Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation
Abstract
1. Introduction
- Contact models for describing normal forces;
- Contact models for describing tangential forces;
- Contact models that allow us to take into account the adhesion and cohesion of particles.
2. Research Methodology
3. Research Results
- 1.1.1. Linear Spring Model (Normal Forces)—Linear Spring Limit Model (Tangential Forces)—Constant Adhesion Force Model;
- 1.1.2. Linear Spring Model (Normal Forces)—Linear Spring Limit Model (Tangential Forces)—Linear Adhesion Force Model;
- 1.2.1. Linear Spring Model (Normal Forces)—Coulomb Limit Model—Constant Adhesion Force Model;
- 2.1.1. Hysteresis Linear Spring Model (Normal Forces)—Linear Spring Limit Model (Tangential Forces)—Constant Adhesion Force Model;
- 2.2.1. Hysteresis Linear Spring Model (Normal Forces)—Coulomb Limit Model (Tangential Forces)—Constant Adhesion Force Model;
- 3.1.1. Hertz Model (Normal Forces)—Linear Spring Limit Model (Tangential Forces)—Constant Adhesion Force Model;
- 3.2.1. Hertz Model (Normal Forces)—Coulomb Limit Model (Tangential Forces)—Constant Adhesion Force Model;
- 3.3.1. Hertz Model (Normal Forces)—Mindlin–Deresiewicz Model (Tangential Forces)—Constant Adhesion Force Model.
4. Conclusions
- Normal interaction: linear spring model, hysteresis model, and Hertz–Mindlin model;
- Tangential interaction: Coulomb model, linear spring limit model, and Mindlin–Deresiewicz model;
- Cohesion/adhesion: Linear cohesion model, Parallel Bonds Model, JKR model, and Edinburgh Elastic–Plastic Adhesion (EEPA) Model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mudarisov, S.; Farkhutdinov, I.; Mukhametdinov, A.; Aminov, R.; Bagautdinov, R.; Gallyamov, F. Evaluation of loosening and soil compaction with a working tool of tillage machines using a hydrodynamic model. Int. Rev. Model. Simul. 2020, 13, 394–399. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assembles. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, Y.; Liu, Z.; Liu, W.; Zheng, Z. Applications of discrete element method in the research of agricultural machinery: A review. Agriculture 2021, 11, 425. [Google Scholar] [CrossRef]
- Tanaka, H.; Oida, A.; Daikoku, M.; Inooku, K.; Sumikawa, O.; Nagasaki, Y.; Miyazaki, M. DEM Simulation of Soil Loosening Process Caused by a Vibrating Subsoiler. Agric. Eng. Int. CIGR Ejournal 2007, 9, 1–18. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/b91ccb60-3616-41f8-83f9-2e2a2919fdbe/content (accessed on 10 February 2023).
- Tanaka, H.; Momozu, M.; Oida, A.; Yamazaki, M. Simulation of soil deformation and resistance at bar penetration by the distinct element method. J. Terramech. 2000, 37, 41–56. [Google Scholar] [CrossRef]
- Asaf, Z.; Rubinstein, D.; Shmulevich, I. Determination of discrete element model parameters required for soil tillage. Soil Tillage Res. 2007, 92, 227–242. [Google Scholar] [CrossRef]
- Ono, I.; Nakashima, H.; Shimizu, H.; Miyasaka, J.; Ohdoi, K. Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool. J. Terramech. 2013, 50, 265–276. [Google Scholar] [CrossRef]
- Makange, N.R.; Ji, C.; Torotwa, I. Prediction of cutting forces and soil behavior with discrete element simulation. Comput. Electron. Agric. 2020, 179, 105848. [Google Scholar] [CrossRef]
- Barr, J.; Desbiolles, J.; Fielke, J.; Ucgul, M. Optimising bentleg opener geometry for high speed no-till seeding using DEM simulations. In Proceedings of the 21st ISTRO International Conference 2018, Paris, France, 21–24 September 2018; pp. 410–412. [Google Scholar]
- Barr, J.; Desbiolles, J.; Ucgul, M.; Fielke, J.M. Bentleg furrow opener performance analysis using the discrete element method. Biosyst. Eng. 2020, 189, 99–115. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Jensen, T.A.; Antille, D.L.; Desbiolles, J.M. Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis. Soil Tillage Res. 2021, 213, 105123. [Google Scholar] [CrossRef]
- Ucgul, M.; Saunders, C.; Fielke, J.M. Discrete element modelling of tillage forces and soil movement of a one-third scale mouldboard plough. Biosyst. Eng. 2017, 155, 44–54. [Google Scholar] [CrossRef]
- Shmulevich, I.; Asaf, Z.; Rubinstein, D. Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res. 2007, 97, 37–50. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Ma, Y.; Tong, J.; Zhang, Z. DEM simulation of bionic subsoilers (tillage depth > 40 cm) with drag reduction and lower soil disturbance characteristics. Adv. Eng. Softw. 2018, 119, 30–37. [Google Scholar] [CrossRef]
- Ding, S.; Bai, L.; Yao, Y.; Yue, B.; Fu, Z.; Zheng, Z.; Huang, Y. Discrete element modelling (DEM) of fertilizer dual-banding with adjustable rates. Comput. Electron. Agric. 2018, 152, 32–39. [Google Scholar] [CrossRef]
- Chen, Y.; Munkholm, L.J.; Nyord, T. A discrete element model for soil–sweep interaction in three different soils. Soil Tillage Res. 2013, 126, 34–41. [Google Scholar] [CrossRef]
- Tamás, K.; Jóri, I.J.; Mouazen, A.M. Modelling soil–sweep interaction with discrete element method. Soil Tillage Res. 2013, 134, 223–231. [Google Scholar] [CrossRef]
- Cheng, J.; Zheng, K.; Xia, J.; Liu, G.; Jiang, L.; Li, D. Analysis of adhesion between wet clay soil and rotary tillage part in paddy field based on discrete element method. Processes 2021, 9, 845. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, B.; Ding, L.; Li, L.; Chen, X.; Li, J. Soil particle modeling and parameter calibration for use with discrete element method. Trans. ASABE 2021, 64, 2011–2023. [Google Scholar] [CrossRef]
- Hoseinian, S.H.; Hemmat, A.; Esehaghbeygi, A.; Shahgoli, G.; Baghbanan, A. Development of a dual sideway-share subsurface tillage implement: Part 1. Modeling tool interaction with soil using DEM. Soil Tillage Res. 2022, 215, 105201. [Google Scholar] [CrossRef]
- Dai, F.; Song, X.F.; Zhao, W.; Shi, R.J.; Zhang, F.; Zhang, X.K. Mechanism analysis and performance improvement of mechanized ridge forming of whole plastic film mulched double ridges. Int. J. Agric. Biol. Eng. 2020, 13, 107–116. [Google Scholar] [CrossRef]
- Hoseinian, S.H.; Hemmat, A.; Esehaghbeygi, A.; Shahgoli, G.; Baghbanan, A. Development of a dual sideway-share subsurface tillage implement: Part 2. Effect of tool geometry on tillage forces and soil disturbance characteristics. Soil Tillage Res. 2022, 215, 105200. [Google Scholar] [CrossRef]
- Bo, L.; Rui, X.; Fanyi, L.; Jun, C.; Wenting, H.; Bing, H. Determination of the draft force for different subsoiler points using discrete element method. Int. J. Agric. Biol. Eng. 2016, 9, 81–87. [Google Scholar]
- Tamás, K.; Kovács, Á.; Jóri, I.J. The evaluation of the parallel bond’s properties in DEM modeling of soils. Period. Polytech. Mech. Eng. 2016, 60, 21–31. [Google Scholar] [CrossRef]
- Tekeste, M.Z.; Balvanz, L.R.; Hatfield, J.L.; Ghorbani, S. Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow. J. Terramech. 2019, 82, 1–11. [Google Scholar] [CrossRef]
- Bo, L.; Fanyi, L.; Junying, M.; Jun, C.; Wenting, H. Distinct element method analysis and field experiment of soil resistance applied on the subsoiler. Int. J. Agric. Biol. Eng. 2014, 7, 54–59. [Google Scholar]
- Mak, J.; Chen, Y.; Sadek, M.A. Determining parameters of a discrete element model for soil–tool interaction. Soil Tillage Res. 2012, 118, 117–122. [Google Scholar] [CrossRef]
- Sadek, M.A.; Chen, Y.; Liu, J. Simulating shear behavior of a sandy soil under different soil conditions. J. Terramech. 2011, 48, 451–458. [Google Scholar] [CrossRef]
- Du, J.; Heng, Y.; Zheng, K.; Luo, C.; Zhu, Y.; Zhang, J.; Xia, J. Investigation of the burial and mixing performance of a rotary tiller using discrete element method. Soil Tillage Res. 2022, 220, 105349. [Google Scholar] [CrossRef]
- Zhai, S.; Shi, Y.; Zhou, J.; Liu, J.; Huang, D.; Zou, A.; Jiang, P. Simulation optimization and experimental study of the working performance of a vertical rotary tiller based on the discrete element method. Actuators 2022, 11, 342. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Lai, Q.; Zhao, L.; Li, J.; Zeng, R.; Zhang, Z. Discrete element contact model and parameter calibration for clayey soil particles in the Southwest hill and mountain region. J. Terramech. 2024, 111, 73–87. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, A.; Liu, Y.; Zhao, H.; Dai, C.; Hu, S.; Lei, X.; Hu, J.; Chen, L. Discrete element contact model and parameter calibration of sticky particles and agglomerates. J. Terramech. 2024, 116, 100998. [Google Scholar] [CrossRef]
- Kim, Y.S.; Siddique, M.A.A.; Kim, W.-S.; Kim, Y.-J.; Lee, S.-D.; Lee, D.-K.; Hwang, S.-J.; Nam, J.-S.; Park, S.-U.; Lim, R.-G. DEM simulation for draft force prediction of moldboard plow according to the tillage depth in cohesive soil. Comput. Electron. Agric. 2021, 189, 106368. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Liu, D.; Xie, F.; Ashwehmbom, L.G.; Zhang, Z.; Tang, Q. Calibration of discrete element parameters and experimental verification for modelling subsurface soils. Biosyst. Eng. 2021, 212, 215–227. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Liu, J.; Yang, S.X. Control method of seedbed compactness based on fragment soil compaction dynamic characteristics. Soil Tillage Res. 2020, 198, 104551. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling. Inf. Process. Agric. 2015, 2, 130–141. [Google Scholar] [CrossRef]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion. Biosyst. Eng. 2015, 129, 298–306. [Google Scholar] [CrossRef]
- DEM Technical Manual. Version 2023 R2. Available online: https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v242/en/dem_tec/dem_tec.html (accessed on 30 January 2025).
- Walton, O.R.; Braun, R.L. Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech. 1986, 63, 73–86. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Awuah, E.; Antille, D.L.; Jensen, T.A.; Desbiolles, J.M. Review of discrete element method simulations of soil tillage and furrow opening. Agriculture 2023, 13, 541. [Google Scholar] [CrossRef]
- Tamas, K.; Bernon, L. Role of particle shape and plant roots in the discrete element model of soil–sweep interaction. Biosyst. Eng. 2021, 211, 77–96. [Google Scholar] [CrossRef]
- Obermayr, M.; Vrettos, C.; Eberhard, P. A discrete element model for cohesive soil. In Proceedings of the III International Conference on Particle-based Methods—Fundamentals and Applications, PARTICLES 2013, Stuttgart, Germany, 18–20 September 2013; pp. 783–794. [Google Scholar]
- Potyondy, D.O.; Cundall, P.A. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Huang, Y.; Ji, J. An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models. Biosyst. Eng. 2022, 215, 283–294. [Google Scholar] [CrossRef]
- Van der Linde, J. Discrete Element Modeling of a Vibratory Subsoiler. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2007. [Google Scholar]
- Milkevych, V.; Munkholm, L.J.; Chen, Y.; Nyord, T. Modelling approach for soil displacement in tillage using discrete element method. Soil Tillage Res. 2018, 183, 60–71. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.A.D. Surface energy and the contact of elastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 1971, 324, 301–313. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, J.; Zheng, Z.; Wang, W.; Liu, L.; Chen, L. Three-dimensional DEM tillage simulation: Validation of a suitable contact model for a sweep tool operating in cohesion and adhesion soil. J. Terramech. 2023, 108, 59–67. [Google Scholar] [CrossRef]
- Thakur, S.C.; Morrissey, J.P.; Sun, J.; Chen, J.F.; Ooi, J.Y. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granul. Matter 2014, 16, 383–400. [Google Scholar] [CrossRef]
- Mudarisov, S.; Farkhutdinov, I.; Khamaletdinov, R.; Khasanov, E.; Mukhametdinov, A. Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method. Soil Tillage Res. 2022, 215, 105228. [Google Scholar] [CrossRef]
DEM Contact Models | References |
---|---|
1. Contact models for normal forces | |
1.1. Linear Spring–Dashpot Model | [4,5,6,7] |
1.2. Hysteretic Linear Spring Model (HSCM) | [8,9,10,11] [5,12,13,14,15] |
1.3. HMCM Hertz–Mindlin Contact Model | [16,17,18,19,20,21] |
2. Contact models for tangential forces | |
2.1. Coulomb Linear Spring Limit Model | |
2.2. Coulomb Limit Model | |
2.3. Mindlin–Deresiewicz Model | [16,17,18,19,20,21] |
3. Contact models accounting for cohesion | |
3.1. Linear Cohesion Model (suitable for models 1, 2, 3 of normal forces) | |
3.2. HMB model (suitable for model 3 of normal forces) | [20,21,22,23,24,25,26,27,28] |
3.3. Johnson–Kendall–Roberts (JKR) Cohesion Model, (suitable for models 2 or 3 of normal forces) | [18,29,30,31,32] |
3.4. Edinburgh Elastic–Plastic- Adhesive (EEPA) Contact Model (suitable for models 2 of normal forces) | [33,34,35] |
3.5. Hysteresis Spring Contact Model (HSCM) with the addition of adhesion and cohesion forces (suitable for model 2 of normal forces) | [36,37] |
Normal Force Contact Model | Tangential Force Contact Model | Contact Model for Taking into Account Adhesion |
---|---|---|
1. Linear Spring–Dashpot Model | 1.1. Linear Spring Limit | 1.1.1. Constant force |
1.1.2. Linear force | ||
1.2. Coulomb Limit | 1.2.1. Constant force | |
1.2.2. Linear force | ||
2. Hysteretic Linear Spring Model | 2.1. Linear Spring Limit | 2.1.1. Constant force |
2.1.2. Linear force | ||
2.2. Coulomb Limit | 2.2.1. Constant force | |
2.2.2. Linear force | ||
3. Hertzian Spring–Dashpot Model | 3.1. Linear Spring Limit | 3.1.1. Constant force |
3.1.2. Linear force | ||
3.1.3. JKR | ||
3.2. Coulomb Limit | 3.2.1. Constant force | |
3.2.2. Linear force | ||
3.2.3. JKR | ||
3.3. Mindlin–Deresiewicz | 3.3.1. Constant force | |
3.3.2. Linear force | ||
3.3.3. JKR |
Parameters of Contact Models | Values |
---|---|
Young’s modulus E, MPa | 1.4 |
Poisson’s ratio ν | 0.35 |
Static friction coefficient soil–soil fst | 0.75 |
Dynamic friction coefficient soil–soil fd | 0.25 |
Surface energy Gs, J/m2 | 9.5 |
Particle diameter d, mm | 5 |
Static friction coefficient of soil–funnel material fst.k | 0.6 |
Soil Type | Angle of Natural Repose φ,° Based on Soil Moisture in the Range | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
11…13% | 13…18% | 18…26% | 26…31% | |||||||||
n | Mm | σ | n | Mm | σ | n | Mm | σ | n | Mm | σ | |
Sandy loam | 14.8… 15.4 | 15.1 | 0.18 | 16… 16.8 | 16.4 | 0.32 | 15… 17.58 | 16.39 | 2.83 | 16.9… 18.3 | 17.6 | 0.98 |
Light loam | 17.2…18.4 | 17.8 | 0.72 | 18.1… 19.74 | 18.92 | 1.34 | 20.1… 22.7 | 21.4 | 3.38 | 21… 24.1 | 22.5 | 4.81 |
Medium loam | 22… 23.8 | 22.9 | 1.62 | 23.8… 25.8 | 24.8 | 2 | 25… 28.4 | 26.7 | 5.78 | 28… 29.6 | 28.8 | 1.28 |
Heavy loam | - | - | - | 34… 35.4 | 34.7 | 0.98 | 40… 45.8 | 42.9 | 16.82 | 57.5… 60.3 | 58.8 | 3.92 |
Simulation Results | Compliance with Soil Type and Moisture Content | ||||
---|---|---|---|---|---|
Normal Force Contact Model | Model of Contact of Tangential Forces | Clutch Model | Angle of Natural Slope φ,° | Mechanical Composition | Humidity, % |
1. Linear Spring (LSP) | 1.1. linear | 1.1.1. constant | 11.3 | does not fit | - |
1.1.2. linear | 12.8 | does not fit | - | ||
1.2. Coulomb | 1.2.1. constant | 11.4 | does not fit | - | |
1.2.2. linear | 15.2 | Sandy loam | 11…13 | ||
2. Hysteresis Linear Spring (HLS) | 2.1. linear | 2.1.1. constant | 10.8 | does not fit | - |
2.1.2. linear | 13.2 | Medium loam | 11…26 | ||
2.2. Coulomb | 2.2.1. constant | 11.7 | does not fit | - | |
2.2.2. linear | 23.4 | Medium loam | 11…18 | ||
3. Hertz (HSD) | 3.1. linear | 3.1.1. constant | 12.1 | - | - |
3.1.2. linear | 18.9 | Light loam | 13…18 | ||
3.1.3. JKR | 24.6… 29.8 | Medium loam | 13…31 | ||
3.2. Coulomb | 3.2.1. constant | 12.3 | does not fit | - | |
3.2.2. linear | 20.4 | Medium loam | 18…26 | ||
3.2.3. JKR | 26.8… 35.9 | Medium loam | 18…31 | ||
Heavy loam | 13…18 | ||||
3.3. Mindlin-Deresiewicz | 3.3.1. constant | 12.8 | does not fit | - | |
3.3.2. linear | 26.8 | Medium loam | 18…26 | ||
3.3.3. JKR | 43.9… 51.8 | Heavy loam | 18…31 |
Soil Type and Properties | Suitable Contact Models | |||
---|---|---|---|---|
Soil Type, Mechanical Composition | Moisture, % | Normal Forces | Tangential Forces | Cohesion |
Sandy loam | 11…13 | LSP | Coulomb | linear |
Light loam | 13…18 | HSD | linear | linear |
Medium loam | 11…26 | linear | linear | |
11…18 | HLS | Coulomb | linear | |
13…31 | HSD | linear | JKR | |
18…26 | HSD | Coulomb | linear | |
18…31 | HSD | Coulomb | JKR | |
18…26 | HSD | Mindlin–Deresiewicz | linear | |
Heavy loam | 13…18 | HSD | Coulomb | JKR |
18…31 | Mindlin-Deresiewicz | JKR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudarisov, S.; Gabitov, I.; Lobachevsky, Y.; Farkhutdinov, I.; Kravchenko, L. Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation. AgriEngineering 2025, 7, 256. https://doi.org/10.3390/agriengineering7080256
Mudarisov S, Gabitov I, Lobachevsky Y, Farkhutdinov I, Kravchenko L. Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation. AgriEngineering. 2025; 7(8):256. https://doi.org/10.3390/agriengineering7080256
Chicago/Turabian StyleMudarisov, Salavat, Ildar Gabitov, Yakov Lobachevsky, Ildar Farkhutdinov, and Lyudmila Kravchenko. 2025. "Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation" AgriEngineering 7, no. 8: 256. https://doi.org/10.3390/agriengineering7080256
APA StyleMudarisov, S., Gabitov, I., Lobachevsky, Y., Farkhutdinov, I., & Kravchenko, L. (2025). Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation. AgriEngineering, 7(8), 256. https://doi.org/10.3390/agriengineering7080256