Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = hyperspectral remote sensing for soil and crops in agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 206
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

16 pages, 3461 KiB  
Article
Investigating the Influence of the Weed Layer on Crop Canopy Reflectance and LAI Inversion Using Simulations and Measurements in a Sugarcane Field
by Longxia Qiu, Xiangqi Ke, Xiyue Sun, Yanzi Lu, Shengwei Shi and Weiwei Liu
Remote Sens. 2025, 17(12), 2014; https://doi.org/10.3390/rs17122014 - 11 Jun 2025
Viewed by 313
Abstract
Recent research in agricultural remote sensing mainly focuses on how soil background affects canopy reflectance and the inversion of LAI, while often overlooking the influence of the weed layer. The coexistence of crop and weed layers forms two-layered vegetation canopies in tall crops [...] Read more.
Recent research in agricultural remote sensing mainly focuses on how soil background affects canopy reflectance and the inversion of LAI, while often overlooking the influence of the weed layer. The coexistence of crop and weed layers forms two-layered vegetation canopies in tall crops such as sugarcane and maize. Although radiative transfer models can simulate the weed layer’s influence on canopy reflectance and LAI inversion, few experimental investigations use in situ measurement data to verify these effects. Here, we propose a practical background modification scheme in which black material with near-zero reflectance covers the weed layer and alters the background spectrum of crop canopies. We conduct an experimental investigation in a sugarcane field with different background properties (i.e., bare soil and a weed layer). Tower-based and UAV-based hyperspectral measurements examine the spectral differences in sugarcane canopies with and without the black covering. We then use LAI measurements to evaluate the weed layer’s impact on LAI inversion from UAV-based hyperspectral data through a hybrid inversion method. We find that the weed layer significantly affects the canopy reflectance spectrum, changing it by 13.58% and 42.53% in the near-infrared region for tower-based and UAV-based measurements, respectively. Furthermore, the weed layer substantially interferes with LAI inversion of sugarcane canopies, causing significant overestimation. Estimated LAIs of sugarcane canopies with a soil background generally align well with measured values (root mean square error (RMSE) = 0.69 m2/m2), whereas those with a weed background are considerably overestimated (RMSE = 2.07 m2/m2). We suggest that this practical background modification scheme quantifies the weed layer’s influence on crop canopy reflectance from a measurement perspective and that the weed layer should be considered during the inversion of crop LAI. Full article
Show Figures

Figure 1

18 pages, 4854 KiB  
Article
Comparing UAV-Based Hyperspectral and Satellite-Based Multispectral Data for Soil Moisture Estimation Using Machine Learning
by Hadi Shokati, Mahmoud Mashal, Aliakbar Noroozi, Saham Mirzaei, Zahra Mohammadi-Doqozloo, Kamal Nabiollahi, Ruhollah Taghizadeh-Mehrjardi, Pegah Khosravani, Rabindra Adhikari, Ling Hu and Thomas Scholten
Water 2025, 17(11), 1715; https://doi.org/10.3390/w17111715 - 5 Jun 2025
Viewed by 787
Abstract
Accurate estimation of soil moisture content (SMC) is crucial for effective water management, enabling improved monitoring of water stress and a deeper understanding of hydrological processes. While satellite remote sensing provides broad coverage, its spatial resolution often limits its ability to capture small-scale [...] Read more.
Accurate estimation of soil moisture content (SMC) is crucial for effective water management, enabling improved monitoring of water stress and a deeper understanding of hydrological processes. While satellite remote sensing provides broad coverage, its spatial resolution often limits its ability to capture small-scale variations in SMC, especially in landscapes with diverse land-cover types. Unmanned aerial vehicles (UAVs) equipped with hyperspectral sensors offer a promising solution to overcome this limitation. This study compares the effectiveness of Sentinel-2, Landsat-8/9 multispectral data and UAV hyperspectral data (from 339.6 nm to 1028.8 nm with spectral bands) in estimating SMC in a research farm consisting of bare soil, cropland and grassland. A DJI Matrice 100 UAV equipped with a hyperspectral spectrometer collected data on 14 field campaigns, synchronized with satellite overflights. Five machine-learning algorithms including extreme learning machines (ELMs), Gaussian process regression (GPR), partial least squares regression (PLSR), support vector regression (SVR) and artificial neural network (ANN) were used to estimate SMC, focusing on the influence of land cover on the accuracy of SMC estimation. The findings indicated that GPR outperformed the other models when using Landsat-8/9 and hyperspectral photography data, demonstrating a tight correlation with the observed SMC (R2 = 0.64 and 0.89, respectively). For Sentinel-2 data, ELM showed the highest correlation, with an R2 value of 0.46. In addition, a comparative analysis showed that the UAV hyperspectral data outperformed both satellite sources due to better spatial and spectral resolution. In addition, the Landsat-8/9 data outperformed the Sentinel-2 data in terms of SMC estimation accuracy. For the different land-cover types, all types of remote-sensing data showed the highest accuracy for bare soil compared to cropland and grassland. This research highlights the potential of integrating UAV-based spectroscopy and machine-learning techniques as complementary tools to satellite platforms for precise SMC monitoring. The findings contribute to the further development of remote-sensing methods and improve the understanding of SMC dynamics in heterogeneous landscapes, with significant implications for precision agriculture. By enhancing the SMC estimation accuracy at high spatial resolution, this approach can optimize irrigation practices, improve cropping strategies and contribute to sustainable agricultural practices, ultimately enabling better decision-making for farmers and land managers. However, its broader applicability depends on factors such as scalability and performance under different conditions. Full article
Show Figures

Figure 1

17 pages, 9972 KiB  
Article
Improving Agricultural Efficiency of Dry Farmlands by Integrating Unmanned Aerial Vehicle Monitoring Data and Deep Learning
by Tung-Ching Su, Tsung-Chiang Wu and Hsin-Ju Chen
Land 2025, 14(6), 1179; https://doi.org/10.3390/land14061179 - 29 May 2025
Viewed by 427
Abstract
This study aimed to address the challenge of monitoring and managing soil moisture in dryland agriculture with supplemental irrigation under increasingly extreme climate conditions. Using unmanned aerial vehicles (UAVs) equipped with hyperspectral sensors, we collected imagery of wheat fields on Kinmen Island at [...] Read more.
This study aimed to address the challenge of monitoring and managing soil moisture in dryland agriculture with supplemental irrigation under increasingly extreme climate conditions. Using unmanned aerial vehicles (UAVs) equipped with hyperspectral sensors, we collected imagery of wheat fields on Kinmen Island at various growth stages. The Modified Perpendicular Drought Index (MPDI) was calculated to quantify soil drought conditions. Simultaneously, soil samples were collected to measure the actual soil moisture content. These datasets were used to develop a Gradient Boosting Regression (GBR) model to estimate soil moisture across the entire field. The resulting AI-based model can guide decisions on the timing and scale of supplemental irrigation, ensuring water is applied only when needed during crop growth. Furthermore, MPDI values and wheat spike samples were used to construct another GBR model for yield prediction. When applying MPDI values from multispectral imagery collected at a similar stage in the following year, the model achieved a prediction accuracy of over 90%. The proposed approach offers a reliable solution for enhancing the resilience and productivity of dryland crops under climate stress and demonstrates the potential of integrating remote sensing and machine learning in precision water management. Full article
(This article belongs to the Special Issue Challenges and Future Trends in Land Cover/Use Monitoring)
Show Figures

Figure 1

30 pages, 10124 KiB  
Review
Innovations in Sensor-Based Systems and Sustainable Energy Solutions for Smart Agriculture: A Review
by Md. Mahadi Hasan Sajib and Abu Sadat Md. Sayem
Encyclopedia 2025, 5(2), 67; https://doi.org/10.3390/encyclopedia5020067 - 20 May 2025
Viewed by 1493
Abstract
Smart agriculture is transforming traditional farming by integrating advanced sensor-based systems, intelligent control technologies, and sustainable energy solutions to meet the growing global demand for food while reducing environmental impact. This review presents a comprehensive analysis of recent innovations in smart agriculture, focusing [...] Read more.
Smart agriculture is transforming traditional farming by integrating advanced sensor-based systems, intelligent control technologies, and sustainable energy solutions to meet the growing global demand for food while reducing environmental impact. This review presents a comprehensive analysis of recent innovations in smart agriculture, focusing on the deployment of IoT-based sensors, wireless communication protocols, energy-harvesting methods, and automated irrigation and fertilization systems. Furthermore, the paper explores the role of artificial intelligence (AI), machine learning (ML), computer vision, and big data analytics in monitoring and managing key agricultural parameters such as crop health, pest and disease detection, soil conditions, and water usage. Special attention is given to decision-support systems, precision agriculture techniques, and the application of remote and proximal sensing technologies like hyperspectral imaging, thermal imaging, and NDVI-based indices. By evaluating the benefits, limitations, and emerging trends of these technologies, this review aims to provide insights into how smart agriculture can enhance productivity, resource efficiency, and sustainability in modern farming systems. The findings serve as a valuable reference for researchers, practitioners, and policymakers working towards sustainable agricultural innovation. Full article
(This article belongs to the Section Engineering)
Show Figures

Graphical abstract

47 pages, 3987 KiB  
Review
Estimating Soil Attributes for Yield Gap Reduction in Africa Using Hyperspectral Remote Sensing Data with Artificial Intelligence Methods: An Extensive Review and Synthesis
by Nadir El Bouanani, Ahmed Laamrani, Hicham Hajji, Mohamed Bourriz, Francois Bourzeix, Hamd Ait Abdelali, Ali El-Battay, Abdelhakim Amazirh and Abdelghani Chehbouni
Remote Sens. 2025, 17(9), 1597; https://doi.org/10.3390/rs17091597 - 30 Apr 2025
Cited by 1 | Viewed by 1411
Abstract
Africa’s rapidly growing population is driving unprecedented demands on agricultural production systems. However, agricultural yields in Africa are far below their potential. One of the challenges leading to low productivity is Africa‘s poor soil quality. Effective soil fertility management is an essential key [...] Read more.
Africa’s rapidly growing population is driving unprecedented demands on agricultural production systems. However, agricultural yields in Africa are far below their potential. One of the challenges leading to low productivity is Africa‘s poor soil quality. Effective soil fertility management is an essential key factor for optimizing agricultural productivity while ensuring environmental sustainability. Key soil fertility properties—such as soil organic carbon (SOC), nutrient levels (i.e., nitrogen (N), phosphorus (P), potassium (K), moisture retention (MR) or moisture content (MC), and soil texture (clay, sand, and loam fractions)—are critical factors influencing crop yield. In this context, this study conducts an extensive literature review on the use of hyperspectral remote sensing technologies, with a particular focus on freely accessible hyperspectral remote sensing data (e.g., PRISMA, EnMAP), as well as an evaluation of advanced Artificial Intelligence (AI) models for analyzing and processing spectral data to map soil attributes. More specifically, the study examined progress in applying hyperspectral remote sensing technologies for monitoring and mapping soil properties in Africa over the last 15 years (2008–2024). Our results demonstrated that (i) only very few studies have explored high-resolution remote sensing sensors (i.e., hyperspectral satellite sensors) for soil property mapping in Africa; (ii) there is a considerable value in AI approaches for estimating and mapping soil attributes, with a strong recommendation to further explore the potential of deep learning techniques; (iii) despite advancements in AI-based methodologies and the availability of hyperspectral sensors, their combined application remains underexplored in the African context. To our knowledge, no studies have yet integrated these technologies for soil property mapping in Africa. This review also highlights the potential of adopting hyperspectral data (i.e., encompassing both imaging and spectroscopy) integrated with advanced AI models to enhance the accurate mapping of soil fertility properties in Africa, thereby constituting a base for addressing the question of yield gap. Full article
Show Figures

Graphical abstract

48 pages, 6422 KiB  
Review
Modern Trends and Recent Applications of Hyperspectral Imaging: A Review
by Ming-Fang Cheng, Arvind Mukundan, Riya Karmakar, Muhamed Adil Edavana Valappil, Jumana Jouhar and Hsiang-Chen Wang
Technologies 2025, 13(5), 170; https://doi.org/10.3390/technologies13050170 - 23 Apr 2025
Cited by 3 | Viewed by 4180
Abstract
Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from [...] Read more.
Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from the past five years, providing a timely update across several fields. It also presents a cross-disciplinary classification framework to systematically categorize applications in medical, agriculture, environment, and industry. In counterfeit detection, HSI identified fake currency with high accuracy in the 400–500 nm range and achieved a 99.03% F1-score for counterfeit alcohol detection. Remote sensing applications include hyperspectral satellites, which improve forest classification accuracy by 50%, and soil organic matter, with the prediction reaching R2 = 0.6. In agriculture, the HSI-TransUNet model achieved 86.05% accuracy for crop classification, and disease detection reached 98.09% accuracy. Medical imaging benefits from HSI’s non-invasive diagnostics, distinguishing skin cancer with 87% sensitivity and 88% specificity. In cancer detection, colorectal cancer identification reached 86% sensitivity and 95% specificity. Environmental applications include PM2.5 pollution detection with 85.93% accuracy and marine plastic waste detection with 70–80% accuracy. In food processing, egg freshness prediction achieved R2 = 91%, and pine nut classification reached 100% accuracy. Despite its advantages, HSI faces challenges like high costs and complex data processing. Advances in artificial intelligence and miniaturization are expected to improve accessibility and real-time applications. Future advancements are anticipated to concentrate on the integration of deep learning models for automated feature extraction and decision-making in hyperspectral imaging analysis. The development of lightweight, portable HSI devices will enable more on-site applications in agriculture, healthcare, and environmental monitoring. Moreover, real-time processing methods will enhance efficiency for field deployment. These improvements seek to enhance the accessibility, practicality, and efficacy of HSI in both industrial and clinical environments. Full article
Show Figures

Figure 1

20 pages, 13662 KiB  
Article
Unmanned Aerial Vehicle (UAV) Hyperspectral Imagery Mining to Identify New Spectral Indices for Predicting the Field-Scale Yield of Spring Maize
by Yue Zhang, Yansong Wang, Hang Hao, Ziqi Li, Yumei Long, Xingyu Zhang and Chenzhen Xia
Sustainability 2024, 16(24), 10916; https://doi.org/10.3390/su162410916 - 12 Dec 2024
Viewed by 1398
Abstract
A nondestructive approach for accurate crop yield prediction at the field scale is vital for precision agriculture. Considerable progress has been made in the use of the spectral index (SI) derived from unmanned aerial vehicle (UAV) hyperspectral images to predict crop yields before [...] Read more.
A nondestructive approach for accurate crop yield prediction at the field scale is vital for precision agriculture. Considerable progress has been made in the use of the spectral index (SI) derived from unmanned aerial vehicle (UAV) hyperspectral images to predict crop yields before harvest. However, few studies have explored the most sensitive wavelengths and SIs for crop yield prediction, especially for different nitrogen fertilization levels and soil types. This study aimed to investigate the appropriate wavelengths and their combinations to explore the ability of new SIs derived from UAV hyperspectral images to predict yields during the growing season of spring maize. In this study, the hyperspectral canopy reflectance measurement method, a field-based high-throughput method, was evaluated in three field experiments (Wang-Jia-Qiao (WJQ), San-Ke-Shu (SKS), and Fu-Jia-Jie (FJJ)) since 2009 with different soil types (alluvial soil, black soil, and aeolian sandy soil) and various nitrogen (N) fertilization levels (0, 168, 240, 270, and 312 kg/ha) in Lishu County, Northeast China. The measurements of canopy spectral reflectance and maize yield were conducted at critical growth stages of spring maize, including the jointing, silking, and maturity stages, in 2019 and 2020. The best wavelengths and new SIs, including the difference spectral index, ratio spectral index, and normalized difference spectral index forms, were obtained from the contour maps constructed by the coefficient of determination (R2) from the linear regression models between the yield and all possible SIs screened from the 450 to 950 nm wavelengths. The new SIs and eight selected published SIs were subsequently used to predict maize yield via linear regression models. The results showed that (1) the most sensitive wavelengths were 640–714 nm at WJQ, 450–650 nm and 750–950 nm at SKS, and 450–700 nm and 750–950 nm at FJJ; (2) the new SIs established here were different across the three experimental fields, and their performance in maize yield prediction was generally better than that of the published SIs; and (3) the new SIs presented different responses to various N fertilization levels. This study demonstrates the potential of exploring new spectral characteristics from remote sensing technology for predicting the field-scale crop yield in spring maize cropping systems before harvest. Full article
Show Figures

Figure 1

27 pages, 8359 KiB  
Article
Enhancing Regional Topsoil Total Nitrogen Mapping Through Differentiated Fusion of Ground Hyperspectral Data and Satellite Images Under Low Vegetation Cover
by Rongpeng He, Jihua Meng, Yanfei Du, Zhenxin Lin, Xinyan You and Xinyu Gao
Agriculture 2024, 14(12), 2145; https://doi.org/10.3390/agriculture14122145 - 26 Nov 2024
Cited by 4 | Viewed by 1096
Abstract
Total nitrogen in soil (STN) serves as a crucial indicator of soil nutrient content and provides an essential nitrogen source necessary for crop growth. Precisely inversion of STN content is crucial for the sustainable management of soil resources and the advancement of agricultural [...] Read more.
Total nitrogen in soil (STN) serves as a crucial indicator of soil nutrient content and provides an essential nitrogen source necessary for crop growth. Precisely inversion of STN content is crucial for the sustainable management of soil resources and the advancement of agricultural development, particularly to achieve efficient fertilization—reduction in fertilizer usage without compromising yield or increase in yield while maintaining the total fertilization amount. Spectroscopy technology is regarded as an ideal non-destructive method for nutrient detection. However, due to the weak spectral signals of STN and its spatial heterogeneity, hyperspectral imaging technology presents significant potential for high-resolution measurements and precise characterization of STN heterogeneity. In this paper, the STN content was selected as the study subject, and three aspects of soil spectral feature enhancement, multi-source remote sensing data differentiated fusion, and STN content inversion model construction were studied. Therefore, a differentiated fusion of enhanced multispectral image bands (DFE_MSIBs) method combined with Random Forest (RF) algorithms was developed for spectral inversion of STN content. The findings demonstrate the following: 1. The enhanced spectral characteristics and differentiated fusion method not only strengthen the relationship between STN and Sentinel-2A MSI data but also enhance the precision of regional STN inversion models. 2. For the differentiated fusion of enhanced multispectral image bands (DFE_MSIBs) method combined with Random Forest (RF) algorithms, the R2 was 0.95, RMSE was 0.10 g/kg, and LCCC was 0.89. 3. Compared to the unfused model, the average R2 value was increased by 0.02, the average RMSE was decreased by 0.01 g/kg, and the average LCCC was increased by 0.03. These findings hold practical significance for utilizing multi-source remote sensing data in STN mapping and precision fertilization in agricultural fields. Full article
Show Figures

Figure 1

20 pages, 6514 KiB  
Article
Inversion of Glycyrrhiza Chlorophyll Content Based on Hyperspectral Imagery
by Miaomiao Xu, Jianguo Dai, Guoshun Zhang, Wenqing Hou, Zhengyang Mu, Peipei Chen, Yujuan Cao and Qingzhan Zhao
Agronomy 2024, 14(6), 1163; https://doi.org/10.3390/agronomy14061163 - 29 May 2024
Cited by 4 | Viewed by 1531
Abstract
Glycyrrhiza is an important medicinal crop that has been extensively utilized in the food and medical sectors, yet studies on hyperspectral remote sensing monitoring of glycyrrhiza are currently scarce. This study analyzes glycyrrhiza hyperspectral images, extracts characteristic bands and vegetation indices, and constructs [...] Read more.
Glycyrrhiza is an important medicinal crop that has been extensively utilized in the food and medical sectors, yet studies on hyperspectral remote sensing monitoring of glycyrrhiza are currently scarce. This study analyzes glycyrrhiza hyperspectral images, extracts characteristic bands and vegetation indices, and constructs inversion models using different input features. The study obtained ground and unmanned aerial vehicle (UAV) hyperspectral images and chlorophyll content (called Soil and Plant Analyzer Development (SPAD) values) from sampling sites at three growth stages of glycyrrhiza (regreening, flowering, and maturity). Hyperspectral data were smoothed using the Savitzky–Golay filter, and the feature vegetation index was selected using the Pearson Correlation Coefficient (PCC) and Recursive Feature Elimination (RFE). Feature extraction was performed using Competitive Adaptive Reweighted Sampling (CARS), Genetic Algorithm (GA), and Successive Projections Algorithm (SPA). The SPAD values were then inverted using Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), and the results were analyzed visually. The results indicate that in the ground glycyrrhiza inversion model, the GA-XGBoost model combination performed best during the regreening period, with R2, RMSE, and MAE values of 0.95, 0.967, and 0.825, respectively, showing improved model accuracy compared to full-spectrum methods. In the UAV glycyrrhiza inversion model, the CARS-PLSR combination algorithm yielded the best results during the maturity stage, with R2, RMSE, and MAE values of 0.83, 1.279, and 1.215, respectively. This study proposes a method combining feature selection techniques and machine learning algorithms that can provide a reference for rapid, nondestructive inversion of glycyrrhiza SPAD at different growth stages using hyperspectral sensors. This is significant for monitoring the growth of glycyrrhiza, managing fertilization, and advancing precision agriculture. Full article
Show Figures

Figure 1

21 pages, 11248 KiB  
Article
Estimation of Soil Moisture Content Based on Fractional Differential and Optimal Spectral Index
by Wangyang Li, Youzhen Xiang, Xiaochi Liu, Zijun Tang, Xin Wang, Xiangyang Huang, Hongzhao Shi, Mingjie Chen, Yujie Duan, Liaoyuan Ma, Shiyun Wang, Yifang Zhao, Zhijun Li and Fucang Zhang
Agronomy 2024, 14(1), 184; https://doi.org/10.3390/agronomy14010184 - 15 Jan 2024
Cited by 6 | Viewed by 2277
Abstract
Applying hyperspectral remote sensing technology to the prediction of soil moisture content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for advancing the development of modern precision agriculture. This investigation focuses on SMC during the flowering stage under [...] Read more.
Applying hyperspectral remote sensing technology to the prediction of soil moisture content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for advancing the development of modern precision agriculture. This investigation focuses on SMC during the flowering stage under varying nitrogen application levels and film mulching treatments. The soybean canopy’s original hyperspectral data, acquired at the flowering stage, underwent 0–2-order differential transformation (with a step size of 0.5). Five spectral indices exhibiting the highest correlation with SMC were identified as optimal inputs. Three machine learning methods, namely support vector machine (SVM), random forest (RF), and back propagation neural network (BPNN), were employed to formulate the SMC prediction model. The results indicate the following: (1) The correlation between the optimal spectral index of each order, obtained after fractional differential transformation, and SMC significantly improved compared to the original hyperspectral reflectance data. The average correlation coefficient between each spectral index and SMC under the 1.5-order treatment was 0.380% higher than that of the original spectral index, with mNDI showing the highest correlation coefficient at 0.766. (2) In instances of utilizing the same modeling method with different input variables, the SMC prediction model’s accuracy follows the order: 1.5 order > 2.0 order > 1.0 order > 0.5 order > original order. Conversely, with consistent input variables and a change in the modeling method, the accuracy order becomes RF > SVM > BPNN. When comprehensively assessing model evaluation indicators, the 1.5-order differential method and RF method emerge as the preferred order differential method and model construction method, respectively. The R2 for the optimal SMC estimation model in the modeling set and validation set were 0.912 and 0.792, RMSEs were 0.005 and 0.004, and MREs were 2.390% and 2.380%, respectively. This study lays the groundwork for future applications of hyperspectral remote sensing technology in developing soil moisture content estimation models for various crop growth stages and sparks discussions on enhancing the accuracy of these different soil moisture content estimation models. Full article
Show Figures

Figure 1

16 pages, 2901 KiB  
Article
Full-Season Crop Phenology Monitoring Using Two-Dimensional Normalized Difference Pairs
by Louis Longchamps and William Philpot
Remote Sens. 2023, 15(23), 5565; https://doi.org/10.3390/rs15235565 - 30 Nov 2023
Cited by 7 | Viewed by 2546
Abstract
The monitoring of crop phenology informs decisions in environmental and agricultural management at both global and farm scales. Current methodologies for crop monitoring using remote sensing data track crop growth stages over time based on single, scalar vegetative indices (e.g., NDVI). Crop growth [...] Read more.
The monitoring of crop phenology informs decisions in environmental and agricultural management at both global and farm scales. Current methodologies for crop monitoring using remote sensing data track crop growth stages over time based on single, scalar vegetative indices (e.g., NDVI). Crop growth and senescence are indistinguishable when using scalar indices without additional information (e.g., planting date). By using a pair of normalized difference (ND) metrics derived from hyperspectral data—one primarily sensitive to chlorophyll concentration and the other primarily sensitive to water content—it is possible to track crop characteristics based on the spectral changes only. In a two-dimensional plot of the metrics (ND-space), bare soil, full canopy, and senesced vegetation data all plot in separate, distinct locations regardless of the year. The path traced in the ND-space over the growing season repeats from year to year, with variations that can be related to weather patterns. Senescence follows a return path that is distinct from the growth path. Full article
Show Figures

Figure 1

32 pages, 13372 KiB  
Article
Monitoring the Impact of Heat Damage on Summer Maize on the Huanghuaihai Plain, China
by Lei Yang, Jinling Song, Fangze Hu, Lijuan Han and Jing Wang
Remote Sens. 2023, 15(11), 2773; https://doi.org/10.3390/rs15112773 - 26 May 2023
Cited by 1 | Viewed by 1692
Abstract
As an important food crop, summer maize is widely planted all over the world. Monitoring its growth and output is of great significance for world food security. With the trend of global warming and deterioration, the frequency of high temperature and heat damage [...] Read more.
As an important food crop, summer maize is widely planted all over the world. Monitoring its growth and output is of great significance for world food security. With the trend of global warming and deterioration, the frequency of high temperature and heat damage affecting summer corn has been increasing in the past ten years. Therefore, there is an increasing demand for monitoring the high temperature and heat damage of summer maize. At present, there are nearly a hundred indices or methods for research on high temperature and heat damage. However, research based on the vegetation index cannot fully describe the damage caused by high-temperature thermal damage, and there is an obvious asynchrony effect. Research based on hyperspectral remote sensing has many inconveniences in data acquisition and complex physical model construction. Therefore, this study uses remote sensing data, including MODIS surface reflection data, MODIS land surface temperature products, as well as ground observation data and statistical data, combined with multiple remote sensing indices and land surface temperature, to construct a remote sensing index, LSHDI (land surface heat damage index). The LSHDI first searches for a location with the worst vegetation growth conditions in the three-dimensional feature space based on the LST (land surface temperature), the normalized difference vegetation index (NDVI), and the land surface water index (LSWI). Then, it calculates the distance between each point and this location to measure the degree of vegetation affected by high temperature and heat damage. Finally, because there is no reliable disaster verification dataset that has been published at present, this study uses soil moisture as a reference to explain the performance and stability of the LSHDI. The results showed that their coefficient of determination was above 0.5 and reached a significance level of 0.01. The LSHDI can well-reflect the high temperature and heat damage of land surface vegetation and can provide important data support and references for agricultural management departments. Full article
Show Figures

Graphical abstract

22 pages, 12268 KiB  
Article
Multi-Model Rice Canopy Chlorophyll Content Inversion Based on UAV Hyperspectral Images
by Hanhu Liu, Xiangqi Lei, Hui Liang and Xiao Wang
Sustainability 2023, 15(9), 7038; https://doi.org/10.3390/su15097038 - 22 Apr 2023
Cited by 14 | Viewed by 2270
Abstract
Rice is China’s main crop and its output accounts for 30% of the world’s total annual rice production. Rice growth status is closely related to chlorophyll content (called Soil and Plant Analyzer Development (SPAD) values). The determination of a SPAD value is of [...] Read more.
Rice is China’s main crop and its output accounts for 30% of the world’s total annual rice production. Rice growth status is closely related to chlorophyll content (called Soil and Plant Analyzer Development (SPAD) values). The determination of a SPAD value is of great significance to the health status of rice, agricultural irrigation and regulated fertilization. The traditional SPAD value measurement method is not only time-consuming, laborious and expensive but also causes irreparable damage to vegetation. The main aim of the present study is to obtain a SPAD value through the inversion of hyperspectral remote sensing images. In order to achieve this purpose, the hyperspectral image of rice at different growth stages at the canopy scale was first acquired using a hyperspectral imaging instrument equipped with a drone; the spectral characteristics of the rice canopy at different growth stages were analyzed and combined with a ground-level measured SPAD value, the bands with high correlation between the SPAD values and the spectra of the rice canopy at different fertility stages were selected. Subsequently, we combined the spectral characteristics with the continuous projection algorithm to extract the characteristic band and used the PLS method in MATLAB software to analyze and calculate the weight of each type of spectral value and the corresponding canopy SPAD value; we then used the wavelength corresponding to the spectral value with the highest weight as the used band. Secondly, the four methods of univariate regression, partial least squares (PLS) regression, support vector machine (SVM) regression and back propagation (BP) neural network regression are integrated to establish the estimation model of the SPAD value of rice canopy. Finally, the models are used to map the SPAD values of the rice canopy. Research shows that the model with the highest decision coefficient among the four booting stage models is “booting stage-SVR” (R2 = 0.6258), and the model with the highest decision coefficient among the four dairy maturity models is “milk-ripe stage-BP” (R2 = 0.6716), all of which can meet the requirement of accurately retrieving the SPAD value of rice canopy. The above results can provide a technical reference for the accurate, rapid and non-destructive monitoring of chlorophyll content in rice leaves and provide a core band selection basis for large-scale hyperspectral remote sensing monitoring of rice. Full article
Show Figures

Figure 1

16 pages, 1581 KiB  
Article
Mixed-Species Cover Crop Biomass Estimation Using Planet Imagery
by Tulsi P. Kharel, Ammar B. Bhandari, Partson Mubvumba, Heather L. Tyler, Reginald S. Fletcher and Krishna N. Reddy
Sensors 2023, 23(3), 1541; https://doi.org/10.3390/s23031541 - 31 Jan 2023
Cited by 19 | Viewed by 3707
Abstract
Cover crop biomass is helpful for weed and pest control, soil erosion control, nutrient recycling, and overall soil health and crop productivity improvement. These benefits may vary based on cover crop species and their biomass. There is growing interest in the agricultural sector [...] Read more.
Cover crop biomass is helpful for weed and pest control, soil erosion control, nutrient recycling, and overall soil health and crop productivity improvement. These benefits may vary based on cover crop species and their biomass. There is growing interest in the agricultural sector of using remotely sensed imagery to estimate cover crop biomass. Four small plot study sites located at the United States Department of Agriculture Agricultural Research Service, Crop Production Systems Research Unit farm, Stoneville, MS with different cereals, legumes, and their mixture as fall-seeded cover crops were selected for this analysis. A randomized complete block design with four replications was used at all four study sites. Cover crop biomass and canopy-level hyperspectral data were collected at the end of April, just before cover crop termination. High-resolution (3 m) PlanetScope imagery (Dove satellite constellation with PS2.SD and PSB.SD sensors) was collected throughout the cover crop season from November to April in the 2021 and 2022 study cycles. Results showed that mixed cover crop increased biomass production up to 24% higher compared to single species rye. Reflectance bands (blue, green, red and near infrared) and vegetation indices derived from imagery collected during March were more strongly correlated with biomass (r = 0–0.74) compared to imagery from November (r = 0.01–0.41) and April (r = 0.03–0.57), suggesting that the timing of imagery acquisition is important for biomass estimation. The highest correlation was observed with the near-infrared band (r = 0.74) during March. The R2 for biomass prediction with the random forest model improved from 0.25 to 0.61 when cover crop species/mix information was added along with Planet imagery bands and vegetation indices as biomass predictors. More study with multiple timepoint biomass, hyperspectral, and imagery collection is needed to choose appropriate bands and estimate the biomass of mix cover crop species. Full article
(This article belongs to the Special Issue Smart Decision Systems for Digital Farming)
Show Figures

Figure 1

Back to TopTop