Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = immunogold electron microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3435 KiB  
Article
Loss of IgA and IgM Compromises Broad Neutralization of Structurally Divergent SARS-CoV-2 Variants
by Yalcin Pisil, Tomoyuki Miura, Kiyoki Ito and Yoshihiro Watanabe
Antibodies 2025, 14(3), 59; https://doi.org/10.3390/antib14030059 - 12 Jul 2025
Viewed by 818
Abstract
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, [...] Read more.
Objectives: The durability and breadth of neutralizing antibodies following SARS-CoV-2 mRNA vaccination remain incompletely understood. This study aimed to investigate how longitudinal changes in antibody isotype composition impact neutralization against structurally diverse SARS-CoV-2 variants. Methods: After screening a broader cohort of mRNA-vaccinated sera, time-matched samples collected one month (1 mpv) and three months post-vaccination (3 mpv) were selected for detailed analysis. Neutralization assays against live virus variants, enzyme-linked immunosorbent assays (ELISA), and immunogold electron microscopy were performed to assess antibody titers, isotype levels, and virion morphology. Results: Neutralization titers declined markedly at 3 mpv, particularly against immune-evasive variants. Notably, the Lambda variant showed disproportionately high sensitivity to early-phase sera despite its divergence from the vaccine strain. Antibody isotyping showed that IgA and IgM decreased over time, while IgG levels were relatively more sustained. Electron microscopy revealed broader virion size heterogeneity in Lambda (50–200 nm) compared to Wuhan (80–120 nm), potentially enhancing multivalent antibody engagement. Consistently, ELISA under reduced spike density conditions showed that IgA and IgM retained stronger binding than IgG. Conclusions: These findings indicate that the decline of IgA and IgM compromises neutralization breadth, especially against structurally divergent variants such as Lambda. Sustaining dynamic multivalent isotype responses that adapt to diverse spike morphologies may be critical for broad cross-variant immunity. Full article
Show Figures

Graphical abstract

25 pages, 9187 KiB  
Article
The Plus End-Directed Microtubule (Kinesin-3 Family) Motor Protein KIF13B Is Associated with the Photoreceptor Synaptic Ribbon Complex
by Shweta Suiwal, Karin Schwarz, Stephan Maxeiner and Frank Schmitz
Int. J. Mol. Sci. 2025, 26(13), 6044; https://doi.org/10.3390/ijms26136044 - 24 Jun 2025
Viewed by 440
Abstract
Retinal ribbon synapses are continuously active chemical synapses. The eponymous synaptic ribbon is anchored to the active zone neurotransmitter release sites of ribbon synapses, recruits synaptic vesicles and guides ribbon-associated synaptic vesicles to the release sites. RIBEYE is the major protein component of [...] Read more.
Retinal ribbon synapses are continuously active chemical synapses. The eponymous synaptic ribbon is anchored to the active zone neurotransmitter release sites of ribbon synapses, recruits synaptic vesicles and guides ribbon-associated synaptic vesicles to the release sites. RIBEYE is the major protein component of synaptic ribbons. But likely, additional proteins contribute to ribbon synapse function. The synaptic ribbon of photoreceptor synapses is embedded into a highly polarized microtubule cytoskeleton. Interestingly, proteins of the photoreceptor primary cilium, such as NPHP4 and other ciliary proteins, including KIF3A, were shown to be localized to photoreceptor synaptic ribbons. Previous studies demonstrated that the microtubule motor protein KIF13B catalyzes secretory vesicle transport to the plus ends of microtubules and identified an interaction of KIF13B with NPHP4 at primary cilia. However, the localization of KIF13B, a kinesin-3 family motor protein, in the retina is still unknown. In the present study, we used two different antibodies against KIF13B and high-resolution confocal microscopy, super-resolution structured illumination microscopy (SR-SIM), and post-embedding immunogold electron microscopy to determine the localization of KIF13B in retinal photoreceptors. Apart from its localization at the primary photoreceptor cilium, we found a strong enrichment of KIF13B at photoreceptor synaptic ribbons. The synaptic ribbon is needed for the synaptic enrichment of KIF13B as shown by analyses of synaptic ribbon-deficient RIBEYE knockout mice. These findings suggest that KIF13B performs vesicle trafficking functions at the photoreceptor synaptic ribbon complex at the interface between the synaptic ribbon and the presynaptic microtubule transport system. Full article
(This article belongs to the Topic New Insights into Cytoskeleton)
Show Figures

Figure 1

18 pages, 3316 KiB  
Article
Insulin in Myenteric Neurons: Time-Dependent and Regional Changes in Type 1 Diabetic Rats
by Abigél Egyed-Kolumbán, Benita Onhausz, Bence Pál Barta, Zita Szalai, Ildikó Huliák, Mónika Kiricsi, Mária Bagyánszki and Nikolett Bódi
Cells 2025, 14(11), 809; https://doi.org/10.3390/cells14110809 - 30 May 2025
Viewed by 746
Abstract
Enteric neurons regulating motility display regional damage to diabetes. By inhibiting neuroinflammation, insulin can contribute to neuronal survival, therefore, we aimed to investigate the presence of insulin in myenteric neurons and their nitrergic population in acute and chronic rat models of type 1 [...] Read more.
Enteric neurons regulating motility display regional damage to diabetes. By inhibiting neuroinflammation, insulin can contribute to neuronal survival, therefore, we aimed to investigate the presence of insulin in myenteric neurons and their nitrergic population in acute and chronic rat models of type 1 diabetes. One or ten weeks after the onset of hyperglycemia, gut segments and the pancreas of control, diabetic, and insulin-treated diabetic rats were investigated. In the controls, insulin-immunoreactive neurons comprised 8–9% of the total myenteric neuronal population in the ileum and colon and 2–4% in the duodenum. Except for the duodenum, this proportion was significantly increased in acute hyperglycemic rats and was decreased in the colon of the chronic ones. However, the proportion of insulin-immunoreactive nitrergic neurons remained unchanged in all segments in chronic hyperglycemia. Immunogold electron microscopy revealed an increased density of insulin-labelling gold particles in diabetic duodenal ganglia of the chronic experiment. Insulin mRNA was not detected in intestinal samples either in controls or diabetics. These findings support time-dependent and regional alterations in the proportion of insulin-immunoreactive myenteric neurons and their nitrergic subpopulation. Regionally different insulin content of myenteric neurons may contribute to their protection from diabetic damage. Full article
(This article belongs to the Special Issue Advances in Diabetes Pathophysiology and Treatment)
Show Figures

Figure 1

16 pages, 108763 KiB  
Article
Observations of the Fine Structural Changes Associated with Merogony and Gametogony in Eimeria necatrix and Localization of Two Gametocyte Proteins
by Yu Zhu, Dandan Liu, Lele Wang, Qianqian Feng, Feiyan Wang, Nianyu Xue, Zhaofeng Hou, Jinjun Xu, Junjie Hu and Jianping Tao
Microorganisms 2025, 13(5), 1135; https://doi.org/10.3390/microorganisms13051135 - 15 May 2025
Viewed by 428
Abstract
Coccidian parasites possess complex life cycles involving asexual proliferation followed by sexual development, producing oocysts that are transmitted from host to host through feces, guaranteeing disease transmission. Eimeria necatrix is a highly pathogenic coccidian causing high mortality in birds. This study examined ultrastructural [...] Read more.
Coccidian parasites possess complex life cycles involving asexual proliferation followed by sexual development, producing oocysts that are transmitted from host to host through feces, guaranteeing disease transmission. Eimeria necatrix is a highly pathogenic coccidian causing high mortality in birds. This study examined ultrastructural changes occurring during the third merogony, microgametogenesis, and macrogametogenesis of E. necatrix. The third-generation meront contained eight merozoites, each with coccidian-specific features like conoid, rhoptries, micronemes, and dense granules. Microgametes had a nucleus, mitochondrion, two flagella, and a basal apparatus. Macrogametes surrounded by two membranes (M1 and M2), contained organelles like WFB1, WFB2, endoplasmic reticulum, mitochondria, and tubular structures. Oocyst wall formation began with M2 separating from M1 and forming a loose veil around the organism. The WFB1 fused together to form the outer layer of the oocyst wall between M1 and M2, while M4 formed beneath M1. The WFB2 fused with the M4 to discharge its contents external to M4, which fused together to form the inner layer of the oocyst wall. Immunogold electron microscopy co-localization result showed that EnGAM22 localized to WFB1 and the outer wall, while EnGAM59 localized to WFB2 and the inner wall, suggesting they are key structural components of the oocyst wall. Full article
Show Figures

Figure 1

34 pages, 14955 KiB  
Article
Early Synapse-Specific Alterations of Photoreceptor Mitochondria in the EAE Mouse Model of Multiple Sclerosis
by Dalia R. Ibrahim, Karin Schwarz, Shweta Suiwal, Sofia Maragkou and Frank Schmitz
Cells 2025, 14(3), 206; https://doi.org/10.3390/cells14030206 - 30 Jan 2025
Cited by 1 | Viewed by 1754
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) linked to many neurological disabilities. The visual system is frequently impaired in MS. In previous studies, we observed early malfunctions of rod photoreceptor ribbon synapses in the EAE mouse [...] Read more.
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) linked to many neurological disabilities. The visual system is frequently impaired in MS. In previous studies, we observed early malfunctions of rod photoreceptor ribbon synapses in the EAE mouse model of MS that included alterations in synaptic vesicle cycling and disturbances of presynaptic Ca2+ homeostasis. Since these presynaptic events are highly energy-demanding, we analyzed whether synaptic mitochondria, which play a major role in synaptic energy metabolism, might be involved at that early stage. Rod photoreceptor presynaptic terminals contain a single large mitochondrion next to the synaptic ribbon. In the present study, we analyzed the expression of functionally relevant mitochondrial proteins (MIC60, ATP5B, COX1, PINK1, DRP1) by high-resolution qualitative and quantitative immunofluorescence microscopy, immunogold electron microscopy and quantitative Western blot experiments. We observed a decreased expression of many functionally relevant proteins in the synaptic mitochondria of EAE photoreceptors at an early stage, suggesting that early mitochondrial dysfunctions play an important role in the early synapse pathology. Interestingly, mitochondria in presynaptic photoreceptor terminals were strongly compromised in early EAE, whereas extra-synaptic mitochondria in photoreceptor inner segments remained unchanged, demonstrating a functional heterogeneity of photoreceptor mitochondria. Full article
(This article belongs to the Special Issue Mechanism of Cell Signaling during Eye Development and Diseases)
Show Figures

Figure 1

19 pages, 3244 KiB  
Article
Cilomilast Modulates Rhinovirus-Induced Airway Epithelial ICAM-1 Expression and IL-6, CXCL8 and CCL5 Production
by Jie Zhu, Michael R. Edwards, Simon D. Message, Luminita A. Stanciu, Sebastian L. Johnston and Peter K. Jeffery
Pharmaceuticals 2024, 17(11), 1554; https://doi.org/10.3390/ph17111554 - 20 Nov 2024
Viewed by 1652
Abstract
Background: Cilomilast, a phosphodiesterase-4 (PDE4) selective inhibitor, has anti-inflammatory effects in vitro and in vivo and reduces COPD exacerbations. We tested the hypothesis that cilomilast inhibits virus-induced airway epithelial intercellular adhesion molecule-1 (ICAM-1) expression and inflammatory cytokine/chemoattractants, IL-6, CXCL8, and CCL5 production in [...] Read more.
Background: Cilomilast, a phosphodiesterase-4 (PDE4) selective inhibitor, has anti-inflammatory effects in vitro and in vivo and reduces COPD exacerbations. We tested the hypothesis that cilomilast inhibits virus-induced airway epithelial intercellular adhesion molecule-1 (ICAM-1) expression and inflammatory cytokine/chemoattractants, IL-6, CXCL8, and CCL5 production in vitro. Methods: BEAS-2B bronchial epithelial cells were incubated with 0.5–2 MOI (multiplicity of infection–infectious units/cell) of rhinovirus 16 (RV16). Then, 0.1–10 μM cilomilast or 10 nM dexamethasone, as inhibition control, were added pre- or post-1 h RV16 infection. Supernatant and cells were sampled at 8, 24, 48, and 72 h after infection. Cell surface ICAM-1 expression was detected by immunogold labelling and visualised by high-resolution scanning electron microscopy (HR-SEM), while IL-6, CXCL8, and CCL5 protein release and mRNA expression were measured using an ELISA and RT-PCR. Results: Cilomilast significantly decreased RV16-induced ICAM-1 expression to approximately 45% (p < 0.01). CXCL8 protein/mRNA production was reduced by about 41% (p < 0.05), whereas IL-6 protein/mRNA production was increased to between 41–81% (p < 0.001). There was a trend to reduction by cilomilast of RV16-induced CCL5. Conclusions: Cilomilast has differential effects on RV16-induced ICAM-1 and interleukins, inhibiting virus-induced ICAM-1 expression and CXCL8 while increasing IL-6 production. These in vitro effects may help to explain the beneficial actions of this PDE4 inhibitor in vivo. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

23 pages, 15424 KiB  
Article
Prominin-1 Knockdown Causes RPE Degeneration in a Mouse Model
by Sujoy Bhattacharya, Tzushan Sharon Yang, Bretton P. Nabit, Evan S. Krystofiak, Tonia S. Rex and Edward Chaum
Cells 2024, 13(21), 1761; https://doi.org/10.3390/cells13211761 - 24 Oct 2024
Viewed by 2268
Abstract
There are currently no effective treatments for retinal pigment epithelial (RPE) cell loss in atrophic AMD (aAMD). However, our research on Prominin-1 (Prom1), a known structural protein in photoreceptors (PRs), has revealed its distinct role in RPE and offers promising insights. [...] Read more.
There are currently no effective treatments for retinal pigment epithelial (RPE) cell loss in atrophic AMD (aAMD). However, our research on Prominin-1 (Prom1), a known structural protein in photoreceptors (PRs), has revealed its distinct role in RPE and offers promising insights. While pathogenic Prom1 mutations have been linked to macular diseases with RPE atrophy, the broader physiological impact of dysfunctional Prom1 in RPE loss is unclear. We have shown that Prom1 plays a crucial role in regulating autophagy and cellular homeostasis in human and mouse RPE (mRPE) cells in vitro. Nevertheless, a comprehensive understanding of its in vivo expression and function in mRPE remains to be elucidated. To characterize Prom1 expression in RPE in situ, we used RNAscope assays and immunogold electron microscopy (EM). Our use of chromogenic and fluorescent RNAscope assays in albino and C57BL/6J mouse retinal sections has revealed Prom1 mRNA expression in perinuclear regions in mRPE in situ. Immunogold EM imaging showed Prom1 expression in RPE cytoplasm and mitochondria. To confirm Prom1 expression in RPE, we interrogated human RPE single-cell RNA-sequencing datasets using an online resource, Spectacle. Our analysis showed Prom1 expression in human RPE. To investigate Prom1’s function in RPE homeostasis, we performed RPE-specific Prom1 knockdown (KD) using subretinal injections of AAV2/1.CMV.saCas9.U6.Prom1gRNA in male and female mice. Our data show that RPE-specific Prom1-KD in vivo resulted in abnormal RPE morphology, subretinal fluid accumulation, and secondary PR loss. These changes were associated with patchy RPE cell death and reduced a-wave amplitude, indicating retinal degeneration. Our findings underscore the central role of Prom1 in cell-autonomous mRPE homeostasis. The implications of Prom1-KD causing aAMD-like RPE defects and retinal degeneration in a mouse model are significant and could lead to novel treatments for aAMD. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration)
Show Figures

Graphical abstract

18 pages, 30188 KiB  
Article
Intestinal Region-Dependent Impact of NFκB-Nrf Crosstalk in Myenteric Neurons and Adjacent Muscle Cells in Type 1 Diabetic Rats
by Bence Pál Barta, Benita Onhausz, Abigél Egyed-Kolumbán, Afnan AL Doghmi, János Balázs, Zita Szalai, Ágnes Ferencz, Edit Hermesz, Mária Bagyánszki and Nikolett Bódi
Biomedicines 2024, 12(10), 2347; https://doi.org/10.3390/biomedicines12102347 - 15 Oct 2024
Cited by 2 | Viewed by 1544
Abstract
Background/Objectives: Type 1 diabetes affects cytokines as potential inducers of NFκB signalling involved in inflammation and neuronal survival. Our goal was to assess the expression of NFκB p65 and its negative regulator, Nrf2, in myenteric neurons and adjacent smooth muscle of different gut [...] Read more.
Background/Objectives: Type 1 diabetes affects cytokines as potential inducers of NFκB signalling involved in inflammation and neuronal survival. Our goal was to assess the expression of NFκB p65 and its negative regulator, Nrf2, in myenteric neurons and adjacent smooth muscle of different gut segments after chronic hyperglycaemia and immediate insulin treatment. Methods: After ten weeks of hyperglycaemia, intestinal samples of control, streptozotocin-induced diabetic and insulin-treated diabetic rats were prepared for fluorescent immunohistochemistry, immunogold electron microscopy, ELISA and qPCR. Results: In the diabetic rats, the proportion of NFκB p65-immunoreactive myenteric neurons decreased significantly in the duodenum and increased in the ileum. The density of NFκB p65-labelling gold particles increased in the ileal but remained unchanged in the duodenal ganglia. Meanwhile, both total and nuclear Nrf2 density increased in the myenteric neurons of the diabetic duodenum. In smooth muscle, NFκB p65 and Nrf2 density increased in the small intestine of diabetic rats. While on the mRNA level, NFκB p65 and Nrf2 were induced, on the protein level, NFκB p65 increased and Nrf2 decreased in muscle/myenteric plexus homogenates. Insulin treatment had protective effects. Conclusions: Our findings reveal a segment-specific NFκB and Nrf expression in myenteric neurons and ganglionic muscular environments, which may contribute to regional neuronal survival and motility disturbances in diabetes. Full article
(This article belongs to the Special Issue Inflammation and Peripheral Nervous System)
Show Figures

Figure 1

18 pages, 3595 KiB  
Article
Pro-Inflammatory Characteristics of Extracellular Vesicles in the Vitreous of Type 2 Diabetic Patients
by Shengshuai Shan, Abdulaziz H. Alanazi, Yohan Han, Duo Zhang, Yutao Liu, S. Priya Narayanan and Payaningal R. Somanath
Biomedicines 2024, 12(9), 2053; https://doi.org/10.3390/biomedicines12092053 - 10 Sep 2024
Cited by 4 | Viewed by 1721
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness, yet its molecular mechanisms are unclear. Extracellular vesicles (EVs) contribute to dysfunction in DR, but the characteristics and functions of vitreous EVs are unclear. This study investigated the inflammatory properties of type 2 diabetic [...] Read more.
Diabetic retinopathy (DR) is a leading cause of blindness, yet its molecular mechanisms are unclear. Extracellular vesicles (EVs) contribute to dysfunction in DR, but the characteristics and functions of vitreous EVs are unclear. This study investigated the inflammatory properties of type 2 diabetic (db) vitreous EVs. EVs isolated from the vitreous of db and non-db donors were used for nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), immunogold staining, Western blotting, and proteomic analysis by mass spectrometry. Intracellular uptake of vitreous EVs by differentiated macrophages was evaluated using ExoGlow membrane labeling, and the impact of EVs on macrophage (THP-1) activation was assessed by cytokine levels using RT-qPCR. NTA and TEM analysis of db and non-db vitreous EVs showed non-aggregated EVs with a heterogeneous size range below 200 nm. Western blot detected EV markers (Alix, Annexin V, HSP70, and Flotillin 1) and an upregulation of Cldn5 in db EVs. While the db EVs were incorporated into macrophages, treatment of THP-1 cells with db EVs significantly increased mRNA levels of TNFα and IL-1β compared to non-db EVs. Proteomic and gene enrichment analysis indicated pro-inflammatory characteristics of db EVs. Our results suggest a potential involvement of EC-derived Cldn5+ EVs in triggering inflammation, offering a novel mechanism involved and presenting a possible therapeutic avenue for DR. Full article
(This article belongs to the Special Issue Angiogenesis and Related Disorders)
Show Figures

Figure 1

13 pages, 3701 KiB  
Article
Influenza A Vaccine Candidates Based on Virus-like Particles Formed by Coat Proteins of Single-Stranded RNA Phages Beihai32 and PQ465
by Egor A. Vasyagin, Anna A. Zykova, Eugenia S. Mardanova, Nikolai A. Nikitin, Marina A. Shuklina, Olga O. Ozhereleva, Liudmila A. Stepanova, Liudmila M. Tsybalova, Elena A. Blokhina and Nikolai V. Ravin
Vaccines 2024, 12(9), 1033; https://doi.org/10.3390/vaccines12091033 - 9 Sep 2024
Cited by 1 | Viewed by 1632
Abstract
Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to [...] Read more.
Efficient control of influenza A infection can potentially be achieved through the development of broad-spectrum recombinant vaccines based on conserved antigens. The extracellular domain of the transmembrane protein M2 of influenza A virus (M2e) is highly conserved but poorly immunogenic and needs to be fused to an adjuvant protein or carrier virus-like particles (VLPs) to increase immunogenicity and provide protection against infection. In this study, we obtained VLPs based on capsid proteins (CPs) of single-stranded RNA phages Beihai32 and PQ465 bearing the M2e peptides. Four copies of the M2e peptide were linked to the C-terminus of the CP of phage Beihai32 and to the N and C termini of the CP of phage PQ465. The hybrid proteins, being expressed in Escherichia coli, formed spherical VLPs of about 30 nm in size. Immunogold transmission electron microscopy showed that VLPs formed by the phage PQ465 CP with a C-terminal M2e fusion present the M2e peptide on the surface. Subcutaneous immunization of mice with VLPs formed by both CPs containing four copies of the M2e peptide at the C termini induced high levels of M2e-specific IgG antibodies in serum and provided mice with protection against lethal influenza A virus challenge. In the case of an N-terminal fusion of M2e with the phage PQ465 CP, the immune response against M2e was significantly lower. CPs of phages Beihai32 and PQ465, containing four copies of the M2e peptide at their C termini, can be used to develop recombinant influenza A vaccine. Full article
(This article belongs to the Special Issue Bioengineering in Vaccine Design and Delivery)
Show Figures

Figure 1

19 pages, 3115 KiB  
Article
Analytical Post-Embedding Immunogold–Electron Microscopy with Direct Gold-Labelled Monoclonal Primary Antibodies against RIBEYE A- and B-Domain Suggests a Refined Model of Synaptic Ribbon Assembly
by Stella Papadopoulos, René Tinschert, Iason Papadopoulos, Xenia Gerloff and Frank Schmitz
Int. J. Mol. Sci. 2024, 25(13), 7443; https://doi.org/10.3390/ijms25137443 - 6 Jul 2024
Viewed by 1864
Abstract
Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE [...] Read more.
Synaptic ribbons are the eponymous specializations of continuously active ribbon synapses. They are primarily composed of the RIBEYE protein that consists of a unique amino-terminal A-domain and carboxy-terminal B-domain that is largely identical to the ubiquitously expressed transcriptional regulator protein CtBP2. Both RIBEYE A-domain and RIBEYE B-domain are essential for the assembly of the synaptic ribbon, as shown by previous analyses of RIBEYE knockout and knockin mice and related investigations. How exactly the synaptic ribbon is assembled from RIBEYE subunits is not yet clear. To achieve further insights into the architecture of the synaptic ribbon, we performed analytical post-embedding immunogold–electron microscopy with direct gold-labelled primary antibodies against RIBEYE A-domain and RIBEYE B-domain for improved ultrastructural resolution. With direct gold-labelled monoclonal antibodies against RIBEYE A-domain and RIBEYE B-domain, we found that both domains show a very similar localization within the synaptic ribbon of mouse photoreceptor synapses, with no obvious differential gradient between the centre and surface of the synaptic ribbon. These data favour a model of the architecture of the synaptic ribbon in which the RIBEYE A-domain and RIBEYE B-domain are located similar distances from the midline of the synaptic ribbon. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 5759 KiB  
Article
Autophagy Promotes Enrichment of Raft Components within Extracellular Vesicles Secreted by Human 2FTGH Cells
by Valeria Manganelli, Luciana Dini, Stefano Tacconi, Simone Dinarelli, Antonella Capozzi, Gloria Riitano, Serena Recalchi, Tuba Rana Caglar, Federica Fratini, Roberta Misasi, Maurizio Sorice and Tina Garofalo
Int. J. Mol. Sci. 2024, 25(11), 6175; https://doi.org/10.3390/ijms25116175 - 4 Jun 2024
Cited by 4 | Viewed by 1805
Abstract
Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in [...] Read more.
Autophagy plays a key role in removing protein aggregates and damaged organelles. In addition to its conventional degradative functions, autophagy machinery contributes to the release of cytosolic proteins through an unconventional secretion pathway. In this research, we analyzed autophagy-induced extracellular vesicles (EVs) in HT1080-derived human fibrosarcoma 2FTGH cells using transmission electron microscopy and atomic force microscopy (AFM). We preliminary observed that autophagy induces the formation of a subset of large heterogeneous intracellular vesicular structures. Moreover, AFM showed that autophagy triggering led to a more visible smooth cell surface with a reduced amount of plasma membrane protrusions. Next, we characterized EVs secreted by cells following autophagy induction, demonstrating that cells release both plasma membrane-derived microvesicles and exosomes. A self-forming iodixanol gradient was performed for cell subfractionation. Western blot analysis showed that endogenous LC3-II co-fractionated with CD63 and CD81. Then, we analyzed whether raft components are enriched within EV cargoes following autophagy triggering. We observed that the raft marker GD3 and ER marker ERLIN1 co-fractionated with LC3-II; dual staining by immunogold electron microscopy and coimmunoprecipitation revealed GD3-LC3-II association, indicating that autophagy promotes enrichment of raft components within EVs. Introducing a new brick in the crosstalk between autophagy and the endolysosomal system may have important implications for the knowledge of pathogenic mechanisms, suggesting alternative raft target therapies in diseases in which the generation of EV is active. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Diseases 2.0)
Show Figures

Figure 1

12 pages, 3907 KiB  
Article
Exosomal Prostate-Specific Membrane Antigen (PSMA) and Caveolin-1 as Potential Biomarkers of Prostate Cancer—Evidence from Serbian Population
by Suzana Matijašević Joković, Aleksandra Korać, Sanja Kovačević, Ana Djordjević, Lidija Filipović, Zorana Dobrijević, Miloš Brkušanin, Dušanka Savić-Pavićević, Ivan Vuković, Milica Popović and Goran Brajušković
Int. J. Mol. Sci. 2024, 25(6), 3533; https://doi.org/10.3390/ijms25063533 - 21 Mar 2024
Cited by 3 | Viewed by 2428
Abstract
Prostate-specific membrane antigen (PSMA) and caveolin-1 are membrane proteins that are overexpressed in prostate cancer (PCa) and are involved in tumor growth and increase in aggressiveness. The aim of the present study is therefore to evaluate PSMA and caveolin-1 proteins from plasma exosomes [...] Read more.
Prostate-specific membrane antigen (PSMA) and caveolin-1 are membrane proteins that are overexpressed in prostate cancer (PCa) and are involved in tumor growth and increase in aggressiveness. The aim of the present study is therefore to evaluate PSMA and caveolin-1 proteins from plasma exosomes as effective liquid biopsy biomarkers for PCa. This study included 39 patients with PCa and 33 with benign prostatic hyperplasia (BPH). The shape and size of the exosomes were confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. Immunogold analysis showed that PSMA is localized to the membrane of exosomes isolated from the plasma of both groups of participants. The relative protein levels of PSMA and caveolin-1 in the plasma exosomes of PCa and BPH patients were determined by Western blot analysis. The relative level of the analyzed plasma exosomal proteins was compared between PCa and BPH patients and the relevance of the exosomal PSMA and caveoin-1 level to the clinicopathological parameters in PCa was investigated. The analysis performed showed an enrichment of exosomal PSMA in the plasma of PCa patients compared to the exosomes of men with BPH. The level of exosomal caveolin-1 in plasma was significantly higher in PCa patients with high PSA levels, clinical-stage T3 or T4 and in the group of PCa patients with aggressive PCa compared to favorable clinicopathological features or tumor aggressiveness. Plasma exosomes may serve as a suitable object for the identification of potential biomarkers for the early diagnosis and prognosis of PCa as well as carriers of therapeutic agents in precision medicine of PCa treatment. Full article
Show Figures

Figure 1

13 pages, 8990 KiB  
Article
Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil
by Ying Huang, Zhen-Feng Feng, Fan Li and You-Ming Hou
Insects 2024, 15(1), 35; https://doi.org/10.3390/insects15010035 - 5 Jan 2024
Cited by 2 | Viewed by 2246
Abstract
Symbiotic systems are intimately integrated at multiple levels. Host–endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil–Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. [...] Read more.
Symbiotic systems are intimately integrated at multiple levels. Host–endosymbiont metabolic complementarity in amino acid biosynthesis is especially important for sap-feeding insects and their symbionts. In weevil–Nardonella endosymbiosis, the final step reaction of the endosymbiont tyrosine synthesis pathway is complemented by host-encoded aminotransferases. Based on previous results from other insects, we suspected that these aminotransferases were likely transported into the Nardonella cytoplasm to produce tyrosine. Here, we identified five aminotransferase genes in the genome of the red palm weevil. Using quantitative real-time RT-PCR, we confirmed that RfGOT1 and RfGOT2A were specifically expressed in the bacteriome. RNA interference targeting these two aminotransferase genes reduced the tyrosine level in the bacteriome. The immunofluorescence-FISH double labeling localization analysis revealed that RfGOT1 and RfGOT2A were present within the bacteriocyte, where they colocalized with Nardonella cells. Immunogold transmission electron microscopy demonstrated the localization of RfGOT1 and RfGOT2A in the cytosol of Nardonella and the bacteriocyte. Our data revealed that RfGOT1 and RfGOT2A are transported into the Nardonella cytoplasm to collaborate with genes retained in the Nardonella genome in order to synthesize tyrosine. The results of our study will enhance the understanding of the integration of host and endosymbiont metabolism in amino acid biosynthesis. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

16 pages, 8650 KiB  
Article
Endoplasmin Is a Hypoxia-Inducible Endoplasmic Reticulum-Derived Cargo of Extracellular Vesicles Released by Cardiac Cell Lines
by Anna Koncz, Lilla Turiák, Krisztina Németh, Dorina Lenzinger, Tünde Bárkai, Péter Lőrincz, Helga Zelenyánszki, Krisztina V. Vukman, Edit I. Buzás and Tamás Visnovitz
Membranes 2023, 13(4), 431; https://doi.org/10.3390/membranes13040431 - 13 Apr 2023
Cited by 12 | Viewed by 3537
Abstract
Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 [...] Read more.
Cardiomyopathies are leading causes of human mortality. Recent data indicate that the cardiomyocyte-derived extracellular vesicles (EVs) released upon cardiac injury are present in circulation. This paper aimed to analyze EVs released under normal and hypoxic conditions by H9c2 (rat), AC16 (human) and HL1 (mouse) cardiac cell lines. Small (sEVs), medium (mEVs) and large EVs (lEVs) were separated from a conditioned medium by a combination of gravity filtration, differential centrifugation and tangential flow filtration. The EVs were characterized by microBCA, SPV lipid assay, nanoparticle tracking analysis, transmission and immunogold electron microscopy, flow cytometry and Western blotting. Proteomic profiles of the EVs were determined. Surprisingly, an endoplasmic reticulum chaperone, endoplasmin (ENPL, grp94 or gp96), was identified in the EV samples, and its association with EVs was validated. The secretion and uptake of ENPL was followed by confocal microscopy using GFP-ENPL fusion protein expressing HL1 cells. We identified ENPL as an internal cargo of cardiomyocyte-derived mEVs and sEVs. Based on our proteomic analysis, its presence in EVs was linked to hypoxia in HL1 and H9c2 cells, and we hypothesize that EV-associated ENPL may have a cardioprotective role by reducing cardiomyocyte ER stress. Full article
(This article belongs to the Special Issue Progress in Extracellular Vesicle (EV) Analysis)
Show Figures

Figure 1

Back to TopTop