Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (162)

Search Parameters:
Keywords = ice-accretion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5512 KB  
Article
Stability Evaluation of a Damaged Ship with Ice Accumulation in Arctic Regions
by Jiabin Tao, Wei Chai, Xiaonan Yang, Wenzhe Zhang, Chong Wang and Jianzhang Qi
J. Mar. Sci. Eng. 2025, 13(9), 1685; https://doi.org/10.3390/jmse13091685 - 1 Sep 2025
Abstract
The harsh environment in Arctic regions presents significant challenges to ship stability, particularly when ice accumulation and hull damage occur simultaneously, potentially increasing the risk of instability. This study addresses this critical issue by proposing a comprehensive stability assessment framework for ships operating [...] Read more.
The harsh environment in Arctic regions presents significant challenges to ship stability, particularly when ice accumulation and hull damage occur simultaneously, potentially increasing the risk of instability. This study addresses this critical issue by proposing a comprehensive stability assessment framework for ships operating in Arctic regions. Utilizing the DTMB-5415 ship model, the evaluation integrates both static and dynamic stability under combined ice accumulation and damage conditions. Firstly, an ice accumulation prediction model was developed to estimate ice accumulation over various durations. Subsequently, the static stability of damaged ships with ice accumulation was evaluated. Computational Fluid Dynamics (CFD) simulations were then conducted to calculate roll damping coefficients and analyze the effects of damage location and ice accumulation on free roll decay behavior. A single-degree-of-freedom (SDOF) roll motion model was constructed, incorporating roll damping coefficients and wave excitation moments to simulate roll responses in random wave environments. Extreme value prediction was employed to estimate the short-term extreme response distribution of roll motions. The results indicate that ship stability decreases significantly when ice accumulation and hull damage occur simultaneously. This integrated framework provides a systematic foundation for evaluating ship stability in the Arctic environment, specifically accounting for the combined effects of ice accretion and hull damage. Full article
Show Figures

Figure 1

17 pages, 9603 KB  
Article
Strong Tracking Unscented Kalman Filter for Identification of Inflight Icing
by Huangdi Luo and Jianliang Ai
Aerospace 2025, 12(9), 779; https://doi.org/10.3390/aerospace12090779 - 29 Aug 2025
Viewed by 103
Abstract
Aircraft icing degrades aerodynamic performance and poses safety risks, especially under nonlinear and uncertain conditions. In order to identify inflight icing in real time, this work proposes a Strong Tracking Unscented Kalman Filter (STUKF) which integrates the Unscented Kalman Filter (UKF) with an [...] Read more.
Aircraft icing degrades aerodynamic performance and poses safety risks, especially under nonlinear and uncertain conditions. In order to identify inflight icing in real time, this work proposes a Strong Tracking Unscented Kalman Filter (STUKF) which integrates the Unscented Kalman Filter (UKF) with an adaptive fading factor from strong tracking theory. The proposed STUKF improves robustness and responsiveness without requiring Jacobian matrices. A nonlinear airplane model with six degrees of freedom is used, with icing effects represented by a time-varying severity parameter estimated through state augmentation. Simulations are conducted under varying turbulence intensities and icing scenarios, including both gradual ice accretion and sudden ice shedding. When it comes to tracking speed and precision, the results demonstrate that STUKF performs better than the normal UKF. Notably, STUKF identifies sudden drops in icing severity within 12 s even under strong disturbances. STUKF also maintains stable performance across light to heavy turbulence levels. These findings demonstrate the effectiveness of STUKF for timely and reliable icing diagnosis, supporting its potential integration into smart icing protection systems or adaptive flight control strategies. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 713 KB  
Article
Super-Accreting Active Galactic Nuclei as Neutrino Sources
by Gustavo E. Romero and Pablo Sotomayor
Universe 2025, 11(9), 288; https://doi.org/10.3390/universe11090288 - 25 Aug 2025
Viewed by 858
Abstract
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven [...] Read more.
Active galactic nuclei (AGNs) often exhibit broad-line regions (BLRs), populated by high-velocity clouds in approximately Keplerian orbits around the central supermassive black hole (SMBH) at subparsec scales. During episodes of intense accretion at super-Eddington rates, the accretion disk can launch a powerful, radiation-driven wind. This wind may overtake the BLR clouds, forming bowshocks around them. Two strong shocks arise: one propagating into the wind, and the other into the cloud. If the shocks are adiabatic, electrons and protons can be efficiently accelerated via a Fermi-type mechanism to relativistic energies. In sufficiently dense winds, the resulting high-energy photons are absorbed and reprocessed within the photosphere, while neutrinos produced in inelastic pp collisions escape. In this paper, we explore the potential of super-accreting AGNs as neutrino sources. We propose a new class of neutrino emitter: an AGN lacking jets and gamma-ray counterparts, but hosting a strong, opaque, disk-driven wind. As a case study, we consider a supermassive black hole with MBH=106M and accretion rates consistent with tidal disruption events (TDEs). We compute the relevant cooling processes for the relativistic particles under such conditions and show that super-Eddington accreting SMBHs can produce detectable neutrino fluxes with only weak electromagnetic counterparts. The neutrino flux may be observable by the next-generation IceCube Observatory (IceCube-Gen2) in nearby galaxies with a high BLR cloud filling factor. For galaxies hosting more massive black holes, detection is also possible with moderate filling factors if the source is sufficiently close, or at larger distances if the filling factor is high. Our model thus provides a new and plausible scenario for high-energy extragalactic neutrino sources, where both the flux and timescale of the emission are determined by the number of clouds orbiting the black hole and the duration of the super-accreting phase. Full article
Show Figures

Figure 1

16 pages, 3543 KB  
Article
Multifunctional PDMS Composite Coating for Advanced Anti-Icing with Concurrent Mechanical Durability and Corrosion Protection
by Zaixiang Zheng, Shutong Wu, Jiawei Luo, Shengnan Yang, Junnan Cui, Zhimin Cao and Pan Cao
Coatings 2025, 15(8), 979; https://doi.org/10.3390/coatings15080979 - 21 Aug 2025
Viewed by 359
Abstract
Ice accretion on critical transportation infrastructure presents serious operational risks and economic challenges, highlighting the need for sustainable anti-icing solutions. This study develops a strong PDMS-based composite coating on aluminum by incorporating carbon nanotubes (CNTs) and carbon powder, effectively merging passive superhydrophobicity with [...] Read more.
Ice accretion on critical transportation infrastructure presents serious operational risks and economic challenges, highlighting the need for sustainable anti-icing solutions. This study develops a strong PDMS-based composite coating on aluminum by incorporating carbon nanotubes (CNTs) and carbon powder, effectively merging passive superhydrophobicity with photothermal capabilities. We systematically assess how different ratios of CNTs to carbon powder (3:1, 1:1, 1:3) influence surface morphology, wettability, anti-icing performance, mechanical durability, and corrosion resistance. The morphological analysis shows the formation of hierarchical micro/nano-structures, with the optimal 1:3 ratio (designated as P13) resulting in dense, porous agglomerates of intertwined CNTs and carbon powder. P13 demonstrates high-performing superhydrophobicity, with a contact angle of 139.7° and a sliding angle of 9.4°, alongside a significantly extended freezing delay of 180 s at −20 °C. This performance is attributed to reduced water–surface interaction and inhibited ice nucleation. Mechanical abrasion tests indicate remarkable durability, as P13 retains a contact angle of 132.5° and consistent anti-icing properties after enduring 100 abrasion cycles. Electrochemical analysis reveals exceptional corrosion resistance, particularly for P13, which achieves a notable 99.66% corrosion inhibition efficiency by creating a highly tortuous diffusion barrier that protects against corrosive agents. This multifunctional coating effectively utilizes the photothermal properties of CNTs, the affordability of carbon powder, the low surface energy of PDMS, and the thermal conductivity of aluminum, presenting a robust and high-performance solution for anti-icing applications in challenging environments. Full article
(This article belongs to the Special Issue Development and Application of Anti/De-Icing Surfaces and Coatings)
Show Figures

Graphical abstract

36 pages, 16047 KB  
Article
Insights into Sea Spray Ice Adhesion from Laboratory Testing
by Paul Rübsamen-v. Döhren, Sönke Maus, Zhiliang Zhang and Jianying He
Thermo 2025, 5(3), 27; https://doi.org/10.3390/thermo5030027 - 30 Jul 2025
Viewed by 473
Abstract
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is [...] Read more.
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is a critical factor in predicting the build-up of ice loads on structures. While the adhesion strength of freshwater ice has been extensively studied, knowledge about sea spray ice adhesion remains limited. This study intends to bridge this gap by investigating the adhesion strength of sea spray icing under controlled laboratory conditions. In this study, we built a new in situ ice adhesion test setup and grew ice at −7 °C to −15 °C on quadratic aluminium samples of 3 cm to 12 cm edge length. The results reveal that sea spray ice adhesion strength is in a significantly lower range—5 kPa to 100 kPa—compared to fresh water ice adhesion and shows a low dependency on the temperature during the spray event, but a notable size effect and influence of the brine layer thickness on the adhesion strength. These findings provide critical insights into sea spray icing, enhancing the ability to predict and manage ice loads in marine environments. Full article
(This article belongs to the Special Issue Frosting and Icing)
Show Figures

Figure 1

12 pages, 3056 KB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Viewed by 258
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 2560 KB  
Article
Aerodynamic Instability Mechanisms of Iced Eight-Bundled Conductors: Frequency-Domain Analysis and Stability Assessment via Wind Tunnel–CFD Synergy
by Bolin Zhong, Minghao Qiao, Mengqi Cai and Maoming Hu
Sensors 2025, 25(13), 4120; https://doi.org/10.3390/s25134120 - 1 Jul 2025
Viewed by 406
Abstract
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped [...] Read more.
Icing on transmission lines in cold regions can cause asymmetry in the conductor cross-section. This asymmetry can lead to low-frequency, large-amplitude oscillations, posing a serious threat to the stability and safety of power transmission systems. In this study, the aerodynamic characteristics of crescent-shaped and sector-shaped iced eight-bundled conductors were systematically investigated over an angle of attack range from 0° to 180°. A combined approach involving wind tunnel tests and high-precision computational fluid dynamics (CFD) simulations was adopted. In the wind tunnel tests, static aerodynamic coefficients and dynamic time series data were obtained using a high-precision aerodynamic balance and a turbulence grid. In the CFD simulations, transient flow structures and vortex shedding mechanisms were analyzed based on the Reynolds-averaged Navier–Stokes (RANS) equations with the SST k-ω turbulence model. A comprehensive comparison between the two ice accretion geometries was conducted. The results revealed distinct aerodynamic instability mechanisms and frequency-domain characteristics. The analysis was supported by Fourier’s fourth-order harmonic decomposition and energy spectrum analysis. It was found that crescent-shaped ice, due to its streamlined leading edge, induced a dominant single vortex shedding. In this case, the first-order harmonic accounted for 67.7% of the total energy. In contrast, the prismatic shape of sector-shaped ice caused migration of the separation point and introduced broadband energy input. Stability thresholds were determined using the Den Hartog criterion. Sector-shaped iced conductors exhibited significant negative aerodynamic damping under ten distinct operating conditions. Compared to the crescent-shaped case, the instability risk range increased by 60%. The strong agreement between simulation and experimental results validated the reliability of the numerical approach. This study establishes a multiscale analytical framework for understanding galloping mechanisms of iced conductors. It also identifies early warning indicators in the frequency domain and provides essential guidance for the design of more effective anti-galloping control strategies in resilient power transmission systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 3154 KB  
Article
Impact of Blade Ice Coverage on Wind Turbine Power Generation Efficiency: A Combined CFD and Wind Tunnel Study
by Yang Ji, Jinxiao Wang, Haiming Wen, Chenyang Liu, Yang Liu and Dayong Zhang
Energies 2025, 18(13), 3448; https://doi.org/10.3390/en18133448 - 30 Jun 2025
Viewed by 330
Abstract
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three [...] Read more.
This study investigates aerodynamic degradation and power loss mechanisms in iced wind turbine blades using a hybrid methodology integrating high-fidelity CFD simulations (ANSYS Fluent, FENSAP-ICE, STAR-CCM+ with SST k-ω turbulence model and shallow-water icing theory) with controlled wind tunnel experiments (10–15 m/s). Three ice accretion types, glaze, mixed, and rime, on NACA0012 airfoils are quantified. Glaze ice at the leading edge induces the most severe degradation, reducing lift by 34.9% and increasing drag by 97.2% at 10 m/s. STAR-CCM+ analyses reveal critical pressure anomalies and ice morphology-dependent flow separation patterns. These findings inform the optimization of anti-icing strategies for cold-climate wind farms. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

20 pages, 4137 KB  
Article
Numerical Simulation and Optimization of Coupled Hot-Air Anti-Icing Characteristics for a Nacelle Lip
by Ning Guan, Qiankun Zhu, Weijian Chen and Feng Chen
Aerospace 2025, 12(7), 582; https://doi.org/10.3390/aerospace12070582 - 27 Jun 2025
Viewed by 290
Abstract
This study investigates nacelle lip icing on a particular engine model, focusing on anti-icing solutions with hot air as the heating medium. By integrating numerical simulations with Latin Hypercube Sampling (LHS) and Kriging optimization methods, the most severe icing condition within the flight [...] Read more.
This study investigates nacelle lip icing on a particular engine model, focusing on anti-icing solutions with hot air as the heating medium. By integrating numerical simulations with Latin Hypercube Sampling (LHS) and Kriging optimization methods, the most severe icing condition within the flight envelope was identified and determined. Additionally, using coupled computational methods, the protective effectiveness of the proposed anti-icing structure was evaluated under these extreme conditions. Within the flight and icing envelopes, 30 distinct operating conditions were obtained using the LHS approach, and numerical simulations were conducted to model the icing conditions for each case. The calculated ice accretion served as the optimization criterion, and the Kriging optimization method was used to pinpoint the most severe icing condition within the flight envelope. The computational results indicate that under this severe condition, the ice thickness on the lip surface reaches 5.4 mm and 15.2 mm after 600 s and 1800 s, respectively, with a total ice accretion rate of 7.8 g/s, posing a significant threat to engine safety. The designed anti-icing structure can effectively provide thermal protection against this severe condition when the supply air temperature is set at 383.15 K, and the total air supply flow rate at the lip is 0.193 kg/s. Notably, the interior surface of the nacelle lip exhibits a 36.2% higher minimum convective heat transfer coefficient than the exterior surface, effectively preventing engine ice ingestion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 3898 KB  
Article
Research on the Real-Time Prediction of Wind Turbine Blade Icing Process Based on the MLP Neural Network Model and Meteorological Parameters
by Nan Xie, Qingqing Cao, Zhixiang Zeng, Kebo Ma and Sizhun Zeng
Processes 2025, 13(6), 1910; https://doi.org/10.3390/pr13061910 - 16 Jun 2025
Viewed by 560
Abstract
Long-term shutdowns caused by ice formation on wind turbine blades can lead to significant power generation losses, a persistent issue for wind farm operators. The rapid acquisition of ice mass and thickness on blades under actual meteorological conditions can facilitate the more effective [...] Read more.
Long-term shutdowns caused by ice formation on wind turbine blades can lead to significant power generation losses, a persistent issue for wind farm operators. The rapid acquisition of ice mass and thickness on blades under actual meteorological conditions can facilitate the more effective adjustment of operation and maintenance strategies, enabling the selection of appropriate de-icing methods and optimal human resource allocation. This study proposes a novel approach utilizing icing simulation data across various meteorological parameters to train a Multilayer Perceptron (MLP) neural network, enabling rapid ice accretion prediction while maintaining acceptable accuracy. The results demonstrate that the MLP model achieves mean absolute percentage errors (MAPEs) of 7.13% and 7.02% for predicting rime ice mass and maximum thickness, respectively. For glaze ice prediction, the model yields MAPE values of 10.22% and 9.42% for ice mass and maximum thickness prediction, respectively. All MLP models exhibit R2 values exceeding 0.95, indicating excellent model fitting. The model is used to simulate and analyze the blade icing condition of a wind farm (located at 27° N and 117° E). The results showed that during a typical icing cycle, the maximum hourly ice accumulation mass on the studied blade was 5.01 kg, and the accumulated ice accumulation mass over 24 h was 95.43 kg. The maximum hourly ice accumulation thickness was 10.38 mm, and the accumulated ice accumulation thickness over 24 h was 228.43 mm. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

28 pages, 8090 KB  
Article
Prediction of Airfoil Icing and Evaluation of Hot Air Anti-Icing System Effectiveness Using Computational Fluid Dynamics Simulations
by Yifan Niu, Zhiqiang Wang, Jieyao Su, Jiawei Yao and Hainan Wang
Aerospace 2025, 12(6), 492; https://doi.org/10.3390/aerospace12060492 - 30 May 2025
Viewed by 676
Abstract
Icing poses a serious threat to flight safety, and ice accretion simulations are essential for addressing aircraft icing problems. In ice accretion prediction, systematic research covering all icing conditions based on actual flight phases is lacking, and the performance of anti-icing systems has [...] Read more.
Icing poses a serious threat to flight safety, and ice accretion simulations are essential for addressing aircraft icing problems. In ice accretion prediction, systematic research covering all icing conditions based on actual flight phases is lacking, and the performance of anti-icing systems has not been investigated. In this study, maximum ice thickness prediction models for airfoils considering all flight phases were developed, and the performance of hot air anti-icing systems was analyzed. A hot air anti-icing system model was established, and the anti-icing effectiveness of the system under severe icing conditions was evaluated via conjugate heat transfer (CHT) calculations. The calculation results showed that during climbing above 10,000 ft under glaze ice conditions, the maximum ice thickness reached 13.47 mm at −6 °C, with a median volumetric diameter (MVD) of 20 μm. Under rime ice conditions, the maximum thickness exhibited linear relationships with the icing parameters, remaining below 5 mm. The calculation results revealed nonlinear relationships between maximum ice thickness on the airfoil leading edge and the icing conditions. Ice thickness models were established via polynomial regression. The maximum ice thickness data were classified, and 15 regression models were obtained. The relative errors between the predicted and calculated values remained below 3%, demonstrating high predictive accuracy. These models were employed to estimate the effectiveness of piccolo tube hot air anti-icing systems under the most severe icing conditions. The results indicated that 100% anti-icing efficiency was achieved at high ambient temperatures (above −10 °C). During takeoff, holding, and climbing phases with a high speed of 154.3 m/s, the system may face challenges in maintaining anti-icing protection, resulting in runback ice with a maximum thickness exceeding 5 mm. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 19131 KB  
Article
Experimental Study on the Icing of Rotating Intake Cones in Wind Tunnels Under Supercooled Large-Droplet Conditions
by Zhiqiang Zhang, Huanyu Zhao, Dongyu Zhu, Hao Dai and Zhengzhi Wang
Aerospace 2025, 12(5), 384; https://doi.org/10.3390/aerospace12050384 - 29 Apr 2025
Viewed by 475
Abstract
Supercooled droplets that collide with the windward surface of the aircraft will freeze, which results in icing on both stationary and rotating components. The ice accretion on rotating surfaces is physically different from those on stationary components. The icing phenomenon on the surface [...] Read more.
Supercooled droplets that collide with the windward surface of the aircraft will freeze, which results in icing on both stationary and rotating components. The ice accretion on rotating surfaces is physically different from those on stationary components. The icing phenomenon on the surface of a rotating intake cone was investigated in an icing wind tunnel, and the influence of icing conditions of supercooled large droplets on the experimental results was analyzed. In the experiments, the ice accretion of the intake cone was studied under various conditions, including rotational speed, wind speed, icing temperature, droplet diameter, and icing time. The ice shape on the surface of the intake cone is notably unique due to the influence of centrifugal force, which produces a longer feather-like ice structure that has a significant effect on the performance of the engine. The process of ice shedding caused by centrifugal force is also critical for the engine anti-icing process. Therefore, it is essential to study the icing characteristics under rotational effects during the design and verification process of engine anti-icing systems. Full article
(This article belongs to the Special Issue Aerospace Anti-icing Systems)
Show Figures

Figure 1

18 pages, 11147 KB  
Article
Numerical Study of Wind Tunnel Wall Effects on Icing Cloud Distribution and Water Collection in Aero-Engine Nacelles
by Cong Li, Ningli Chen, Xian Yi and Qingren Lai
Aerospace 2025, 12(4), 335; https://doi.org/10.3390/aerospace12040335 - 13 Apr 2025
Viewed by 1955
Abstract
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach [...] Read more.
Icing wind tunnel tests play a critical role in evaluating ice accretion on aero-engine nacelles. However, the effects of the wind tunnel wall (WTW) on the dynamics of the icing cloud remain insufficiently quantified. This study employs an experimentally validated Eulerian–Eulerian multiphase approach to quantify WTW-induced alterations in Liquid Water Content (LWC) distribution inside the nacelle and droplet collection efficiency (β) on its surfaces. The results show that the WTW-induced flow deflection redirects droplets toward the outer nacelle surface, leading to an increase in the maximum droplet collection efficiency (βmax) and the total collected water mass on the nacelle under baseline conditions (Mach Number = 0.206) and causing a banded regime of the deviation in LWC. Parametric analysis further shows that higher inflow velocities and Median Volumetric Diameters (MVDs) enhanced the WTW’s effect on the change in LWC inside the nacelle and increased the maximum droplet collection efficiency on the nacelle’s surface. However, the increase in the intake flow rates exhibits a counteracting trend for the effect of the WTW for both the deviation in LWC and the maximum droplet collection efficiency and the total collected water mass. The findings highlight the necessity of accounting for WTW effects in icing wind tunnel testing protocols to improve flight condition extrapolation accuracy. Full article
Show Figures

Figure 1

16 pages, 4901 KB  
Article
Thermal Characterization of Ceramic Composites for Optimized Surface Dielectric Barrier Discharge Plasma Actuators
by Kateryna O. Shvydyuk, Frederico F. Rodrigues, João Nunes-Pereira, José C. Páscoa and Abílio P. Silva
Actuators 2025, 14(3), 127; https://doi.org/10.3390/act14030127 - 6 Mar 2025
Cited by 1 | Viewed by 952
Abstract
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® [...] Read more.
Ice accretion is a significant drawback in an aircraft’s and wind turbine’s aerodynamic performance in cold climate weather. Plasma actuators are an attractive technology for ice removal; however, dielectric barriers are typically restricted to borosilicate glass and various polymers, such as Teflon® and Kapton®. Nevertheless, new materials capable of withstanding prolonged exposure to charged particles are needed. In this work, Y2O3-ZrO2, MgO-CaZrO3, and MgO-Al2O3 ceramic samples were manufactured and their thermal properties as DBD plasma actuators were measured. As foreseen, the results showed that the higher the power consumed, the higher the temperature surface of the plasma actuators. The Y2O3-ZrO2 dielectric showed the highest power consumption and ceiling temperatures (20.7 W and 155 °C at 10 kVpp, respectively), followed by MgO-CaZrO3 (9.6 W and 62 °C at 10 kVpp, respectively) and by MgO-Al2O3 (5.6 W and 47 °C at 10 kVpp, respectively). It was concluded that MgO-Al2O3 presented stable magnitudes across the entire dielectric area, whilst Y2O3-ZrO2 showed a more concentrated temperature field. Therefore, considering that about 65 to 95% of the total power supplied to the DBD plasma actuator is dissipated as heat, it becomes natural to propose ceramic-based DBD plasma actuators as de-/anti-icing means for aero-dynamic structures. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

20 pages, 5588 KB  
Article
Analysis of the Characteristics of Ice Accretion on the Surface of Wind Turbine Blades Under Different Environmental Conditions
by Tingzhu Qian, Dayong Zhang, Chenyang Liu, Xiangyi Kong, Haiming Wen, Yijia Yuan and Yang Ji
Atmosphere 2025, 16(3), 246; https://doi.org/10.3390/atmos16030246 - 21 Feb 2025
Viewed by 946
Abstract
The problem of ice accretion on wind turbine blades seriously affects the safe operation and efficiency of wind farms. In this paper, FENSAP-ICE software is adopted to conduct research on this issue. The mechanism of ice accretion on wind turbine blades is analyzed, [...] Read more.
The problem of ice accretion on wind turbine blades seriously affects the safe operation and efficiency of wind farms. In this paper, FENSAP-ICE software is adopted to conduct research on this issue. The mechanism of ice accretion on wind turbine blades is analyzed, including the formation process of ice accretion, as well as three types of ice accretion, namely glaze ice, rime ice, and mixed ice, and their occurrence conditions. A prediction method for ice accretion on the blades is elaborated. A numerical calculation method is employed, and the accuracy of the numerical model is verified through the design of multiple groups of numerical simulation calculations for ice accretion on the NACA0012 airfoil. Using this model, the laws governing how environmental temperature, incoming flow rate, liquid water content, and droplet diameter influence ice accretion on wind turbine blades are studied. It is found that reducing the environmental temperature and increasing the incoming flow rate and the liquid–liquid water content will increase the ice accretion mass and area. Increasing the droplet diameter will increase the ice accretion mass, but the ice-covered area will decrease and will concentrate towards the leading edge. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop