Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = imidazole-based ionic liquid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6275 KB  
Article
Epoxy Resin Highly Loaded with an Ionic Liquid: Morphology, Rheology, and Thermophysical Properties
by Svetlana O. Ilyina, Irina Y. Gorbunova, Michael L. Kerber and Sergey O. Ilyin
Gels 2025, 11(12), 992; https://doi.org/10.3390/gels11120992 - 10 Dec 2025
Viewed by 293
Abstract
An epoxy resin can be crosslinked with an imidazole-based ionic liquid (IL), whose excess, provided its high melting temperature, can potentially form a dispersed phase to store thermal energy and produce a phase-change material (PCM). This work investigates the crosslinking of diglycidyl ether [...] Read more.
An epoxy resin can be crosslinked with an imidazole-based ionic liquid (IL), whose excess, provided its high melting temperature, can potentially form a dispersed phase to store thermal energy and produce a phase-change material (PCM). This work investigates the crosslinking of diglycidyl ether of bisphenol A (DGEBA) using 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) at its mass fractions of 5, 10, 20, 40, and 60%. The effect of [EMIM]Cl on the viscosity, curing rate, and curing degree was studied, and the thermophysical properties and morphology of the resulting crosslinked epoxy polymer were investigated. During the curing, [EMIM]Cl changes its role from a crosslinking agent (an initiator of homopolymerization) and a diluent of the epoxy resin to a plasticizer of the cured epoxy polymer and a dispersed phase-change agent. An increase in the [EMIM]Cl content accelerates the curing firstly because of the growth in the number of reaction centers, and then the curing slows down because of the action of the IL as a diluent, which reduces the concentration of reacting substances. In addition, a rise in the proportion of [EMIM]Cl led to the predominance of the initiation over the chain growth, causing the formation of short non-crosslinked molecules. The IL content of 5% allowed for curing the epoxy resin and elevating the stiffness of the crosslinked product by almost 7 times compared to tetraethylenetriamine as a usual aliphatic amine hardener (6.95 GPa versus 1.1 GPa). The [EMIM]Cl content of 20–40% resulted in a thermoplastic epoxy polymer capable of flowing and molding at elevated temperatures. The formation of IL emulsion in the epoxy matrix occurred at 60% [EMIM]Cl, but its hygroscopicity and absorption of water from surrounding air reduced the crystallinity of dispersed [EMIM]Cl, not allowing for an effective phase-change material to be obtained. Full article
(This article belongs to the Special Issue Energy Storage and Conductive Gel Polymers)
Show Figures

Figure 1

18 pages, 1504 KB  
Article
Chemical Transformations of Lignin Under the Action of 1-Butyl-3-Methylimidazolium Ionic Liquids: Covalent Bonding and the Role of Anion
by Artyom V. Belesov, Ilya I. Pikovskoi, Anna V. Faleva and Dmitry S. Kosyakov
Int. J. Mol. Sci. 2025, 26(23), 11627; https://doi.org/10.3390/ijms262311627 - 30 Nov 2025
Viewed by 172
Abstract
1-Butyl-3-methylimidazolium (bmim) ionic liquids (ILs) are widely used for lignocellulose fractionation, yet their role extends beyond mere solvents. This study revealed that bmim-based ILs act as active chemical reagents, modifying the lignin structure in an anion-dependent manner. Thermal treatment (80–150 °C) of spruce [...] Read more.
1-Butyl-3-methylimidazolium (bmim) ionic liquids (ILs) are widely used for lignocellulose fractionation, yet their role extends beyond mere solvents. This study revealed that bmim-based ILs act as active chemical reagents, modifying the lignin structure in an anion-dependent manner. Thermal treatment (80–150 °C) of spruce dioxane lignin with [bmim]OAc, [bmim]Cl, and [bmim]MeSO4 resulted in two distinct transformation pathways. In [bmim]MeSO4, acidic catalysis dominates, leading to lignin condensation (increase in weight-average molecular weight, Mw, to 15.2 kDa at 150 °C) and intense sulfur incorporation (up to 9.9%) via anion-derived methylation/sulfation. Conversely, [bmim]OAc promotes depolymerization (decrease in Mw to 3.6 kDa) and efficient covalent bonding of the bmim cation to lignin (up to 10.8 cations per 100 aromatic units and a 6.5% nitrogen content at 150 °C), preventing condensation. Two-dimensional NMR and HPLC-HRMS analyses revealed the formation of a C–C bond between the C2 atom of the imidazole ring and the α-carbon of the phenylpropane lignin fragments and allowed for the identification of a number of individual nitrogen-containing lignin oligomers in the [bmim]OAc-treated samples. Their formation likely proceeds via nucleophilic addition of the N-heterocyclic carbene (NHC), derived from the bmim cation by deprotonation with the highly basic acetate anion, to aldehyde groups. The action of [bmim]Cl primarily induces acid-catalyzed transformations of lignin with minimal covalent modification. These findings redefine imidazolium ILs as reactive media in biorefining, where their covalent interactions can influence the properties of lignin but complicate its native structure and the recyclability of the IL. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

14 pages, 1589 KB  
Article
Tuning the Structure and Photoluminescence of [SbCl5]2−-Based Halides via Modification of Imidazolium-Based Cations
by Guoyang Chen, Xinping Guo, Haowei Lin, Zhizhuan Zhang, Abdusalam Ablez, Yuwei Ren, Kezhao Du and Xiaoying Huang
Molecules 2025, 30(16), 3431; https://doi.org/10.3390/molecules30163431 - 20 Aug 2025
Viewed by 997
Abstract
Structure–property relationships in imidazolium-based hybrid Sb(III) chlorides provide critical guidance for designing high-performance materials. Three zero-dimensional metal halides, namely, [C3mmim]2SbCl5 (1, [C3mmim]+ = 1-propyl-2,3-dimethylimidazolium), [C5mmim]2SbCl5 (2, [...] Read more.
Structure–property relationships in imidazolium-based hybrid Sb(III) chlorides provide critical guidance for designing high-performance materials. Three zero-dimensional metal halides, namely, [C3mmim]2SbCl5 (1, [C3mmim]+ = 1-propyl-2,3-dimethylimidazolium), [C5mmim]2SbCl5 (2, [C5mmim]+ = 1-pentyl-2,3-dimethylimidazolium), and [C5mim]2SbCl5 (3, [C5mim]+ = 1-pentyl-3-methylimidazolium), are synthesized by ionothermal methods. These compounds exhibit markedly distinctly photophysical properties at their optimal excitation wavelengths. Structural analyses reveal that elongated alkyl chains in compounds 2 and 3 increase Sb–Sb distances compared to that in 1, effectively isolating [SbCl5]2− units, suppressing inter-center energy transfer, and reducing non-radiative transitions, thereby enhancing the photoluminescence quantum yield (PLQY). Furthermore, methyl substitution at the C2-position of the imidazolium ring in compounds 1 and 2 induces asymmetric coordination environments around the [SbCl5]2− emission centers, leading to pronounced structural distortion. This distortion promotes non-radiative decay pathways and diminishes luminescent efficiency. Furthermore, temperature-dependent spectroscopy analysis and fitting of the Huang–Rhys factor (S) reveal significant electron–phonon coupling in compounds 13, which effectively promotes the formation of self-trapped excitons (STEs). However, compound 1 exhibits extremely high S, which significantly enhances phonon-mediated non-radiative decay and ultimately reduces its PLQY. Overall, compound 3 has the highest PLQYs. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 19552 KB  
Article
Facile Synthesis of Binuclear Imidazole-Based Poly(ionic liquid) via Monomer Self-Polymerization: Unlocking High-Efficiency CO2 Conversion to Cyclic Carbonate
by Ranran Li, Yuqiao Jiang, Linyan Cheng, Cheng Fang, Hongping Li, Jing Ding, Hui Wan and Guofeng Guan
Catalysts 2025, 15(5), 406; https://doi.org/10.3390/catal15050406 - 22 Apr 2025
Cited by 1 | Viewed by 1218
Abstract
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic [...] Read more.
Strategic utilization of carbon dioxide as both a carbon mitigation tool and a sustainable C1 feedstock represents a pivotal pathway toward green chemistry. Although poly(ionic liquid)s (PILs) exhibit promise in CO2 conversion, conventional divinylbenzene (DVB) cross-linked architectures are limited by reduced ionic density and limited accessibility of active sites. Herein, we reported a binuclear imidazolium-functionalized PIL catalyst (P-BVIMCl), synthesized through a simple self-polymerization process, derived from rationally designed ionic liquid monomers formed by quaternization of 1,4-bis(chloromethyl)benzene with N-vinylimidazole. The dual active sites in P-BVIMCl-quaternary ammonium cation (N+) and nucleophilic chloride anion (Cl) synergistically enhanced CO2 adsorption/activation and epoxide ring-opening. Under optimal catalyst preparation conditions (100 °C, 24 h, water/ethanol = 1:3 (v/v), 10 wt% AIBN initiator) and reaction conditions (100 °C, 2.0 MPa CO2, 10 mmol epichlorohydrin, 6.7 wt% catalyst loading, 3.0 h), P-BVIMCl catalyzed the synthesis of glycerol carbonate (GLC) with a yield of up to 93.4% and selectivity of 99.6%, maintaining activity close to 90% after five cycles. Systematic characterization and density functional theory (DFT) calculations confirmed the synergistic activation mechanism. This work established a paradigm for constructing high-ionic-density catalysts through molecular engineering, advancing the development of high-performance PILs for industrial CO2 valorization. Full article
(This article belongs to the Special Issue Ionic Liquids and Deep Eutectic Solvents in Catalysis)
Show Figures

Graphical abstract

12 pages, 2627 KB  
Article
Effects of Li Salt and Additive Content on the Electrochemical Performance of [C4C1mim]-Based Ionic Liquid Electrolytes
by Yayun Zheng, Wenbin Zhou, Kui Cheng and Zhengfei Chen
AppliedChem 2025, 5(1), 6; https://doi.org/10.3390/appliedchem5010006 - 6 Mar 2025
Cited by 2 | Viewed by 1888
Abstract
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this [...] Read more.
Ionic liquids based on imidazolium cations have attracted attention due to their high safety and exceptional ionic conductivity. However, imidazole-based ionic liquids exhibit poor electrochemical stability due to the strong reactivity of hydrogen atoms at the C-2 position of imidazole cations. In this work, an ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([C4C1mim][TFSA]), characterized by a methyl-substituted C-2 position and a butyl chain, was investigated in various Li+ environments created by different lithium salt concentrations and fluoroethylene carbonate (FEC) additives. Both optimal Li+ concentrations and the addition of reasonable FEC enable the improvement of ionic conductivity to 3.32 mS cm−1 at 25 °C and a maximum electrochemical window of 5.21 V. The ionic liquid electrolyte Li[TFSA]-[C4C1mim][TFSA] at a molar ratio of 2:8 with 5 wt% FEC addition demonstrates excellent thermal stability. The corresponding Li/LiFePO4 cell exhibits a mitigated polarization growth (increasing from 0.12 V to 0.25 V over 10 cycles) with a high initial discharge capacity of 169.3 mAh g−1. Full article
Show Figures

Figure 1

18 pages, 4644 KB  
Review
Ionic Liquids as Starch Plasticizers: The State of the Art
by Susanna Romano, Serena De Santis, Chiara Frezza, Monica Orsini, Giovanni Sotgiu, Marta Feroci and Daniele Rocco
Molecules 2025, 30(5), 1035; https://doi.org/10.3390/molecules30051035 - 24 Feb 2025
Cited by 2 | Viewed by 1418
Abstract
Over the past 15 years, ionic liquids (ILs) have gained increasing attention as potential replacements for traditional organic compounds. Thanks to their remarkable properties, such as non-volatility, chemical stability, low toxicity, solvation power, and the tunability of properties—due to different combinations of cations [...] Read more.
Over the past 15 years, ionic liquids (ILs) have gained increasing attention as potential replacements for traditional organic compounds. Thanks to their remarkable properties, such as non-volatility, chemical stability, low toxicity, solvation power, and the tunability of properties—due to different combinations of cations and anions—ILs are considered ideal in the processing of polymers. Indeed, they have been extensively studied for the dissolution, derivatization, and plasticization of biopolymers to address the growing issue of plastic pollution. The aim of this review is to investigate the recent years’ literature using ILs in starch plasticization. In particular, two major classes of ionic liquids were addressed, the imidazole-based ionic liquids and the choline-derived bioILs. Furthermore, this review aims to provide a comprehensive understanding of the mechanisms behind the interactions between ILs and starch and to study their effect on biopolymer properties. Full article
Show Figures

Figure 1

13 pages, 3193 KB  
Article
Novel Organomineral Material Containing an Acylpyrazolone Functionalized Ionic Liquid for the Extraction and Separation of Rare Earth Elements
by Dzhamilya N. Konshina, Ida A. Lupanova and Valery V. Konshin
Chemistry 2024, 6(5), 1133-1145; https://doi.org/10.3390/chemistry6050066 - 27 Sep 2024
Cited by 3 | Viewed by 1512
Abstract
4-Acylpyrazolones are important ligands in analytical chemistry and technologies used for the separation and concentration of various metals. We have proposed a novel method for obtaining a material that consists of covalently immobilized functionalized ionic liquid on the surface of a mineral carrier [...] Read more.
4-Acylpyrazolones are important ligands in analytical chemistry and technologies used for the separation and concentration of various metals. We have proposed a novel method for obtaining a material that consists of covalently immobilized functionalized ionic liquid on the surface of a mineral carrier featuring a coordination-active fragment of 4-acylpyrazolone. For its synthesis, we have introduced a strategy based on the quaternization of surface azolyl groups from 3-(1H-imidazol-1-yl)propyl silica with an alkylating reagent containing a 4-acylpyrazolone motif-4-(6-bromohexanoyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one. This method of covalent immobilization preserves the 1,3-dioxo fragment, which ensures the effective binding of metal ions. The success of this functionalization has been confirmed by IR and 13C NMR spectroscopy data, as well as by thermogravimetric analysis. The overall functional capacity was found to be 0.3 mmol/g. The potential of the synthesized organomineral material to concentrate five rare earth elements (REEs) representing the cerium (Eu(III), Sm(III)) and yttrium groups (Gd(III), Dy(III), Er(III)) has been demonstrated. It was shown that during extraction from multicomponent systems, both under static and dynamic preconcentration conditions, there is a competitive influence of analytes, and their separation can be evaluated under dynamic conditions based on dynamic output curves and calculated distribution coefficients. It was shown that for systems where Kd > 1.8, quantitative separation can be performed in a dynamic mode of sorption under selected conditions. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

16 pages, 3267 KB  
Article
Effect of Ionic Liquids with Different Structures on Rheological Properties of Water-Based Drilling Fluids and Mechanism Research at Ultra-High Temperatures
by Haoxian Shi, Yanjiang Yu, Yingsheng Wang, Zijie Ning and Zhihua Luo
Molecules 2024, 29(17), 4206; https://doi.org/10.3390/molecules29174206 - 5 Sep 2024
Cited by 1 | Viewed by 2106
Abstract
The rheology control of water-based drilling fluids at ultra-high temperatures has been one of the major challenges in deep or ultra-deep resource exploration. In this paper, the effects of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) (ILA), 1-ethyl-3-methylimidazolium tetrafluoroborate (ILB) and N-methyl, butylpyrrolidinium bis(trifluoromethanesulfonimide) (ILC) on the rheological [...] Read more.
The rheology control of water-based drilling fluids at ultra-high temperatures has been one of the major challenges in deep or ultra-deep resource exploration. In this paper, the effects of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) (ILA), 1-ethyl-3-methylimidazolium tetrafluoroborate (ILB) and N-methyl, butylpyrrolidinium bis(trifluoromethanesulfonimide) (ILC) on the rheological properties and filtration loss of polymer-based slurries at ultra-high temperatures (200 °C and 240 °C) are investigated by the American Petroleum Institute (API) standards. The results show that ionic liquids with different structures could improve the high-temperature rheological properties of polymer-based drilling fluids. The rheological parameter value (YP/PV) of the polymer-based slurry formulated with ILC is slightly higher than that with ILA at the same concentration, while the YP/PV value of the polymer-based slurry with ILA is slightly higher than that with ILB, which is consistent with the TGA thermal stability of ILA, ILB, and ILC; the thermal stability of ILC with pyrrolidine cations is higher than that of ILA with imidazole cations, and the thermal stability of ILA with bis(trifluorosulfonyl)amide anions is higher than that of ILB with tetrafluoroborate anions. Cation interlayer exchange between organic cation and sodium montmorillonite can improve the rheological properties of water-based drilling fluids. And meantime, the S=O bond in bis(trifluorosulfonyl)amide ions and the hydroxyl group of sodium montmorillonite may form hydrogen bonds, which also may increase the rheological properties of water-based drilling fluids. ILA, ILB, and ILC cannot reduce the filtration loss of polymer-based drilling fluids at ultra-high temperatures. Full article
Show Figures

Figure 1

13 pages, 11887 KB  
Article
Degradation of Poly(ethylene terephthalate) Catalyzed by Nonmetallic Dibasic Ionic Liquids under UV Radiation
by Ruiqi Zhang, Xu Zheng, Xiujie Cheng, Junli Xu, Yi Li, Qing Zhou, Jiayu Xin, Dongxia Yan and Xingmei Lu
Materials 2024, 17(7), 1583; https://doi.org/10.3390/ma17071583 - 29 Mar 2024
Cited by 7 | Viewed by 2547
Abstract
Nonmetallic ionic liquids (ILs) exhibit unique advantages in catalyzing poly (ethylene terephthalate) (PET) glycolysis, but usually require longer reaction times. We found that exposure to UV radiation can accelerate the glycolysis reaction and significantly reduce the reaction time. In this work, we synthesized [...] Read more.
Nonmetallic ionic liquids (ILs) exhibit unique advantages in catalyzing poly (ethylene terephthalate) (PET) glycolysis, but usually require longer reaction times. We found that exposure to UV radiation can accelerate the glycolysis reaction and significantly reduce the reaction time. In this work, we synthesized five nonmetallic dibasic ILs, and their glycolysis catalytic activity was investigated. 1,8-diazabicyclo [5,4,0] undec-7-ene imidazole ([HDBU]Im) exhibited better catalytic performance. Meanwhile, UV radiation is used as a reinforcement method to improve the PET glycolysis efficiency. Under optimal conditions (5 g PET, 20 g ethylene glycol (EG), 0.25 g [HDBU]Im, 10,000 µW·cm−2 UV radiation reacted for 90 min at 185 °C), the PET conversion and BHET yield were 100% and 88.9%, respectively. Based on the UV-visible spectrum, it was found that UV radiation can activate the C=O in PET. Hence, the incorporation of UV radiation can considerably diminish the activation energy of the reaction, shortening the reaction time of PET degradation. Finally, a possible reaction mechanism of [HDBU]Im-catalyzed PET glycolysis under UV radiation was proposed. Full article
(This article belongs to the Special Issue Recent Researches in Polymer and Plastic Processing)
Show Figures

Figure 1

16 pages, 10652 KB  
Article
Conductometric and Thermodynamic Studies of Selected Imidazolium Chloride Ionic Liquids in N,N-Dimethylformamide at Temperatures from 278.15 to 313.15 K
by Zdzisław Kinart
Molecules 2024, 29(6), 1371; https://doi.org/10.3390/molecules29061371 - 19 Mar 2024
Cited by 2 | Viewed by 2097
Abstract
This scientific article presents research on the electrical conductivity of imidazole-derived ionic liquids (1-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride and 1-methyl-3-octylimidazolium chloride) in the temperature range of 278.15–313.15 K in N,N-Dimethylformamide. The measurement methods employed relied mainly on conductometric measurements, enabling [...] Read more.
This scientific article presents research on the electrical conductivity of imidazole-derived ionic liquids (1-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride and 1-methyl-3-octylimidazolium chloride) in the temperature range of 278.15–313.15 K in N,N-Dimethylformamide. The measurement methods employed relied mainly on conductometric measurements, enabling precise monitoring of the conductivity changes as a function of temperature. Experiments were conducted at various temperature values, which provided a comprehensive picture of the conducting properties of the investigated ionic liquids. The focus of the study was the analysis of the conductometric results, which were used to determine the conductivity function as a function of temperature. Based on the obtained data, a detailed analysis of association constants (KA) and thermodynamic parameters such as enthalpy (∆H0), entropy (∆S0), Gibbs free energy (∆G0), Eyring activation enthalpy for charge transport (ΔHλ) and diffusion processes (D0) was carried out. The conductometric method proved to be an extremely effective tool for accurately determining these parameters, significantly contributing to the understanding of the properties of imidazole-derived ionic liquids in the investigated temperature range. As a result, the obtained results not only provide new insights into the electrical conductivity of the studied ionic liquids but also broaden our knowledge of their thermodynamic behavior under different temperature conditions. These studies may have significant implications for the field of ionic liquid chemistry and may be applied in the design of modern materials with desired conducting properties. Full article
(This article belongs to the Special Issue Electrochemistry in Ionic Liquids)
Show Figures

Graphical abstract

14 pages, 5739 KB  
Article
Bifunctional Silica-Supported Ionic Liquid Phase (SILP) Catalysts in Silane Production: Their Synthesis, Characterization and Catalytic Activity
by Nataliia V. Abarbanel, Sergey S. Suvorov, Anton N. Petukhov, Artem S. Belousov, Artem N. Markov, Dmitriy M. Zarubin, Alexandra V. Barysheva, Ilya V. Vorotyntsev, Alexander A. Kapinos, Artem D. Kulikov and Andrey V. Vorotyntsev
Int. J. Mol. Sci. 2024, 25(1), 68; https://doi.org/10.3390/ijms25010068 - 20 Dec 2023
Cited by 1 | Viewed by 2559
Abstract
A mesoporous silica support was synthesized using the sol–gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol–gel synthesis. It has been shown that the insertion [...] Read more.
A mesoporous silica support was synthesized using the sol–gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol–gel synthesis. It has been shown that the insertion of hexane and toluene, as additional solvents, into the structure-forming polyethylene glycol, makes it possible to regulate the pore size and specific surface area of silica. Silica functionalization was carried out using SILP technology. The activities of the catalytic systems based on polymer and inorganic supports immobilized by imidazole-based ionic liquids during the trichlorosilane disproportionation reaction were compared. There is a tendency for the monosilane yield for catalytic systems based on an inorganic support to increase. We identified the most promising catalyst in terms of monosilane yield and proposed a bifunctional catalyst that exhibited activity in two parallel reactions: trichlorosilane disproportionation and silicon tetrachloride hydrogenation. Full article
Show Figures

Figure 1

20 pages, 3373 KB  
Article
Diarylethene-Based Ionic Liquids: Synthesis and Photo-Driven Solution Properties
by Mário R. C. Soromenho, Carlos A. M. Afonso and José M. S. S. Esperança
Int. J. Mol. Sci. 2023, 24(4), 3533; https://doi.org/10.3390/ijms24043533 - 9 Feb 2023
Cited by 2 | Viewed by 3076
Abstract
In this work, the design and synthesis of a series of photochromic gemini diarylethene-based ionic liquids (GDILs) with different cationic motifs is reported. Several synthetic pathways were optimized for the formation of cationic GDILs with chloride as the counterion. The different cationic motifs [...] Read more.
In this work, the design and synthesis of a series of photochromic gemini diarylethene-based ionic liquids (GDILs) with different cationic motifs is reported. Several synthetic pathways were optimized for the formation of cationic GDILs with chloride as the counterion. The different cationic motifs were achieved through the N-alkylation of the photochromic organic core unit with different tertiary amines, including different aromatic amines such as imidazole derivatives and pyridinium, and other non-aromatic amines. These novel salts present surprising water solubility with unexplored photochromic features that broaden their known applications. The covalent attachment of the different side groups dictates their water solubility and differences upon photocyclization. The physicochemical properties of GDILs in aqueous and in imidazolium-based ionic liquid (IL) solutions were investigated. Upon irradiation with ultraviolet (UV) light, we have observed changes in the physico-chemical properties of distinct solutions containing these GDILs, at very low concentrations. More specifically, in aqueous solution, the overall conductivity increased with the time of UV photoirradiation. In contrast, in IL solution, these photoinducible changes are dependent on the type of ionic liquid used. These compounds can improve non-ionic and ionic liquids’ solutions since we can change their properties, such as conductivity, viscosity or ionicity, only by UV photoirradiation. The electronic and conformational changes associated with these innovative stimuli GDILs may open new opportunities for their use as photoswitchable materials. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 2627 KB  
Article
Nanoporous Alumina Support Covered by Imidazole Moiety–Based Ionic Liquids: Optical Characterization and Application
by Manuel Algarra, Mª Cruz López Escalante, Mª Valle Martínez de Yuso, Juan Soto, Ana L. Cuevas and Juana Benavente
Nanomaterials 2022, 12(23), 4131; https://doi.org/10.3390/nano12234131 - 23 Nov 2022
Cited by 3 | Viewed by 2193
Abstract
This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence [...] Read more.
This work analyzes chemical surface and optical characteristics of a commercial nanoporous alumina structure (NPAS) as a result of surface coverage by different imidazolium-based ionic liquids (1-butyl-3-metylimidazolium hexafluorophosphate, 3-methyl-1-octylimidazolium hexafluorophosphate, or 1-ethyl-3-methylimidazolium tetrafluoroborate). Optical characteristics of the IL/NPAS samples were determined by photoluminescence (at different excitation wavelengths (from 300 nm to 400 nm), ellipsometry spectroscopy, and light transmittance/reflectance measurements for a range of wavelengths that provide information on modifications related to both visible and near-infrared regions. Chemical surface characterization of the three IL/NPAS samples was performed by X-ray photoelectron spectroscopy (XPS), which indicates almost total support coverage by the ILs. The IL/NPAS analyzed samples exhibit different photoluminescence behavior, high transparency (<85%), and a reflection maximum at wavelength ~380 nm, with slight differences depending on the IL, while the refractive index values are rather similar to those shown by the ILs. Moreover, the illuminated I–V curves (under standard conditions) of the IL/NPAS samples were also measured for determining the efficiency energy conversion to estimate their possible application as solar cells. On the other hand, a computational quantum mechanical modeling method (DFT) was used to establish the most stable bond between the ILs and the NPAS support. Full article
(This article belongs to the Special Issue Functionalization Chemistry in Porous Nanomaterials)
Show Figures

Figure 1

13 pages, 1652 KB  
Article
New Insights into the Thermal Stability of 1-Butyl-3-methylimidazolium-Based Ionic Liquids
by Artyom V. Belesov, Natalya V. Shkaeva, Mark S. Popov, Tatyana E. Skrebets, Anna V. Faleva, Nikolay V. Ul’yanovskii and Dmitry S. Kosyakov
Int. J. Mol. Sci. 2022, 23(18), 10966; https://doi.org/10.3390/ijms231810966 - 19 Sep 2022
Cited by 15 | Viewed by 4939
Abstract
One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at [...] Read more.
One of the most promising applications of ionic liquids (ILs) with 1-butyl-3-methylimidazolium (bmim) cation is based on their unique ability to dissolve and fractionate lignocellulosic biomass, allowing for the development of green biorefining technologies. A complete dissolution of lignocellulose requires prolonged treatment at elevated temperatures, which can cause the partial degradation of ILs. In the present study, a combination of various analytical techniques (GC-MS, HPLC-HRMS, 2D-NMR, synchronous thermal analysis) was used for the comprehensive characterization of bmim acetate, chloride, and methyl sulfate degradation products formed at 150 °C during 6- and 24-h thermal treatment. A number of volatile and non-volatile products, including monomeric and dimeric alkyl substituted imidazoles, alcohols, alkyl amines, methyl and butyl acetates, and N-alkylamides, was identified. By thermal lability, ILs can be arranged in the following sequence, coinciding with the decrease in basicity of the anion: [bmim]OAc > [bmim]Cl > [bmim]MeSO4. The accumulation of thermal degradation products in ILs, in turn, affects their physico-chemical properties and thermal stability, and leads to a decrease in the decomposition temperature, a change in the shape of the thermogravimetric curves, and the formation of carbon residue during pyrolysis. Full article
(This article belongs to the Special Issue Advances in Ionic Liquids and Their Various Applications)
Show Figures

Figure 1

11 pages, 1266 KB  
Article
Study on Extraction Performance of Vanadium (V) from Aqueous Solution by Octyl-Imidazole Ionic Liquids Extractants
by Jingui He, Wenju Tao and Guozhen Dong
Metals 2022, 12(5), 854; https://doi.org/10.3390/met12050854 - 17 May 2022
Cited by 12 | Viewed by 2991
Abstract
It is worth it to explore the extraction performance for vanadium by the imidazole ionic liquids. The extraction of vanadium (V) was studied using [Omim]Cl, [Omim]Br, and [Omim][BF4] as extractants. The effects of various diluents, equilibrium time, extraction temperature, and anion [...] Read more.
It is worth it to explore the extraction performance for vanadium by the imidazole ionic liquids. The extraction of vanadium (V) was studied using [Omim]Cl, [Omim]Br, and [Omim][BF4] as extractants. The effects of various diluents, equilibrium time, extraction temperature, and anion species were investigated. The structure-activity relationship of vanadium and ILs was discussed by calculating the lattice energy of ILs based on the Glasser theory and the volume of anions. The results show that n-pentanol is the optimum diluent. Under the extraction conditions of an equilibrium time of 60 s and extraction temperature of 25 °C, the extraction rates of V (V) by [Omim]Cl, [Omim]Br, and [Omim][BF4] reached 97.93%, 96.59%, and 87.01%, respectively. Furthermore, based on the Glasser theory, the lattice energy of ionic liquids decreased in the order [Omim]Cl > [Omim]Br > [Omim]BF4. The volume of the anions increased in the order Cl < Br < BF4 < HVO42−. The extraction rate of V (V) depended on the size of the anions and the strength of the interaction between the anion and imidazolium cation. The results of counterevidence experiments verified the larger the anion volume, the easier it is to combine with cation in the organic phase, and the lattice energy of extracted compound is lower. The statistical analysis showed that the effect of the equilibrium time and temperature were not significant in the model, and the anions species showed a significant effect on the extraction efficiency of V (V). Full article
(This article belongs to the Topic Recent Advances in Metallurgical Extractive Processes)
Show Figures

Figure 1

Back to TopTop