Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,545)

Search Parameters:
Keywords = hysteresis effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3615 KiB  
Article
Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials
by Qiang Guo, Longyan Tan, Meng Li, Zhangjie Yin, Zhihui Sun and Yuyang Xia
Appl. Sci. 2025, 15(16), 8995; https://doi.org/10.3390/app15168995 - 14 Aug 2025
Abstract
When coal gasification slag is used as a substitute for cement, the prepared cementitious materials may exhibit inadequate properties due to the slag’s limited hydration reactivity, which limits its effectiveness in applications of backfill materials. In this study, alkali activation was used to [...] Read more.
When coal gasification slag is used as a substitute for cement, the prepared cementitious materials may exhibit inadequate properties due to the slag’s limited hydration reactivity, which limits its effectiveness in applications of backfill materials. In this study, alkali activation was used to improve the hydration activity of coal gasification slag. The effect of alkali equivalent on the setting time, rheological properties, and uniaxial compressive strength of the alkali-activated coal gasification slag-based backfill material (ACBM) sample was systematically investigated, and the optimal alkali equivalent was identified. The mineral composition, pore structure, and micromorphology of ACBM samples were characterized using the X-ray diffractometer (XRD), nitrogen adsorption–desorption analyzer (BET), and scanning electron microscope–energy dispersion spectrum (SEM-EDS). The results show that when the alkali equivalent is 4%, the comprehensive performance of ACBM samples is optimal. At this time, the initial setting time and final setting time of ACBM samples are 125 min and 172 min, and the rheological properties are in accordance with the Herschel–Bulkley model. The yield stress, plastic viscosity, and hysteresis loop area are 9.22 Pa, 0.74 Pa·s, and 1014 Pa/s, respectively, and the compressive strength of the ACBM sample at the curing age of 28 days is 2.18 MPa. When the alkali equivalent is further increased to 6%, the initial hydration reaction becomes more intense due to the excessive alkali level, leading to a rapid decline in flowability; the sample cracked at 28 days and its strength decreased considerably. This study provides theoretical guidance for the application of coal gasification slag in the field of backfill mining. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 6242 KiB  
Article
Study on Fatigue Crack Propagation Behavior of Fiber/Al-Li Laminates Under Typical Overload
by Weiying Meng, Jiayi Tan, Sihui Li, Xiao Huang and Jiaying Wang
Materials 2025, 18(16), 3812; https://doi.org/10.3390/ma18163812 - 14 Aug 2025
Viewed by 141
Abstract
Fiber metal laminates are applied in aerospace equipment due to their excellent crack propagation performance. However, during the service process of fiber metal laminates, the coupling between overload effect and fiber bridging effect makes the crack propagation behavior complex, which makes it difficult [...] Read more.
Fiber metal laminates are applied in aerospace equipment due to their excellent crack propagation performance. However, during the service process of fiber metal laminates, the coupling between overload effect and fiber bridging effect makes the crack propagation behavior complex, which makes it difficult to predict. Addressing this issue, the fatigue crack propagation behavior of Fiber/Al-Li laminates under typical overload conditions was analyzed and predicted in this paper. Firstly, based on flight loading characteristics, fatigue crack propagation tests under constant amplitude and single-peak tensile/compressive overload were designed and conducted for Fiber/Al-Li laminates. The crack propagation behavior characteristics under typical overload conditions were analyzed and investigated. Secondly, the influence mechanism of thickness dimensions was revealed based on fatigue crack propagation characteristics under constant amplitude loading. A thickness size effect factor was introduced to improve the equivalent crack length model, where the crack propagation behavior of non-overload stages was simulated. Thirdly, improved Wheeler theory was adopted to characterize the overload hysteresis effect in the hysteresis zone under tensile overload; improved incremental plasticity theory was used to describe crack propagation behavior in the overload zone under compression overload. Finally, based on crack behavior characteristics under single-peak tensile and compressive overloads, the improved equivalent crack length model was combined to establish, respectively, the prediction models on crack propagation behavior under single-peak tensile and compressive overloads for Fiber/Al-Li laminates. Through experimental verification, the overall prediction error rate of the crack propagation model under tensile overload is up to 9.7%, and the overall prediction error rate of the crack growth model under compressive overload is up to 8.1%. Compared with similar models (not found) for thicker fiber metal laminates, the effectiveness and advancement of the proposed model are verified. Full article
Show Figures

Figure 1

27 pages, 17879 KiB  
Article
Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow
by Shuo Gao and Enhao Wang
J. Mar. Sci. Eng. 2025, 13(8), 1552; https://doi.org/10.3390/jmse13081552 - 13 Aug 2025
Viewed by 148
Abstract
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless [...] Read more.
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless parameter StKC, which effectively replicates the fundamental lift frequency caused by the complex vortex motion around the riser. The structural responses of the riser are described using the Euler–Bernoulli beam theory, and the van der Pol equations are used to calculate the fluid forces acting on the riser, which can replicate the nonlinear vortex dynamics. The coupled equations are discretized in both time and space with a finite difference method (FDM), enabling iterative computations of the VIV responses of the riser. A total of six cases are examined with four different Keulegan–Carpenter (KC) numbers (i.e., KC=31, 56, 121, and 178) to investigate the VIV characteristics of small-scale and large-scale risers in uniform oscillatory flow. Key features such as intermittent VIV, amplitude modulation, and hysteresis, as well as the VIV development process, are analyzed in detail. The simulation results show good agreement with the experimental data, indicating that the proposed numerical model is able to reliably reproduce the riser VIV in uniform oscillatory flow. Overall, the VIV characteristics of the large-scale riser resemble those of the small-scale riser but exhibit higher vibration modes, stronger traveling wave features, and more complex energy transfer mechanisms. Full article
Show Figures

Figure 1

12 pages, 2829 KiB  
Article
Extreme Dual-Parameter Optical Fiber Sensor Composed of MgO Fabry–Perot Composite Cavities for Simultaneous Measurement of Temperature and Pressure
by Jia Liu, Lei Zhang, Ziyue Wang, Ruike Cao, Yunteng Dai and Pinggang Jia
Appl. Sci. 2025, 15(16), 8891; https://doi.org/10.3390/app15168891 - 12 Aug 2025
Viewed by 105
Abstract
A single-crystal magnesium oxide (MgO) dual-Fabry–Perot (FP)-cavity sensor based on MEMS technology and laser micromachining is proposed for simultaneous measurement of temperature and pressure. The pressure sensitive cavity is processed by wet chemical etching and direct bonding, which can improve machining efficiency, ensure [...] Read more.
A single-crystal magnesium oxide (MgO) dual-Fabry–Perot (FP)-cavity sensor based on MEMS technology and laser micromachining is proposed for simultaneous measurement of temperature and pressure. The pressure sensitive cavity is processed by wet chemical etching and direct bonding, which can improve machining efficiency, ensure the quality of the reflection surface and achieve thermal stress matching. Femtosecond laser and micromachining technologies are used to fabricate a rough surface and a through hole to reduce the reflect surface and fix the optical fiber. The bottom surface of the pressure cavity and the upper surface of the MgO wafer form a temperature cavity. A cross-correlation signal demodulation algorithm combined with a temperature decoupling method is proposed to achieve dual-cavity demodulation and eliminate the cross-sensitivity between temperature and pressure, improving the accuracy of pressure measurement. Experimental results show that the proposed sensor can stably operate at an ambient environment of 22–800 °C and 0–0.5 MPa with a pressure sensitivity of approximately 0.20 µm/MPa (room temperature), a repeatability error of 2.06% and a hysteresis error of 1.90%. After temperature compensation, thermal crosstalk is effectively eliminated and the pressure measurement accuracy is 2.01%F.S. Full article
Show Figures

Figure 1

24 pages, 4152 KiB  
Article
Numerical Study on Shape Recovery Behaviors of Shape Memory Polymer Composite Hinges Considering Hysteresis Effect
by O-Hyun Kwon and Jin-Ho Roh
Aerospace 2025, 12(8), 717; https://doi.org/10.3390/aerospace12080717 - 12 Aug 2025
Viewed by 213
Abstract
Shape memory polymer composite (SMPC) hinges have been researched as deployable structures in space missions due to their stable and controllable shape recovery behaviors. The elastic energy of the fabrics plays a dominant role in predicting the recovered shape of the hinges, as [...] Read more.
Shape memory polymer composite (SMPC) hinges have been researched as deployable structures in space missions due to their stable and controllable shape recovery behaviors. The elastic energy of the fabrics plays a dominant role in predicting the recovered shape of the hinges, as it strongly drives shape restoration. In this research, the shape recovery behaviors of SMPC hinges are numerically investigated by applying an equation that accounts for the hysteresis characteristics of the fabric reinforcement. The constitutive equation integrates the Mooney–Rivlin model, a viscoelastic, stored energy model, to characterize the hyperelastic properties varying with time, temperature, and shape recovery behaviors of the SMP matrix. Additionally, polynomial functions are introduced to represent the hysteresis effects and energy dissipation behavior of the fabrics. Since the elasticity of fabrics significantly affects the shape recovery of SMPCs, the developed constitutive equation enables accurate prediction of the recovered configuration. Finite element method analysis is performed based on this model and validated through comparison with experimental results. Finally, the constitutive equation is applied to investigate the shape memory response of SMPC hinges. The simulations present the significant design factors to increase the shape recovery ratio of the SMPC hinges. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

9 pages, 2331 KiB  
Article
Influence of Sample Position on Strain Monitoring in Composite Materials Using Magnetic Microwires
by Rafael Garcia-Etxabe, Maitane Mendinueta, Marta Camacho-Iglesias, Valentina Zhukova and Arcady Zhukov
Sensors 2025, 25(16), 4892; https://doi.org/10.3390/s25164892 - 8 Aug 2025
Viewed by 180
Abstract
Soft magnetic materials are highly suitable for use as sensors in the monitoring of materials, applications, and processes, with proven effectiveness across various industries. Their ability to be configured as microwires allows excellent integration within composite structures, making them particularly effective for structural [...] Read more.
Soft magnetic materials are highly suitable for use as sensors in the monitoring of materials, applications, and processes, with proven effectiveness across various industries. Their ability to be configured as microwires allows excellent integration within composite structures, making them particularly effective for structural health monitoring. Research in this area has enabled the analysis of both hysteresis loops and scattering parameters in transmission and reflection within the microwave frequency range, under conditions such as composite matrix polymerization or when subjecting specimens to different stress states. Consequently, a clear dependence of scattering parameters and impedance on applied stress in composites with magnetic microwire inclusions, which can be monitored, has been demonstrated. However, despite the repeatability of the phenomenon, modeling this behavior is challenging due to the dispersion of results caused by multiple factors and varying conditions that influence outcomes in a conventional environment. This study analyzes the influence of the relative sample position on these measurements and presents results obtained by modifying the position and orientation of microwires through rotation and flipping movements of the test specimen. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Magnetic Sensors)
Show Figures

Figure 1

14 pages, 797 KiB  
Article
Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation
by Salavat Mudarisov, Ildar Gabitov, Yakov Lobachevsky, Ildar Farkhutdinov and Lyudmila Kravchenko
AgriEngineering 2025, 7(8), 256; https://doi.org/10.3390/agriengineering7080256 - 8 Aug 2025
Viewed by 266
Abstract
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle [...] Read more.
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle contact rules, determined by normal and tangential interactions as well as cohesion forces. This study presents a comprehensive analysis of discrete element method (DEM) contact models used to simulate soil cultivation processes. This study addresses a key issue—the absence of a systematic approach to selecting adequate contact models, which limits the accuracy of predicting soil behavior during interaction with agricultural machinery. A detailed classification of 17 combinations of contact models implemented in the commercial software Rocky DEM was performed, grouped into three categories: normal force models (Linear Spring [LSP], Hysteresis [HLS], Hertzian [HSD]), tangential force models (Coulomb, linear spring limit [linear], Mindlin–Deresiewicz), and cohesive force models (linear cohesion [linear], constant force [constant], Johnson–Kendall–Roberts [JKR]). Experimental validation was conducted by analyzing the angle of repose for various soil types (sandy loam, light loam, medium loam, and heavy clay) with moisture contents ranging from 11 to 31%. This analysis identified the nine most effective combinations of contact models to describe normal, tangential, and cohesive forces (LSP–Coulomb–linear, HLS–linear–linear, HLS–Coulomb–linear, HSD–linear–linear, HSD–linear–JKR, HSD–Coulomb–linear, HSD–Coulomb–JKR, HSD–Mindlin–Deresiewicz–linear, HSD–Mindlin–Deresiewicz–JKR), which showed reliable agreement with experimental angle of repose measurements at approximately 85% accuracy. This study significantly contributes to advancing computer modeling methods in agriculture by providing a scientifically grounded approach for selecting DEM contact models. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

19 pages, 6784 KiB  
Article
Surface Temperature Assisted State of Charge Estimation for Retired Power Batteries
by Liangyu Xu, Wenxuan Han, Jiawei Dong, Ke Chen, Yuchen Li and Guangchao Geng
Sensors 2025, 25(15), 4863; https://doi.org/10.3390/s25154863 - 7 Aug 2025
Viewed by 285
Abstract
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered [...] Read more.
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered internal resistance, capacity fade, and uneven heat generation, which distort the relationship between electrical signals and actual SOC. To address these limitations, this study proposes a surface temperature-assisted SOC estimation method, leveraging the distinct thermal characteristics of retired batteries. By employing infrared thermal imaging, key temperature feature regions—the positive/negative tabs and central area—are identified, which exhibit strong correlations with SOC dynamics under varying operational conditions. A Gated Recurrent Unit (GRU) neural network is developed to integrate multi-region temperature data with electrical parameters, capturing spatial–temporal thermal–electrical interactions unique to retired batteries. The model is trained and validated using experimental data collected under constant current discharge conditions, demonstrating superior accuracy compared to conventional methods. Specifically, our method achieves 64.3–68.1% lower RMSE than traditional electrical-parameter-only approaches (V-I inputs) across 0.5 C–2 C discharge rates. Results show that the proposed method reduces SOC estimation errors compared to traditional voltage-based models, achieving RMSE values below 1.04 across all tested rates. This improvement stems from the model’s ability to decode localized heating patterns and their hysteresis effects, which are particularly pronounced in aged batteries. The method’s robustness under high-rate operations highlights its potential for enhancing the reliability of retired battery management systems in secondary applications such as energy storage. Full article
Show Figures

Figure 1

11 pages, 2717 KiB  
Article
Finite Element Dynamic Modeling of Smart Structures and Adaptive Backstepping Control
by Zhipeng Xie, Dachang Zhu, Zhenzhang Liu, Yun Long and Fangyi Li
Mathematics 2025, 13(15), 2531; https://doi.org/10.3390/math13152531 - 6 Aug 2025
Viewed by 201
Abstract
Smart structures with topological configurations that integrate perception and actuation have complex geometric features. The simplification of these features can lead to deviations in dynamic characteristics, making it difficult to establish an accurate dynamic model. Uncertainties, such as material nonlinearity, hysteresis in elastic [...] Read more.
Smart structures with topological configurations that integrate perception and actuation have complex geometric features. The simplification of these features can lead to deviations in dynamic characteristics, making it difficult to establish an accurate dynamic model. Uncertainties, such as material nonlinearity, hysteresis in elastic deformation, and external disturbances, affect the trajectory tracking accuracy of the smart structure’s actuation function. This paper proposes a modeling method that combines finite element unit bodies and orthogonal characteristic mode reduction to construct an accurate dynamic model of the smart structure and design an adaptive backstepping controller. Nonlinear dynamic equations are derived through a finite element analysis of the structure, and the orthogonal characteristic mode reduction method is employed to reduce computational complexity while ensuring model accuracy. An adaptive backstepping controller is designed to mitigate model uncertainties and achieve precise trajectory tracking control. Simulation and experimental results demonstrate that the proposed method can effectively handle the nonlinearity and modeling errors of smart structures, achieving high-precision trajectory tracking and verifying the accuracy of the dynamic model as well as the robustness of the controller. Full article
Show Figures

Figure 1

21 pages, 11484 KiB  
Article
Analytical Investigation of Primary Waveform Distortion Effect on Magnetic Flux Density in the Magnetic Core of Inductive Current Transformer and Its Transformation Accuracy
by Michal Kaczmarek and Kacper Blus
Sensors 2025, 25(15), 4837; https://doi.org/10.3390/s25154837 - 6 Aug 2025
Viewed by 213
Abstract
This paper analyzes how distortion in the primary current waveform affects the magnetic flux density in the magnetic core of an inductive current transformer and its transformation accuracy. Keeping the primary current’s RMS value constant, it studies the impact of changes in the [...] Read more.
This paper analyzes how distortion in the primary current waveform affects the magnetic flux density in the magnetic core of an inductive current transformer and its transformation accuracy. Keeping the primary current’s RMS value constant, it studies the impact of changes in the RMS values and phase angles of low-order harmonics on the core’s flux density and the values of current error and phase displacement of their transformation. The distorted current waveforms, resulting flux density, and hysteresis loops are examined to identify the operating conditions of the inductive current transformer. This study also highlights the strong influence of low-order harmonics and the diminishing effect of higher-frequency harmonics on the magnetic flux density in its magnetic core, e.g., third, fifth, and seventh higher harmonics may cause an increase in magnetic flux density in the magnetic core of the inductive current transformer in relation to that obtained for a sinusoidal current with a frequency of 50 Hz by about 8.5%, while with additional second, fourth, and sixth harmonics, the increase may reach about 23%. Therefore, the testing procedure should consider not only the load impedance and the RMS values of the primary current but also its harmonic content, including the RMS values of individual harmonics and their phase angles. Full article
(This article belongs to the Special Issue Condition Monitoring of Electrical Equipment Within Power Systems)
Show Figures

Figure 1

12 pages, 3794 KiB  
Article
Enhanced Energy Storage Properties of Ba0.96Ca0.04TiO3 Ceramics Through Doping Bi(Li1/3Zr2/3)O3
by Zhiwei Li, Dandan Zhu, Xuqiang Ding, Lingling Cui and Junlong Wang
Coatings 2025, 15(8), 906; https://doi.org/10.3390/coatings15080906 - 2 Aug 2025
Viewed by 314
Abstract
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 (x = 0.03–0.15) ceramics were fabricated via the traditional solid reaction method. Characterization results revealed that each component exhibited a pure perovskite structure, and the average grain size significantly diminishes with increasing x. The (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramics exhibited prominent relaxor ferroelectric behavior, whose characteristic narrow hysteresis loops effectively enhanced the energy storage performance of the material. Most importantly, the composition with x = 0.10 demonstrated exceptional energy storage properties at 150 kV/cm, achieving a high recoverable energy storage density (Wrec = 1.91 J/cm3) and excellent energy efficiency (η = 90.87%). Under the equivalent electric field, this composition also displayed a superior pulsed discharge performance, including a high current density (871 A/cm2), a high power density (67.3 MW/cm3), an ultrafast discharge time (t0.9 = 109 ns), and a discharged energy density of 1.47 J/cm3. These results demonstrate that the (1−x)Ba0.96Ca0.04TiO3−xBi(Li1/3Zr2/3)O3 ceramic system establishes a promising design paradigm for the creation and refinement of next-generation dielectrics for pulse power applications. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 336
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

25 pages, 5020 KiB  
Review
Research Progress on Tribological Properties of High-Entropy Alloys
by Shuai Zhang, Zhaofeng Wang, Wenqing Lin and Haoyu Guo
Lubricants 2025, 13(8), 342; https://doi.org/10.3390/lubricants13080342 - 1 Aug 2025
Viewed by 381
Abstract
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail [...] Read more.
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail effect. This paper systematically reviews the research progress on the friction and wear properties of high-entropy alloys. The mechanisms of metal elements such as Al, Ti, Cu and Nb through solid solution strengthening, second-phase precipitation and oxide film formation were analyzed emphatically. And non-metallic elements such as C, Si, and B form and strengthen the regulation laws of their tribological properties. The influence of working conditions, such as high temperature, ocean, and hydrogen peroxide on the friction and wear behavior of high-entropy alloys by altering the wear mechanism, was discussed. The influence of test conditions such as load, sliding velocity and friction pair matching on its friction coefficient and wear rate was expounded. It is pointed out that high-entropy alloys have significant application potential in key friction components, providing reference and guidance for the further development and application of high-entropy alloys. Full article
(This article belongs to the Special Issue Tribological Performance of High-Entropy Alloys)
Show Figures

Figure 1

9 pages, 1953 KiB  
Article
Planar Hall Effect and Magnetoresistance Effect in Pt/Tm3Fe5O12 Bilayers at Low Temperature
by Yukuai Liu, Jingming Liang, Zhiyong Xu, Jiahui Li, Junhao Ruan, Sheung Mei Ng, Chuanwei Huang and Chi Wah Leung
Electronics 2025, 14(15), 3060; https://doi.org/10.3390/electronics14153060 - 31 Jul 2025
Viewed by 298
Abstract
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; [...] Read more.
Spin transport behaviors in heavy metal/ferromagnetic insulator (HM/FI) bilayers have attracted considerable attention due to various novel phenomena and applications in spintronic devices. Herein, we investigate the planar Hall effect (PHE) in Pt/Tm3Fe5O12 (Pt/TmIG) heterostructures at low temperatures; moment switching in the ferrimagnetic insulator TmIG is detected by using electrical measurements. Double switching hysteresis PHE curves are found in Pt/TmIG bilayers, closely related to the magnetic moment of Tm3+ ions, which makes a key contribution to the total magnetic moment of TmIG film at low temperature. More importantly, a magnetoresistance (MR) curve with double switching is found, which has not been reported in this simple HM/FI bilayer, and the sign of this MR effect is sensitive to the angle between the magnetic field and current directions. Our findings of these effects in this HM/rare earth iron garnet (HM/REIG) bilayer provide insights into tuning the spin transport properties of HM/REIG by changing the rare earth. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 - 31 Jul 2025
Viewed by 447
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

Back to TopTop