especially in advanced stages. This study evaluates how KRAS and the presence of co-mutations could affect survival in early-stage lung. Methods: [...] Read more.
Background/Objectives: The clinical value of KRAS mutations in lung adenocarcinoma, alone or in combination with other mutations, has been assessed especially in advanced stages. This study evaluates how KRAS and the presence of co-mutations could affect survival in early-stage lung. Methods: We analyzed a real-world cohort including all staged NSCLC patients diagnosed and treated from 2018 to 2022 at our Institute with availability of NGS molecular data. Statistical analyses were made using log-rank test, the two-tailed Fisher’s exact test and Kaplan-Meier survival curves. Results: KRAS mutations were observed in 179/464 cases (38.6%). The majority of KRAS co-mutations were in TP53 (74%) and STK11 (14.3%) genes. KRAS+TP53 co-mutations were more frequent compared to KRAS-only tumors in stage IV NSCLC (p = 0.01). In early stage and locally advanced cases (stage I-III), better prognosis was associated to KRAS-only mutated NSCLC and to KRAS+STK11 mutated cases compared to KRAS+TP53 (p = 0.008). In particular, patients carrying KRAS+TP53 in stage I and II displayed a shorter survival, similar to patients diagnosed at stage III. Conclusions: Routine NGS provides important information for potential actionable mutations but also for the prognostic and predictive role of the presence of co-occurring mutations. In particular, the presence of KRAS+TP53 in stage I and II NSCLC may be considered an unfavorable prognostic marker possibly leading to adapt the perioperative chemo-immunotherapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

11 pages, 251 KiB  
Review
PET and SPECT Imaging of Macrophages in the Tumor Stroma: An Update
by Shaobo Li, Alex Maes, Tijl Vermassen, Justine Maes, Chabi Sathekge, Sylvie Rottey and Christophe Van de Wiele
J. Clin. Med. 2025, 14(14), 5075; https://doi.org/10.3390/jcm14145075 - 17 Jul 2025
Viewed by 274
Abstract
Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor stroma, whose dynamic alterations significantly impact tumor progression and therapeutic responses. Conventional methods for TAM detection, such as biopsy, are invasive and incapable of whole-body dynamic monitoring. In contrast, positron emission tomography (PET) [...] Read more.
Tumor-associated macrophages (TAMs) are pivotal immune cells within the tumor stroma, whose dynamic alterations significantly impact tumor progression and therapeutic responses. Conventional methods for TAM detection, such as biopsy, are invasive and incapable of whole-body dynamic monitoring. In contrast, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) offer a non-invasive imaging approach by targeting TAM-specific biomarkers like CD206, TSPO, and CCR2. This review comprehensively summarizes the advancements in TAM-targeted imaging probes, including cell surface markers, metabolic/functional markers, and multifunctional nanoprobe, while assessing their potential in tumor immune surveillance and tumor targeting therapeutic applications. While current probes, including 68Ga-NOTA-anti-CD206 and 64Cu-Macrin, have exhibited high specificity and theragnostic potential in preclinical and early clinical trials, challenges such as target heterogeneity, off-target effects, and clinical translation persist. Moving forward, the advancement of multi-target probes, optimization of pharmacokinetics, and incorporation of multimodal imaging technologies are anticipated to further enhance the impact of TAM-targeted imaging in precision medicine and tumor immunotherapy, fostering the refinement of personalized treatment strategies and improving patient outcomes. Full article
22 pages, 7349 KiB  
Article
Analysis of Phenotypic and Molecular Variability of Memory-like NK Cells for Cancer Adoptive Cell Therapy Screening
by Rithvik V. Turaga, Seth R. T. Zima, Ella P. Peterson, Amy K. Erbe, Matthew H. Forsberg, Christian M. Capitini, Pippa F. Cosper, Paul M. Sondel and Jose M. Ayuso
Cancers 2025, 17(14), 2288; https://doi.org/10.3390/cancers17142288 - 9 Jul 2025
Viewed by 488
Abstract
Background: Adoptive cell therapies are emerging as a promising therapeutic option against hematological and solid malignancies. Memory-like natural killer (mlNK) cells are a specific subtype of NK cells generated after cytokine preactivation that have shown enhanced in vivo persistence after infusion into patients, [...] Read more.
Background: Adoptive cell therapies are emerging as a promising therapeutic option against hematological and solid malignancies. Memory-like natural killer (mlNK) cells are a specific subtype of NK cells generated after cytokine preactivation that have shown enhanced in vivo persistence after infusion into patients, an issue that has hindered traditional NK cell immunotherapy. However, the quality and variability of mlNK cell products remains poorly defined. Methods: In this study, we evaluated heterogeneity across critical functional and molecular aspects of mlNK cells generated from independent donors, including mlNK cytotoxicity, cluster formation, motility, mitochondria morphology, and gene expression. Results: We observed a correlation between changes in gene expression associated with glycolysis and key NK cell functions such as cytotoxicity and motility. For further characterization, we blocked glycolysis and oxidative phosphorylation (OXPHOS) and observed an impaired mlNK functional response, suggesting the importance of metabolism. Conclusions: Our findings provide insights into discriminating between mlNK cell products and how the predictive markers can identify optimal mlNK cell products for adoptive cell therapy of cancer. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Graphical abstract

30 pages, 4062 KiB  
Review
Tumour- and Non-Tumour-Associated Factors That Modulate Response to PD-1/PD-L1 Inhibitors in Non-Small Cell Lung Cancer
by Maryam Khalil and Ming-Sound Tsao
Cancers 2025, 17(13), 2199; https://doi.org/10.3390/cancers17132199 - 30 Jun 2025
Cited by 1 | Viewed by 697
Abstract
The interaction of programmed cell death receptor 1 (PD-1) on the surface of immune cells with its ligand, programmed cell death ligand 1 (PD-L1), expressed on tumour cells and antigen-presenting cells, leads to tumour immune evasion. Antibodies that target either PD-1 or its [...] Read more.
The interaction of programmed cell death receptor 1 (PD-1) on the surface of immune cells with its ligand, programmed cell death ligand 1 (PD-L1), expressed on tumour cells and antigen-presenting cells, leads to tumour immune evasion. Antibodies that target either PD-1 or its ligand PD-L1 have shown a favourable response in cancer patients, especially those with non-small cell lung cancer (NSCLC). However, only 15 to 25% of advanced NSCLC patients will benefit from immunotherapy. The PD-L1 tumour proportion score (TPS) is the current standard biomarker to select patients for PD-1/PD-L1 blockade therapy, as patients with a high PD-L1 TPS show better response compared to patients with a low PD-L1 TPS. However, since PD-L1 expression is a continuous variable and is an imperfect biomarker, investigation into additional predictive markers is warranted. This review focuses on tumour- and non-tumour-associated factors that have been shown to affect the response to PD-1/PD-L1 inhibitors in NSCLC. We also delve into mechanistic and clinical evidence on these potential biomarkers and their relationship to the tumour microenvironment (TME). Full article
(This article belongs to the Special Issue Immunotherapy of Non-Small Cell Lung Cancer)
Show Figures

Figure 1

14 pages, 1362 KiB  
Article
Serum Complement Factor H: A Marker for Progression and Outcome Prediction Towards Immunotherapy in Cutaneous Squamous Cell Carcinoma
by Glenn Geidel, Laura Adam, Sabrina Bänsch, Nathan Fekade, Benjamin Deitert, Alessandra Rünger, Julian Kött, Tim Zell, Isabel Heidrich, Daniel J. Smit, Klaus Pantel, Stefan W. Schneider and Christoffer Gebhardt
Cancers 2025, 17(13), 2162; https://doi.org/10.3390/cancers17132162 - 26 Jun 2025
Viewed by 371
Abstract
Background/Objectives: Tumor-immune system interactions shape the progression of cutaneous squamous cell carcinoma (cSCC). Serum biomarkers for risk stratification remain limited. Complement factor H (CFH) regulates the alternative complement pathway. It has been linked to immunosuppression and cSCC development in tissue-based studies. We investigated [...] Read more.
Background/Objectives: Tumor-immune system interactions shape the progression of cutaneous squamous cell carcinoma (cSCC). Serum biomarkers for risk stratification remain limited. Complement factor H (CFH) regulates the alternative complement pathway. It has been linked to immunosuppression and cSCC development in tissue-based studies. We investigated whether serum CFH is associated with tumor aggressiveness and may help predict immunotherapy outcomes in advanced cSCC. Methods: In this retrospective, single-center study, pre-treatment serum CFH levels were measured in 104 cSCC patients (62 high-risk and 42 advanced) using ELISA. Associations with clinical characteristics, disease stage, and response to cemiplimab were analyzed. Subgroup comparisons considered immune status and inflammatory comorbidities. Results: Advanced cSCC patients had significantly higher CFH levels than high-risk patients (OR 0.13, p = 0.026), independent of tumor diameter or invasion depth. Among advanced cSCC cases, lower baseline CFH was associated with more prolonged progression-free survival (median 19.8 vs. 3.07 months, p = 0.029; HR 0.29, p = 0.014), independent of covariates including immunosuppression. CFH levels during therapy did not predict treatment response. ROC analysis showed moderate discriminatory ability with CFH alone (AUC 0.625), which improved when combined with clinical variables in a multivariable risk model (AUC 0.767). Conclusions: Serum CFH is an independent predictor of cemiplimab response and reflects biological aggressiveness in cSCC beyond conventional high-risk features. These findings support the use of CFH in clinical risk models and warrant external validation in multicenter cohorts. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

Back to TopTop