Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = imino-pyridine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1721 KB  
Article
Fluorine- and Trifluoromethyl-Substituted Iminopyridinenickel(II) Complexes Immobilized into Fluorotetrasilicic Mica Interlayers as Ethylene Oligomerization Catalysts
by Hideki Kurokawa, Shingo Haruta, Riku Sunagawa and Hitoshi Ogihara
Catalysts 2025, 15(11), 1073; https://doi.org/10.3390/catal15111073 - 13 Nov 2025
Viewed by 639
Abstract
Heterogeneous catalysts comprising immobilized nickel(II) complexes bearing a fluorine- or trifluoromethyl-substituted iminopyridine ligand (Xn-C6H5–n-N=C (CH3)-C5H5N, X = F or CF3) in fluorotetrasilicic mica interlayers were prepared by reacting [...] Read more.
Heterogeneous catalysts comprising immobilized nickel(II) complexes bearing a fluorine- or trifluoromethyl-substituted iminopyridine ligand (Xn-C6H5–n-N=C (CH3)-C5H5N, X = F or CF3) in fluorotetrasilicic mica interlayers were prepared by reacting Ni2+-exchange fluorotetrasilicic mica with the appropriate ligand. Upon activating the precatalyst with triethylaluminum or triisobutylaluminum, the generated active species showed catalytic activity for ethylene oligomerization, yielding low-molecular-weight polyethylene (PE), ethylene oligomers, and wax-like PE. The oligomer distribution almost agreed with what we expected according to the Schultz–Flory distribution. However, the amount of solid products was much higher than the theoretical value, indicating that at least two active species were formed, i.e., the oligomer and low-molecular-weight PE. The precatalyst with a 2,4-F2C6H3 group on the imino nitrogen atom activated by triethylaluminum showed the highest catalytic activity for ethylene oligomerization (408 g-C2 g-cat−1 h−1), with selectivities to the liquid and solid products of 51.0% and 11.5%, respectively, with the rest of the product corresponding to wax-like PE. Meanwhile, the highest selectivity to the liquid product (66.7% at 233 g-C2 g-cat−1 h−1) was obtained using the precatalyst with a 2-FPh group on the imino nitrogen atom activated by triisobutylaluminum. Full article
(This article belongs to the Special Issue Advances in Group 10(Ni, Pd, Pt...)-Catalyzed Reactions)
Show Figures

Figure 1

13 pages, 2831 KB  
Article
Dinuclear Macrocyclic Bis(iminopyridyl) Co- and Fe-Based Catalysts for Ethylene Oligomerization
by Mostafa Khoshsefat, Yanping Ma and Wen-Hua Sun
Materials 2025, 18(9), 2123; https://doi.org/10.3390/ma18092123 - 5 May 2025
Cited by 2 | Viewed by 960
Abstract
Recent advances in designing multinuclear late transition metal catalysts for the oligo-/polymerization of olefins emphasize the great interest and promising approaches in the preparation and application of these catalytic systems. Accordingly, in this study, two dinuclear macrocyclic bis(iminopyridine) Fe- and Co-based complexes (FC [...] Read more.
Recent advances in designing multinuclear late transition metal catalysts for the oligo-/polymerization of olefins emphasize the great interest and promising approaches in the preparation and application of these catalytic systems. Accordingly, in this study, two dinuclear macrocyclic bis(iminopyridine) Fe- and Co-based complexes (FC and CC) were prepared at moderate yields through a one-pot template reaction. Upon activation by MMAO, not only did the catalysts show reasonable activities for the oligomerization of ethylene but also showed high selectivity for the production of tetramers (α-C8). With respect to the catalyst structure, FC demonstrated higher catalyst activity (9.45 g mol−1 Fe h−1 × 105 vs. 8.75 × 105 g mol−1 Co h−1) along with higher selectivity for α-C8 production compared to CC (96.6 vs. 96.1%). Both catalysts had thermal stability up to 70 °C, with FC being much more active and stable than CC under identical conditions. On the other hand, polymerization parameters had an influence on the catalyst performance and oligomer distribution. Moreover, molecular calculations were employed for geometry optimization and structural determination, which was consistent with the experimental results. Full article
(This article belongs to the Special Issue Recent Trends and Developments in Catalytic Polymerizations)
Show Figures

Graphical abstract

27 pages, 6077 KB  
Article
Photodynamic Effectiveness of Copper-Iminopyridine Photosensitizers Coupled to Zinc Oxide Nanoparticles Against Klebsiella pneumoniae and the Bacterial Response to Oxidative Stress
by Dafne Berenice Hormazábal, Ángeles Beatriz Reyes, Matías Fabián Cuevas, Angélica R. Bravo, David Moreno-da Costa, Iván A. González, Daniel Navas, Iván Brito, Paulina Dreyse, Alan R. Cabrera and Christian Erick Palavecino
Int. J. Mol. Sci. 2025, 26(9), 4178; https://doi.org/10.3390/ijms26094178 - 28 Apr 2025
Cited by 1 | Viewed by 1319
Abstract
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial [...] Read more.
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial therapies. Photodynamic therapy (PDT) has become increasingly significant in treating MDR bacteria. PDT uses photosensitizer compounds (PS) that generate reactive oxygen species (ROS) when activated by light. These ROS produce localized oxidative stress, damaging the bacterial envelope. A downside of PDT is the limited bioavailability of PSs in vivo, which can be enhanced by conjugating them with carriers like nanoparticles (NPs). Zinc nanoparticles possess antibacterial properties, decreasing the adherence and viability of microorganisms on surfaces. The additive or synergistic effect of the combined NP-PS could improve phototherapeutic action. Therefore, this study evaluated the effectiveness of the copper(I)-based PS CuC1 compound in combination with Zinc Oxide NP, ZnONP, to inhibit the growth of both MDR and sensitive K. pneumoniae strains. The reduction in bacterial viability after exposure to a PS/NP mixture activated by 61.2 J/cm2 of blue light photodynamic treatment was assessed. The optimal PS/NP ratio was determined at 2 µg/mL of CuC1 combined with 64 µg/mL of ZnONP as the minimum effective concentration (MEC). The bacterial gene response aligned with a mechanism of photooxidative stress induced by the treatment, which damages the bacterial cell envelope. Additionally, we found that the PS/NP mixture is not harmful to mammalian cells, such as Hep-G2 and HEK-293. In conclusion, the CuC1/ZnONP combination could effectively aid in enhancing the antimicrobial treatment of infections caused by MDR bacteria. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

25 pages, 13251 KB  
Article
Synthesis, Physicochemical Characterization, and Antimicrobial Evaluation of Halogen-Substituted Non-Metal Pyridine Schiff Bases
by Alexander Carreño, Rosaly Morales-Guevara, Marjorie Cepeda-Plaza, Dayán Páez-Hernández, Marcelo Preite, Rubén Polanco, Boris Barrera, Ignacio Fuentes, Pedro Marchant and Juan A. Fuentes
Molecules 2024, 29(19), 4726; https://doi.org/10.3390/molecules29194726 - 6 Oct 2024
Cited by 12 | Viewed by 2973
Abstract
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their [...] Read more.
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

13 pages, 1506 KB  
Article
Zinc(II) Iminopyridine Complexes as Antibacterial Agents: A Structure-to-Activity Study
by Silvia de la Mata Moratilla, Sandra Casado Angulo, Natalia Gómez-Casanova, José Luis Copa-Patiño, Irene Heredero-Bermejo, Francisco Javier de la Mata and Sandra García-Gallego
Int. J. Mol. Sci. 2024, 25(7), 4011; https://doi.org/10.3390/ijms25074011 - 4 Apr 2024
Cited by 6 | Viewed by 2821
Abstract
Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and [...] Read more.
Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies. Full article
(This article belongs to the Special Issue Emerging Topics in Metal Complexes: Pharmacological Activity)
Show Figures

Graphical abstract

18 pages, 4187 KB  
Article
Reduction and Cycloaddition of Heteroalkenes at Ga(I) Bisamide Center
by Vladimir A. Dodonov, Olga A. Kushnerova, Evgeny V. Baranov and Igor L. Fedushkin
Reactions 2024, 5(1), 213-230; https://doi.org/10.3390/reactions5010009 - 20 Feb 2024
Cited by 5 | Viewed by 2854
Abstract
The reactivity of the complex [(dpp-bian)GaNa(DME)2] (1) (dpp-bian = 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene) towards isocyanates, benzophenone, diphenylketene, and 1,2-dibenzylidenehydrazine has been studied. Treatment of 1 with isocyanates led to derivatives of imidoformamide [(dpp-bian)Ga{C(=NPh)2}2–NPh][Na(DME)3] (2), [...] Read more.
The reactivity of the complex [(dpp-bian)GaNa(DME)2] (1) (dpp-bian = 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene) towards isocyanates, benzophenone, diphenylketene, and 1,2-dibenzylidenehydrazine has been studied. Treatment of 1 with isocyanates led to derivatives of imidoformamide [(dpp-bian)Ga{C(=NPh)2}2–NPh][Na(DME)3] (2), biuret [(dpp-bian)Ga(NCy)2(CO)2NCy][Na(DME)] (3), or carbamic acids [(dpp-bian)GaN(Cy)C(O)O]2[Na(THF)(Et2O)] (4), [(dpp-bian)GaC(=NCy)N(Cy)C(O)O][Na(Py)3] (5). Treatment of 1 with 2 equiv. of Ph2CO resulted in gallium pinacolate [(dpp-bian)GaO(CPh2)2O][Na(Py)2] (9), while the reaction of 1 with 2 equiv. Ph2CCO gave divinyl ether derivative [(dpp-bian)Ga{C(=CPh2)O}2][Na(DME)3] (10). Complex 1 treated with 2 equiv. 1,2-dibenzylidenehydrazine underwent [1+2+2] cycloaddition to give C–C coupling product [(dpp-bian)Ga{N(NCHPh)}2(CHPh)2][Na(DME)3] (11). When complex 1 was sequentially treated with 1 equiv. of 1,2-dibenzylidenehydrazine and 1 equiv. of pyridine or pyridine-d5; it gave [1+2+2] cycloaddition product [(dpp-bian)GaN(NCHPh)C(Ph)CN][Na(DME)3] (12). Compounds 212 were characterized by NMR and IR spectroscopy, and their molecular structures were established by single-crystal X-ray diffraction analysis. Full article
(This article belongs to the Special Issue Cycloaddition Reactions at the Beginning of the Third Millennium)
Show Figures

Graphical abstract

18 pages, 12159 KB  
Article
Use of the Asymmetrical Chelating N-Donor 2-Imino-Pyridine as a Redox [Fe4S4] Cubane Surrogate at a Di-Iron Site Related to [FeFe]-Hydrogenases
by Andrea Mele, Federica Arrigoni, Luca De Gioia, Catherine Elleouet, François Y. Pétillon, Philippe Schollhammer and Giuseppe Zampella
Inorganics 2023, 11(12), 463; https://doi.org/10.3390/inorganics11120463 - 29 Nov 2023
Cited by 1 | Viewed by 2486
Abstract
Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring [...] Read more.
Two complexes, related to the active site of [FeFe]-hydrogenases, [Fe2(CO)4(κ2-pma)(µ-bdt)] (1) and [Fe2(CO)4(κ2-pma)(µ-pdt)] (2) (bdt = benzene-1,2-dithiolate, pdt = propane-1,2-dithiolate) featuring the diaza chelate ligand trans-N-(2-pyridylmethylene)aniline (pma) were prepared, in order to study the influence of such a redox ligand, potentially non-innocent, on their redox behaviours. Both complexes were synthesized by photolysis in moderate yields, and they were characterized by IR, 1H and 13C{1H} NMR spectroscopies, elemental analyses and X-ray diffraction. Their electrochemical study by cyclic voltammetry, in the presence and in the absence of protons, revealed different behaviours depending on the aliphatic or aromatic nature of the dithiolate bridge. Density functional theory (DFT) calculations showed the role of the pma ligand as an electron reservoir, allowing the rationalization of the proton reduction process of complex 1. Full article
(This article belongs to the Special Issue Binuclear Complexes II)
Show Figures

Graphical abstract

7 pages, 2585 KB  
Proceeding Paper
The Synthesis of Various 2-Imino-2H-chromene-3-carbonitrile Derivatives
by Anna A. Meshcheryakova, Ekaterina A. Konstantinova, Karina A. Melkonyan, Alexandra A. Khrustaleva and Vitaliy V. Sorokin
Chem. Proc. 2023, 14(1), 42; https://doi.org/10.3390/ecsoc-27-16125 - 15 Nov 2023
Cited by 2 | Viewed by 2579
Abstract
One-pot and stepwise reactions of salicylic aldehydes (salicylic, 5-bromsalicylic) and different equivalents of malononitrile and their mutual transformations were investigated. Various derivatives of 2-imino-2H-chromene-3-carbonitrile were isolated. This work reports the synthesis of novel 2-(4-amino-9-R-1-cyano-5-imino-3,5-dihydro-2H-chromeno[3,4-c]pyridin-2-ylidene)malononitriles. The influence of reaction parameters, such as ultrasound activation [...] Read more.
One-pot and stepwise reactions of salicylic aldehydes (salicylic, 5-bromsalicylic) and different equivalents of malononitrile and their mutual transformations were investigated. Various derivatives of 2-imino-2H-chromene-3-carbonitrile were isolated. This work reports the synthesis of novel 2-(4-amino-9-R-1-cyano-5-imino-3,5-dihydro-2H-chromeno[3,4-c]pyridin-2-ylidene)malononitriles. The influence of reaction parameters, such as ultrasound activation conditions, solvent type, and the presence or absence of a catalyst, was studied in this work. The structures of the synthesized compounds were established using spectroscopic data (IR, NMR). Full article
Show Figures

Figure 1

21 pages, 3983 KB  
Article
Exploring Long Range para-Phenyl Effects in Unsymmetrically Fused bis(imino)pyridine-Cobalt Ethylene Polymerization Catalysts
by Yizhou Wang, Zheng Wang, Qiuyue Zhang, Song Zou, Yanping Ma, Gregory A. Solan, Wenjuan Zhang and Wen-Hua Sun
Catalysts 2023, 13(10), 1387; https://doi.org/10.3390/catal13101387 - 23 Oct 2023
Cited by 6 | Viewed by 2244
Abstract
Unsymmetrical 11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-dione, incorporating a para-phenyl substituted pyridine unit fused by both 6- and 7-membered carbocyclic rings, has been prepared on the gram-scale via a multi-step procedure involving cyclization, hydrogenation and oxidation. Templating this diketone, in the presence of cobalt(II) chloride [...] Read more.
Unsymmetrical 11-phenyl-1,2,3,7,8,9,10-heptahydrocyclohepta[b]quinoline-4,6-dione, incorporating a para-phenyl substituted pyridine unit fused by both 6- and 7-membered carbocyclic rings, has been prepared on the gram-scale via a multi-step procedure involving cyclization, hydrogenation and oxidation. Templating this diketone, in the presence of cobalt(II) chloride hexahydrate, with the corresponding aniline afforded in good yield five examples of doubly fused bis(arylimino)pyridine-cobalt(II) chlorides, Co1 (aryl = 2,6-dimethylphenyl), Co2 (2,6-diethylphenyl), Co3 (2,6-diisopropylphenyl), Co4 (2,4,6-trimethylphenyl) and Co5 (2,6-diethyl-4-methylphenyl). Structural characterization of Co1, Co2 and Co3 highlights the flexible nature of the inequivalent fused rings on the NNN’-ligand and the skewed disposition of the para-phenyl group. On activation with MAO, Co1–Co5 exhibited high activity for ethylene polymerization at 30 °C (up to 5.66 × 106 g (PE) mol−1 (Co) h−1) with the relative order being as follows: Co4 > Co1 > Co5 > Co3 > Co2. All polyethylenes were strictly linear, while their molecular weights and dispersities showed some notable variations. For Co1, Co2, Co4 and Co5, all polymerizations were well controlled as evidenced by the narrow dispersities of their polymers (Mw/Mn range: 1.8–2.7), while their molecular weights (Mw range: 2.9–10.9 kg mol−1) steadily increased in line with the greater steric properties of the N-aryl ortho-substituents. By contrast, the most hindered 2,6-diisopropyl counterpart Co3 displayed a broad distribution with bimodal characteristics (Mw/Mn = 10.3) and gave noticeably higher molecular weight polymer (Mw = 75.5 kg mol−1). By comparison, the MMAO-activated catalysts were generally less active, but showed similar trends in molecular weight and polymer dispersity. End group analysis of selected polymers via 13C and 1H NMR spectroscopy revealed the presence of both saturated and unsaturated polyethylenes in accordance with competing chain transfer pathways. Notably, when comparing Co3/MAO with its non-phenyl substituted analogue (E2,6-iPr2Ph)CoCl2/MAO, the former, though less controlled, displayed higher activity and molecular weight, a finding that points towards a role played by the remote para-phenyl group. Full article
Show Figures

Graphical abstract

15 pages, 4924 KB  
Article
Investigation of Fenebrutinib Metabolism and Bioactivation Using MS3 Methodology in Ion Trap LC/MS
by Aishah M. Alsibaee, Haya I. Aljohar, Mohamed W. Attwa, Ali S. Abdelhameed and Adnan A. Kadi
Molecules 2023, 28(10), 4225; https://doi.org/10.3390/molecules28104225 - 22 May 2023
Cited by 2 | Viewed by 3791
Abstract
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for [...] Read more.
Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry. Full article
(This article belongs to the Special Issue New Advances in Drug Metabolism and Pharmacokinetics)
Show Figures

Figure 1

13 pages, 1986 KB  
Article
Studies Relevant to the Functional Model of Mo-Cu CODH: In Situ Reactions of Cu(I)-L Complexes with Mo(VI) and Synthesis of Stable Structurally Characterized Heterotetranuclear MoVI2CuI2 Complex
by Umesh I. Kaluarachchige Don, Ahmad S. Almaat, Cassandra L. Ward and Stanislav Groysman
Molecules 2023, 28(8), 3644; https://doi.org/10.3390/molecules28083644 - 21 Apr 2023
Cited by 5 | Viewed by 3244
Abstract
In this study, we report the synthesis, characterization, and reactions of Cu(I) complexes of the general form Cu(L)(LigH2) (LigH2 = xanthene-based heterodinucleating ligand (E)-3-(((5-(bis(pyridin-2-ylmethyl)amino)-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)imino)methyl)benzene-1,2-diol); L = PMe3, PPh3, CN(2,6-Me2C6H3)). New [...] Read more.
In this study, we report the synthesis, characterization, and reactions of Cu(I) complexes of the general form Cu(L)(LigH2) (LigH2 = xanthene-based heterodinucleating ligand (E)-3-(((5-(bis(pyridin-2-ylmethyl)amino)-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)imino)methyl)benzene-1,2-diol); L = PMe3, PPh3, CN(2,6-Me2C6H3)). New complexes [Cu(PMe3)(LigH2)] and [CuCN(2,6-Me2C6H3)(LigH2)] were synthesized by treating [Cu(LigH2)](PF6) with trimethylphosphine and 2,6-dimethylphenyl isocyanide, respectively. These complexes were characterized by multinuclear NMR spectroscopy, IR spectroscopy, high-resolution mass spectrometry (HRMS), and X-ray crystallography. In contrast, attempted reactions of [Cu(LigH2)](PF6) with cyanide or styrene failed to produce isolable crystalline products. Next, the reactivity of these and previously synthesized Cu(I) phosphine and isocyanide complexes with molybdate was interrogated. IR (for isocyanide) and 31P NMR (for PPh3/PMe3) spectroscopy demonstrates the lack of oxidation reactivity. We also describe herein the first example of a structurally characterized multinuclear complex combining both Mo(VI) and Cu(I) metal ions within the same system. The heterobimetallic tetranuclear complex [Cu2Mo2O42-O)(Lig)2]·HOSiPh3 was obtained by the reaction of the silylated Mo(VI) precursor (Et4N)(MoO3(OSiPh3)) with LigH2, followed by the addition of [Cu(NCMe)4](PF6). This complex was characterized by NMR spectroscopy, high-resolution mass spectrometry, and X-ray crystallography. Full article
(This article belongs to the Special Issue Molybdenum and Tungsten Enzymes—State of the Art in Research)
Show Figures

Figure 1

13 pages, 2651 KB  
Article
3,4-Enhanced Polymerization of Isoprene Catalyzed by Side-Arm Tridentate Iminopyridine Iron Complex with High Activity: Optimization via Response Surface Methodology
by Zhenyu Han, Yongqiang Zhang, Liang Wang, Guangqian Zhu, Jia Kuang, Guangyu Zhu, Guangqiang Xu and Qinggang Wang
Polymers 2023, 15(5), 1231; https://doi.org/10.3390/polym15051231 - 28 Feb 2023
Cited by 13 | Viewed by 2130
Abstract
3,4-Enhanced polymerization of isoprene catalyzed by late transition metal with high activity remains one of the great challenges in synthetic rubber chemistry. Herein, a library of [N, N, X] tridentate iminopyridine iron chloride pre-catalysts (Fe 1–4) with the side arm were [...] Read more.
3,4-Enhanced polymerization of isoprene catalyzed by late transition metal with high activity remains one of the great challenges in synthetic rubber chemistry. Herein, a library of [N, N, X] tridentate iminopyridine iron chloride pre-catalysts (Fe 1–4) with the side arm were synthesized and confirmed by the element analysis and HRMS. All the iron compounds served as highly efficient pre-catalysts for 3,4-enhanced (up to 62%) isoprene polymerization when 500 equivalent MAOs were utilized as co-catalysts, delivering the corresponding high-performance polyisoprenes. Furthermore, optimization via single factor and response surface method, it was observed that the highest activity was obtained by complex Fe 2 with 4.0889 × 107 g·mol(Fe)−1·h−1 under the following conditions: Al/Fe = 683; IP/Fe = 7095; t = 0.52 min. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 9972 KB  
Article
The Transfer Hydrogenation of Cinnamaldehyde Using Homogeneous Cobalt(II) and Nickel(II) (E)-1-(Pyridin-2-yl)-N-(3-(triethoxysilyl)propyl)methanimine and the Complexes Anchored on Fe3O4 Support as Pre-Catalysts: An Experimental and In Silico Approach
by Fortunate P. Sejie, Olayinka A. Oyetunji, James Darkwa, Isaac N. Beas, Banothile C. E. Makhubela, Nelson Y. Dzade and Nora H. de Leeuw
Molecules 2023, 28(2), 659; https://doi.org/10.3390/molecules28020659 - 9 Jan 2023
Cited by 4 | Viewed by 3400
Abstract
The imino pyridine Schiff base cobalt(II) and nickel(II) complexes (C1 and C2) and their functionalised γ-Fe3O4 counterparts (Fe3O4@C1 and Fe3O4@C2) were synthesised and characterised using IR, elemental analysis, [...] Read more.
The imino pyridine Schiff base cobalt(II) and nickel(II) complexes (C1 and C2) and their functionalised γ-Fe3O4 counterparts (Fe3O4@C1 and Fe3O4@C2) were synthesised and characterised using IR, elemental analysis, and ESI-MS for C1 and C2, and single crystal X-ray diffraction for C1, while the functionalised materials Fe3O4@C1 and Fe3O4@C2 were characterized using IR, XRD, SEM, TEM, EDS, ICP-OES, XPS and TGA. Complexes C1, C2 and the functionalised materials Fe3O4@C1 and Fe3O4@C2 were tested as catalysts for the selective transfer hydrogenation of cinnamaldehyde and all four pre-catalysts showed excellent catalytic activity. Complexes C1 and C2 acted as homogeneous catalysts with high selectivity towards the formation of hydrocinnamaldehyde (88.7% and 92.6%, respectively) while Fe3O4@C1 and Fe3O4@C2 acted as heterogeneous catalysts with high selectivity towards cinnamyl alcohol (89.7% and 87.7%, respectively). Through in silico studies of the adsorption energies, we were able to account for the different products formed using the homogeneous and the heterogeneous catalysts which we attribute to the preferred interaction of the C=C moiety in the substrate with the Ni centre in C2 (−0.79 eV) rather than the C=O (−0.58 eV). Full article
(This article belongs to the Special Issue Emerging Catalytic, Energetic, and Inorganic Nonmetallic Materials)
Show Figures

Figure 1

14 pages, 2523 KB  
Article
Dinuclear Iron Complexes of Iminopyridine-Based Ligands as Selective Cytotoxins for Tumor Cells and Inhibitors of Cancer Cell Migration
by Jessica Castro, Marlon Bravo, Meritxell Albertí, Anaís Marsal, María José Alonso-De Gennaro, Oriol Martínez-Ferraté, Carmen Claver, Piet W. N. M. van Leeuwen, Isabel Romero, Antoni Benito and Maria Vilanova
Pharmaceutics 2022, 14(12), 2801; https://doi.org/10.3390/pharmaceutics14122801 - 14 Dec 2022
Cited by 2 | Viewed by 2038
Abstract
A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2–6 fold lower than that of cisplatin, and 30–90 fold lower than that of carboplatin for the tumor cell [...] Read more.
A family of dinuclear iron (II) compounds with iminopyridine-based ligands displays selective cytotoxic activity against cancer cell lines. All compounds have IC50 values 2–6 fold lower than that of cisplatin, and 30–90 fold lower than that of carboplatin for the tumor cell lines assayed. Comparing the IC50 values between tumor and non-tumor cell lines, the selectivity indexes range from 3.2 to 34, compound 10, [Fe2(4)2(CH3CN)4](BF4)4, showing the highest selectivity. Those compounds carrying substituents on the iminopyridine ring show the same cytotoxicity as those without substituents. However, the electronic effects of the substituents on position 6 may be important for the cytotoxicity of the complexes, and consequently for their selectivity. All compounds act over DNA, promoting cuts on both strands in the presence of reactive oxygen species. Since compound 10 presented the highest selectivity, its cytotoxic effect was further characterized. It induces apoptosis, affects cell cycle phase distribution in a cell-dependent manner, and its cytotoxic effect is linked to reactive oxygen species generation. In addition, it decreases tumor cell migration, showing potential antimetastatic effects. These properties make compound 10 a good lead antitumor agent among all compounds studied here. Full article
(This article belongs to the Special Issue Metallodrugs in Cancer Therapy: The Newest Candidates in the Field)
Show Figures

Graphical abstract

24 pages, 11016 KB  
Article
Thermally Stable and Highly Efficient N,N,N-Cobalt Olefin Polymerization Catalysts Affixed with N-2,4-Bis(Dibenzosuberyl)-6-Fluorophenyl Groups
by Muhammad Zada, Desalegn Demise Sage, Qiuyue Zhang, Yanping Ma, Gregory A. Solan, Yang Sun and Wen-Hua Sun
Catalysts 2022, 12(12), 1569; https://doi.org/10.3390/catal12121569 - 2 Dec 2022
Cited by 4 | Viewed by 2483
Abstract
The cobalt(II) chloride N,N,N-pincer complexes, [2-{(2,4-(C15H13)2-6-FC6H2)N=CMe}-6-(ArN=CMe)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3) (Co1), 2,6-Et2C6H3 (Co2), [...] Read more.
The cobalt(II) chloride N,N,N-pincer complexes, [2-{(2,4-(C15H13)2-6-FC6H2)N=CMe}-6-(ArN=CMe)C5H3N]CoCl2 (Ar = 2,6-Me2C6H3) (Co1), 2,6-Et2C6H3 (Co2), 2,6-i-Pr2C6H3 (Co3), 2,4,6-Me3C6H2 (Co4), 2,6-Et2-4-MeC6H2 (Co5), and [2,6-{(2,4-(C15H13)2-6-FC6H2)N=CMe}2C5H3N]CoCl2 (Co6), each containing at least one N-2,4-bis(dibenzosuberyl)-6-fluorophenyl group, were synthesized in good yield from their corresponding unsymmetrical (L1L5) and symmetrical bis(imino)pyridines (L6). The molecular structures of Co1 and Co2 spotlighted their distorted square pyramidal geometries (τ5 value range: 0.23–0.29) and variations in steric hindrance offered by the dissimilar N-aryl groups. On activation with either MAO or MMAO, Co1Co6 all displayed high activities for ethylene polymerization, with levels falling in the order: Co1 > Co4 > Co5 > Co2 > Co3 > Co6. Indeed, the least sterically hindered 2,6-dimethyl Co1 in combination with MAO exhibited a very high activity of 1.15 × 107 g PE mol−1 (Co) h−1 at the operating temperature of 70 °C, which dropped by only 15% at 80 °C and 43% at 90 °C. Vinyl-terminated polyethylenes of high linearity and narrow dispersity were generated by all catalysts, with the most sterically hindered, Co3 and Co6, producing the highest molecular weight polymers [Mw range: 30.26–33.90 kg mol−1 (Co3) and 42.90–43.92 kg mol−1 (Co6)]. In comparison with structurally related cobalt catalysts, it was evident that the presence of the N-2,4-bis(dibenzosuberyl)-6-fluorophenyl groups had a limited effect on catalytic activity but a marked effect on thermal stability. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Figure 1

Back to TopTop