Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = iTRAQ (Isobaric tags for relative and absolute quantitation)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2451 KiB  
Article
The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress
by Regina Azarkina, Arina Makeeva, Anna Mamaeva, Sergey Kovalchuk, Daria Ganaeva, Igor Tikhonovich and Igor Fesenko
Plants 2025, 14(14), 2168; https://doi.org/10.3390/plants14142168 - 14 Jul 2025
Viewed by 468
Abstract
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis [...] Read more.
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis of spring wheat (Triticum aestivum L.) under drought stress conditions. Using isobaric tags for relative and absolute quantitation (iTRAQ), we identified 497 and 157 differentially abundant protein (DAP) groups in leaves and roots, respectively. The upregulated DAP groups in leaves were primarily involved in stress responses, such as oxidative stress and heat response, whereas those in roots were associated with responses to water deprivation and sulfur compound metabolic processes. The analysis of the extracellular root peptidome revealed 2294 native peptides, including members of small secreted peptide (SSP) families. In the peptidomes of stress-induced plants, we identified 16 SSPs as well as peptides derived from proteins involved in cell wall catabolism, intercellular signaling, and stress response. These peptides represent potential candidates as regulators of drought responses. Our results help us to understand adaptation mechanisms and develop new agricultural technologies to increase productivity. Full article
Show Figures

Figure 1

19 pages, 9980 KiB  
Article
Targeting Hepatocellular Carcinoma Growth: Haprolid’s Inhibition of AKT Signaling Through DExH-Box Helicase 9 Downregulation
by Jun Xing, Xiaoxi Feng, Rutong Zhang and Kaiguang Zhang
Cancers 2025, 17(3), 443; https://doi.org/10.3390/cancers17030443 - 28 Jan 2025
Viewed by 1010
Abstract
Objective: Haprolid, a novel compound extracted from Myxobacterium, has been proven to possess selective toxicity towards various tumor cells, effectively inhibiting the growth of hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains unclear. Methods: To identify differentially expressed proteins (DEPs), isobaric tags [...] Read more.
Objective: Haprolid, a novel compound extracted from Myxobacterium, has been proven to possess selective toxicity towards various tumor cells, effectively inhibiting the growth of hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains unclear. Methods: To identify differentially expressed proteins (DEPs), isobaric tags for relative and absolute quantitation (iTRAQ) were employed. The clinical significance of DExH-Box Helicase 9 (DHX9) was determined using tissue microarrays in HCC patients. Changes in protein expression were detected using Western blotting, qPCR, and immunohistochemistry. Cell proliferation was evaluated using CCK-8 and crystal violet staining. Cell apoptosis was assessed using Alexa Fluor 647 Annexin V. Xenograft tumor experiments were conducted in animals. Results: iTRAQ screening identified DHX9 as a DEP. DHX9 was discovered to be highly expressed in HCC tissues, correlating with poor prognosis in patients. Haprolid downregulated DHX9 expression, while knockdown of DHX9 suppressed HCC cell proliferation and migration and promoted apoptosis. Meanwhile, overexpression of DHX9 mitigated the inhibitory effect of Haprolid on HCC cells. Knockdown of DHX9 inhibited the AKT signaling pathway, and SC79 reversed the inhibitory effect of DHX9 knockdown on HCC cells. Xenograft experiments confirmed that the knockdown of DHX9 inhibited HCC growth, while the overexpression of DHX9 attenuated the inhibitory effect of Haprolid on HCC growth. Conclusions: Haprolid inhibits the AKT signaling pathway by downregulating DHX9, ultimately suppressing HCC growth. This finding opens up new avenues for targeted HCC therapy. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

14 pages, 4946 KiB  
Article
Isobaric Tags for Relative and Absolute Quantitation-Based Proteomics Analysis Revealed Proteins Involved in Drought Response during the Germination Stage in Faba Bean
by Changyan Liu, Fangwen Yang, Li Li, Xuesong Han, Hongwei Chen, Aihua Sha and Chunhai Jiao
Metabolites 2024, 14(3), 175; https://doi.org/10.3390/metabo14030175 - 21 Mar 2024
Cited by 1 | Viewed by 1942
Abstract
The faba bean, a significant cool-season edible legume crop, is susceptible to drought during the germination stage. Research regarding the genetic regulation of drought tolerance throughout this stage in the faba bean is limited. The differentially expressed proteins (DEPs) in faba beans between [...] Read more.
The faba bean, a significant cool-season edible legume crop, is susceptible to drought during the germination stage. Research regarding the genetic regulation of drought tolerance throughout this stage in the faba bean is limited. The differentially expressed proteins (DEPs) in faba beans between the drought-tolerant variety C105 and the drought-sensitive variant E1 during seed germination were identified in this work, accomplished through isobaric tags for relative and absolute quantitation (iTRAQ) analysis. A total of 3827 proteins were identified in the two varieties of germinating seeds. Compared to those of variety E1, an increase in 108 DEPs and a decrease in 61 DEPs were observed in variety C105 under drought. Conversely, in the control group, variety C105 showed 108 significantly upregulated DEPs and 55 significantly downregulated DEPs. GO and KEGG analyses showed that the DEPs associated with glutathione metabolism and protein processing demonstrated significant increases in response to drought stress. Protein–protein interaction (PPI) analysis unveiled three closely connected functional modules of protein translation, DNA replication, and post-translational modification, originating from 22 DEPs derived from the germination period of two varieties under drought stress. To verify the proteomic function, we selected three differentially expressed protein coding genes, which were overexpressed or silenced in tobacco, thereby enhancing the drought resistance of tobacco. This was accompanied via altered levels of superoxide dismutase or peroxidase in transgenic plants under drought stress. The possible mechanism for drought tolerance in germinating seeds of faba bean involves increasing protein translation, decreasing DNA replication, and modifying chromatin. These findings offer invaluable insights into the reaction mechanism in response to drought stress in faba beans. The identified DEPs could be utilized in faba bean breeding initiatives to manage drought. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

18 pages, 2657 KiB  
Article
Impact of miR-29c-3p in the Nucleus Accumbens on Methamphetamine-Induced Behavioral Sensitization and Neuroplasticity-Related Proteins
by Hang Su, Li Zhu, Linlan Su, Min Li, Rui Wang, Jie Zhu, Yanjiong Chen and Teng Chen
Int. J. Mol. Sci. 2024, 25(2), 942; https://doi.org/10.3390/ijms25020942 - 11 Jan 2024
Cited by 1 | Viewed by 1872
Abstract
Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and [...] Read more.
Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization. Full article
Show Figures

Figure 1

16 pages, 1190 KiB  
Article
Effects of Adding Extracorporeal Shockwave Therapy (ESWT) to Platelet-Rich Plasma (PRP) among Patients with Rotator Cuff Partial Tear: A Prospective Randomized Comparative Study
by Shu-Jui Kuo, Yu-Hsiang Su, Shih-Chan Hsu, Po-Hua Huang, Chia-Chun Hsia, Chin-Yi Liao, Sung-Hsiung Chen, Re-Wen Wu, Chieh-Cheng Hsu, Yen-Chun Lai, De-Yi Liu, Nien-En Ku, Jui-Feng Chen and Jih-Yang Ko
J. Pers. Med. 2024, 14(1), 83; https://doi.org/10.3390/jpm14010083 - 10 Jan 2024
Cited by 3 | Viewed by 4876
Abstract
A rotator cuff tear is a prevalent ailment affecting the shoulder joint. The clinical efficacy of combined therapy remains uncertain for partial rotator cuff tears. In this study, we integrated extracorporeal shockwave therapy (ESWT) with platelet-rich plasma (PRP) injection, juxtaposed with PRP in [...] Read more.
A rotator cuff tear is a prevalent ailment affecting the shoulder joint. The clinical efficacy of combined therapy remains uncertain for partial rotator cuff tears. In this study, we integrated extracorporeal shockwave therapy (ESWT) with platelet-rich plasma (PRP) injection, juxtaposed with PRP in isolation. Both cohorts exhibited significant improvements in visual analogue scale (VAS), Constant–Murley score (CMS), degrees of forward flexion, abduction, internal rotation, and external rotation, and the sum of range of motion (SROM) over the six-month assessment period. The application of ESWT in conjunction with PRP exhibited notable additional enhancements in both forward flexion (p = 0.033) and abduction (p = 0.015) after one month. Furthermore, a substantial augmentation in the range of shoulder motion (SROM) (p < 0.001) was observed after six months. We employed isobaric tag for relative and absolute quantitation (iTRAQ) to analyze the differential plasma protein expression in serum samples procured from the two groups after one month. The concentrations of S100A8 (p = 0.042) and S100A9 (p = 0.034), known to modulate local inflammation, were both lower in the ESWT + PRP cohort. These findings not only underscore the advantages of combined therapy but also illuminate the associated molecular changes. Full article
(This article belongs to the Section Clinical Medicine, Cell, and Organism Physiology)
Show Figures

Figure 1

11 pages, 1228 KiB  
Article
Cathelicidin Antimicrobial Peptide Acts as a Tumor Suppressor in Hepatocellular Carcinoma
by Lien-Hung Huang, Cheng-Shyuan Rau, Yueh-Wei Liu, Hui-Ping Lin, Yi-Chan Wu, Chia-Wen Tsai, Peng-Chen Chien, Chia-Jung Wu, Chun-Ying Huang, Ting-Min Hsieh and Ching-Hua Hsieh
Int. J. Mol. Sci. 2023, 24(21), 15652; https://doi.org/10.3390/ijms242115652 - 27 Oct 2023
Cited by 4 | Viewed by 1953
Abstract
Hepatocellular carcinoma (HCC) is associated with high rates of metastasis and recurrence, and is one of the most common causes of cancer-associated death worldwide. This study examined the protein changes within circulating exosomes in patients with HCC against those in healthy people using [...] Read more.
Hepatocellular carcinoma (HCC) is associated with high rates of metastasis and recurrence, and is one of the most common causes of cancer-associated death worldwide. This study examined the protein changes within circulating exosomes in patients with HCC against those in healthy people using isobaric tags for a relative or absolute quantitation (iTRAQ)-based quantitative proteomics analysis. The protein levels of von Willebrand factor (VWF), cathelicidin antimicrobial peptide (CAMP), and proteasome subunit beta type-2 (PSMB2) were altered in HCC. The increased levels of VWF and PSMB2 but decreased CAMP levels in the serum of patients with HCC were validated by enzyme-linked immunosorbent assays. The level of CAMP (the only cathelicidin found in humans) also decreased in the circulating exosomes and buffy coat of the HCC patients. The serum with reduced levels of CAMP protein in the HCC patients increased the cell proliferation of Huh-7 cells; this effect was reduced following the addition of CAMP protein. The depletion of CAMP proteins in the serum of healthy people enhances the cell proliferation of Huh-7 cells. In addition, supplementation with synthetic CAMP reduces cell proliferation in a dose-dependent manner and significantly delays G1-S transition in Huh-7 cells. This implies that CAMP may act as a tumor suppressor in HCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 3826 KiB  
Review
Biomarkers for Hepatocellular Carcinoma: From Origin to Clinical Diagnosis
by Mona A. Omar, Mohamed M. Omran, Khaled Farid, Ashraf A. Tabll, Yasser E. Shahein, Tarek M. Emran, Ana Petrovic, Nikola R. Lucic, Robert Smolic, Tanja Kovac and Martina Smolic
Biomedicines 2023, 11(7), 1852; https://doi.org/10.3390/biomedicines11071852 - 28 Jun 2023
Cited by 32 | Viewed by 8228
Abstract
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease [...] Read more.
The incidence of hepatocellular carcinoma (HCC) and HCC-related deaths has increased over the last few decades. There are several risk factors of HCC such as viral hepatitis (B, C), cirrhosis, tobacco and alcohol use, aflatoxin-contaminated food, pesticides, diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and metabolic and genetic diseases. Diagnosis of HCC is based on different methods such as imaging ultrasonography (US), multiphasic enhanced computed tomography (CT), magnetic resonance imaging (MRI), and several diagnostic biomarkers. In this review, we examine the epidemiology of HCC worldwide and in Egypt as well as risk factors associated with the development of HCC and, finally, provide the updated diagnostic biomarkers for the diagnosis of HCC, particularly in the early stages of HCC. Several biomarkers are considered to diagnose HCC, including downregulated or upregulated protein markers secreted during HCC development, circulating nucleic acids or cells, metabolites, and the promising, recently identified biomarkers based on quantitative proteomics through the isobaric tags for relative and absolute quantitation (iTRAQ). In addition, a diagnostic model used to improve the sensitivity of combined biomarkers for the diagnosis of early HCC is discussed. Full article
(This article belongs to the Special Issue Feature Reviews in Cancer Biomarkers)
Show Figures

Figure 1

11 pages, 1683 KiB  
Article
Salivary Biomarkers to Differentiate between Streptococcus pneumoniae and Influenza A Virus-Related Pneumonia in Children
by Kuo-Shu Tang, Chih-Min Tsai, Ming-Chou Cheng, Ying-Hsien Huang, Chih-Hao Chang and Hong-Ren Yu
Diagnostics 2023, 13(8), 1468; https://doi.org/10.3390/diagnostics13081468 - 18 Apr 2023
Cited by 5 | Viewed by 2593
Abstract
Community-acquired pneumonia (CAP) is common among children and can be fatal in certain conditions. In children, CAP can be caused by viral or bacterial infections. Identification of pathogens can help select appropriate therapeutic strategies. Salivary analysis may be a potential diagnostic tool because [...] Read more.
Community-acquired pneumonia (CAP) is common among children and can be fatal in certain conditions. In children, CAP can be caused by viral or bacterial infections. Identification of pathogens can help select appropriate therapeutic strategies. Salivary analysis may be a potential diagnostic tool because it is noninvasive, patient-friendly, and easy to perform in children. A prospective study was conducted in children with pneumonia admitted to a hospital. Salivary samples from patients with definite Streptococcus pneumoniae and influenza A strains were used for gel-free (isobaric tag for relative and absolute quantitation (iTRAQ)) proteomics. No statistically significant difference was detected in salivary CRP levels between Streptococcus pneumoniae and influenza A pneumonia in children. Several potential salivary biomarkers were identified using gel-free iTRAQ proteomics to differentiate pneumonia from Streptococcus pneumoniae or influenza A virus infections in pediatric patients. ELISA validated that Streptococcus pneumoniae group has a higher abundance of salivary alpha 1-antichymotrypsin than those in the influenza A group. Whether these salivary biomarkers can be used to distinguish other bacteria from viral pneumonia requires further verification. Full article
(This article belongs to the Special Issue Pediatric Diagnostic Microbiology)
Show Figures

Graphical abstract

20 pages, 1297 KiB  
Article
Proteome Analysis of Nicotiana tabacum Cells following Isonitrosoacetophenone Treatment Reveals Defence-Related Responses Associated with Priming
by Nikita da Camara, Ian A. Dubery and Lizelle A. Piater
Plants 2023, 12(5), 1137; https://doi.org/10.3390/plants12051137 - 2 Mar 2023
Cited by 1 | Viewed by 1918
Abstract
Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and [...] Read more.
Proteins play an essential regulatory role in the innate immune response of host plants following elicitation by either biotic or abiotic stresses. Isonitrosoacetophenone (INAP), an unusual oxime-containing stress metabolite, has been investigated as a chemical inducer of plant defence responses. Both transcriptomic and metabolomic studies of various INAP-treated plant systems have provided substantial insight into this compound’s defence-inducing and priming capabilities. To complement previous ‘omics’ work in this regard, a proteomic approach of time-dependent responses to INAP was followed. As such, Nicotiana tabacum (N. tabacum) cell suspensions were induced with INAP and changes monitored over a 24-h period. Protein isolation and proteome analysis at 0, 8, 16 and 24 h post-treatment were performed using two-dimensional electrophoresis followed by the gel-free eight-plex isobaric tags for relative and absolute quantitation (iTRAQ) based on liquid chromatography and mass spectrometry. Of the identified differentially abundant proteins, 125 were determined to be significant and further investigated. INAP treatment elicited changes to the proteome that affected proteins from a wide range of functional categories: defence, biosynthesis, transport, DNA and transcription, metabolism and energy, translation and signalling and response regulation. The possible roles of the differentially synthesised proteins in these functional classes are discussed. Results indicate up-regulated defence-related activity within the investigated time period, further highlighting a role for proteomic changes in priming as induced by INAP treatment. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 5615 KiB  
Article
Potential Early Markers for Breast Cancer: A Proteomic Approach Comparing Saliva and Serum Samples in a Pilot Study
by Indu Sinha, Rachel L. Fogle, Gizem Gulfidan, Anne E. Stanley, Vonn Walter, Christopher S. Hollenbeak, Kazim Y. Arga and Raghu Sinha
Int. J. Mol. Sci. 2023, 24(4), 4164; https://doi.org/10.3390/ijms24044164 - 19 Feb 2023
Cited by 12 | Viewed by 3372
Abstract
Breast cancer is the second leading cause of death for women in the United States, and early detection could offer patients the opportunity to receive early intervention. The current methods of diagnosis rely on mammograms and have relatively high rates of false positivity, [...] Read more.
Breast cancer is the second leading cause of death for women in the United States, and early detection could offer patients the opportunity to receive early intervention. The current methods of diagnosis rely on mammograms and have relatively high rates of false positivity, causing anxiety in patients. We sought to identify protein markers in saliva and serum for early detection of breast cancer. A rigorous analysis was performed for individual saliva and serum samples from women without breast disease, and women diagnosed with benign or malignant breast disease, using isobaric tags for relative and absolute quantitation (iTRAQ) technique, and employing a random effects model. A total of 591 and 371 proteins were identified in saliva and serum samples from the same individuals, respectively. The differentially expressed proteins were mainly involved in exocytosis, secretion, immune response, neutrophil-mediated immunity and cytokine-mediated signaling pathway. Using a network biology approach, significantly expressed proteins in both biological fluids were evaluated for protein–protein interaction networks and further analyzed for these being potential biomarkers in breast cancer diagnosis and prognosis. Our systems approach illustrates a feasible platform for investigating the responsive proteomic profile in benign and malignant breast disease using saliva and serum from the same women. Full article
(This article belongs to the Special Issue Molecular Biomarkers in Cancer and Their Applications)
Show Figures

Figure 1

16 pages, 3008 KiB  
Article
Comparative Proteomic Analyses of Susceptible and Resistant Maize Inbred Lines at the Stage of Enations Forming following Infection by Rice Black-Streaked Dwarf Virus
by Rong Wang, Kaitong Du, Tong Jiang, Dianping Di, Zaifeng Fan and Tao Zhou
Viruses 2022, 14(12), 2604; https://doi.org/10.3390/v14122604 - 23 Nov 2022
Cited by 3 | Viewed by 1844
Abstract
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation [...] Read more.
Rice black-streaked dwarf virus (RBSDV) is the main pathogen causing maize rough dwarf disease (MRDD) in China. Typical enation symptoms along the abaxial leaf veins prevail in RBSDV-infected maize inbred line B73 (susceptible to RBSDV), but not in X178 (resistant to RBSDV). Observation of the microstructures of epidermal cells and cross section of enations from RBSDV-infected maize leaves found that the increase of epidermal cell and phloem cell numbers is associated with enation formation. To identify proteins associated with enation formation and candidate proteins against RBSDV infection, comparative proteomics between B73 and X178 plants were conducted using isobaric tags for relative and absolute quantitation (iTRAQ) with leaf samples at the enation forming stage. The proteomics data showed that 260 and 316 differentially expressed proteins (DEPs) were identified in B73 and X178, respectively. We found that the majority of DEPs are located in the chloroplast and cytoplasm. Moreover, RBSDV infection resulted in dramatic changes of DEPs enriched by the metabolic process, response to stress and the biosynthetic process. Strikingly, a cell number regulator 10 was significantly down-regulated in RBSDV-infected B73 plants. Altogether, these data will provide value information for future studies to analyze molecular events during both enation formation and resistance mechanism to RBSDV infection. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Viruses Research in Asia)
Show Figures

Figure 1

15 pages, 3842 KiB  
Article
Proteomic Analysis Associated with the Immune Response in Hemocytes of Portunus trituberculatus Challenged with Vibrio parahaemolyticus
by Baoquan Gao, Xianyun Ren, Jianjian Lv, Xianliang Meng, Ping Liu and Jian Li
Fishes 2022, 7(5), 259; https://doi.org/10.3390/fishes7050259 - 26 Sep 2022
Viewed by 1997
Abstract
Vibrio parahaemolyticus belongs to an expanding group of aquatic pathogens that are widely distributed in aquatic environments. This species is a lethal pathogen for a number of economically important marine crabs. However, studies exploring host–vibrio interactions between V. parahaemolyticus and crabs are scarce, [...] Read more.
Vibrio parahaemolyticus belongs to an expanding group of aquatic pathogens that are widely distributed in aquatic environments. This species is a lethal pathogen for a number of economically important marine crabs. However, studies exploring host–vibrio interactions between V. parahaemolyticus and crabs are scarce, and therefore, the underlying molecular mechanisms are unclear. Herein, we performed a comprehensive proteomic analysis to investigate the immune response of Portunus trituberculatus hemocytes to V. parahaemolyticus infection. A total of 4433 proteins were identified using isobaric tags for relative and absolute quantitation (iTRAQ), and 526 differentially expressed proteins (DEPs) were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, with six DEPs further subjected to quantitative real-time PCR. Several identified DEPs were found to be mainly involved in the immune defense of the crustacean, such as a hemocyanin subunit, C-type lectin, α-2-macroglobulin, Cu/Zn-superoxide dismutase, and heat shock protein 70, playing a key role in the response to V. parahaemolyticus infection. Moreover, many immune-related KEGG pathways were markedly altered, such as cell adhesion molecules, complement and coagulation cascades, and phagosomes. Our results provide insights into how V. parahaemolyticus overcomes the innate immunity of P. trituberculatus to induce pathological alterations in affected tissues. We report the first iTRAQ-based proteomic analysis and highlight the key pathways and proteins involved in the host–vibrio interactions between P. trituberculatus and V. parahaemolyticus. These findings should enhance our understanding of the molecular mechanisms underlying such interactions. Full article
(This article belongs to the Special Issue Recent Advances in Crab Aquaculture)
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Transcriptomic and iTRAQ-Based Quantitative Proteomic Analyses of inap CMS in Brassica napus L.
by Aifan Wang, Lei Kang, Guangsheng Yang and Zaiyun Li
Plants 2022, 11(19), 2460; https://doi.org/10.3390/plants11192460 - 21 Sep 2022
Cited by 5 | Viewed by 2121
Abstract
Brassica napus inap cytoplasmic male sterility (CMS) is a novel sterile line with potential application in rapeseed hybrid breeding. Sterile cytoplasm was obtained from Isatis indigotica through somatic fusion and then recurrent backcrossing with B. napus. Previous studies have shown that inap [...] Read more.
Brassica napus inap cytoplasmic male sterility (CMS) is a novel sterile line with potential application in rapeseed hybrid breeding. Sterile cytoplasm was obtained from Isatis indigotica through somatic fusion and then recurrent backcrossing with B. napus. Previous studies have shown that inap CMS abortion occurred before the stamen primordia (stage 4–5), but the genetic mechanism of sterility needs to be studied. RNA-seq analyses were performed on the floral buds at two stages (0–5 and 6–8), before and after the formation of stamen primordium. As a result, a total of 1769 and 594 differentially expressed genes (DEGs) were detected in the CMS line compared to its maintainer line at the two stages, respectively. In accordance with the CMS phenotype, the up- and downstream regulators of the stamen identity genes AP3 and PI were up- and downregulated in the CMS line, respectively. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ) analysis showed that a total of 760 differentially abundant proteins (DAPs) were identified in flower buds at stages 0–8, and most of the proteins related to the anther development, oxidative phosphorylation, and programmed cell death (PCD) were downregulated in inap CMS. In combined transcriptomic and proteomic analysis, a total of 32 DEGs/DAPs were identified, of which 7 common DEGs/DAPs had the same expression trend at stage 0–8 of flower development. The downregulation of genes related to the energy deficiency, hormone signal transduction, and the maintenance of mitochondrial metabolic homeostasis at stage 0–5 might disturb the normal differentiation of stamen primordium, resulting in carpelloid stamen of inap CMS. The study will help provide insights into the molecular mechanism of this new male sterility. Full article
Show Figures

Figure 1

18 pages, 3222 KiB  
Article
Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis
by Yaw-Kwan Chiu, Ti Yin, Yi-Tzu Lee, Shyi-Jou Chen, Yung-Chih Wang and Kuo-Hsing Ma
J. Pers. Med. 2022, 12(8), 1301; https://doi.org/10.3390/jpm12081301 - 9 Aug 2022
Cited by 3 | Viewed by 3614
Abstract
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used [...] Read more.
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used to investigate OMV constituent proteins and their functions in burn trauma. OMV sizes ranged from 50 to 200 nm. Proteomics and Gene Ontology analysis revealed that ΔrfaC and ΔrfaG were likely involved in the upregulation of the structural constituent of ribosomes for the outer membrane and of proteins involved in protein binding and OMV synthesis. ΔrfaL was likely implicated in the downregulation of the structural constituent of the ribosome, translation, and cytosolic large ribosomal subunit. Kyoto Encyclopedia of Genes and Genomes analysis indicated that ΔrfaC and ΔrfaG downregulated ACP, ACEF, and ADHE genes; ΔrfaL upregulated ACP, ACEF, and ADHE genes. Heat map analysis demonstrated upregulation of galF, clpX, accA, fabB, and grpE and downregulation of pspA, ydiY, rpsT, and rpmB. These results suggest that RfaC, RfaG, and RfaL proteins were involved in outer membrane and LPS synthesis. Therefore, direct contact between wounds and LPS may lead to apoptosis, reduction in local cell proliferation, and delayed wound healing. Full article
(This article belongs to the Special Issue Personalized Medicine in Trauma Resuscitation and Treatment)
Show Figures

Figure 1

19 pages, 13468 KiB  
Article
Proteomic Analysis Reveals Salicylic Acid as a Pivotal Signal Molecule in Rice Response to Blast Disease Infection
by Haiying Zhou, Delight Hwarari, Yunhui Zhang, Xiaosong Mo, Yuming Luo and Hongyu Ma
Plants 2022, 11(13), 1702; https://doi.org/10.3390/plants11131702 - 27 Jun 2022
Cited by 1 | Viewed by 2429
Abstract
Rice blast disease caused by a fungus, Magnaporthe grisea, is one of the most destructive diseases in rice production worldwide, and salicylic acid (SA) can efficiently decrease the damage of M. grisea. Here, we combined the 2-Dimensional-Liquid Chromatography and the Matrix-assisted [...] Read more.
Rice blast disease caused by a fungus, Magnaporthe grisea, is one of the most destructive diseases in rice production worldwide, and salicylic acid (SA) can efficiently decrease the damage of M. grisea. Here, we combined the 2-Dimensional-Liquid Chromatography and the Matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (2D-LC-MALDI-TOF-TOF MS) techniques to compare and identify differentially expressed labelled proteins by the isobaric tags for relative and absolute quantitation (iTRAQ) between the blast-resistant cultivar Minghui and the susceptible rice cultivar Nipponbare in response to blast fungus infection. The group samples were treated with salicylic acid and compared to control samples. A total of 139 DEPs from the two cultivars showed either more than a two-fold change or alternating regulation patterns. Protein functionality analysis also exhibited that these proteins are involved in a wide range of molecular functions including: energy-related activity (30%), signal transduction (11%), redox homeostasis (15%), amino acid and nitrogen metabolism (4%), carbohydrate metabolism (5%), protein folding and assembly (10%), protein hydrolysis (9%), protein synthesis (12%), and other unknown functions (4%). Specifically, we demonstrated that exogenous treatment with salicylic acid promoted recovery in both rice cultivars from Magnaporthe grisea infection by enhancing: the regulation of signal transduction, increasing energy conversion and production through the regulation of the glycolytic pathway, and other various biochemical processes. These findings may facilitate future studies of the molecular mechanisms of rice blast resistance. Full article
Show Figures

Figure 1

Back to TopTop