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Abstract: Rice is China’s main crop and its output accounts for 30% of the world’s total annual rice
production. Rice growth status is closely related to chlorophyll content (called Soil and Plant Analyzer
Development (SPAD) values). The determination of a SPAD value is of great significance to the health
status of rice, agricultural irrigation and regulated fertilization. The traditional SPAD value measurement
method is not only time-consuming, laborious and expensive but also causes irreparable damage to
vegetation. The main aim of the present study is to obtain a SPAD value through the inversion of
hyperspectral remote sensing images. In order to achieve this purpose, the hyperspectral image of rice at
different growth stages at the canopy scale was first acquired using a hyperspectral imaging instrument
equipped with a drone; the spectral characteristics of the rice canopy at different growth stages were
analyzed and combined with a ground-level measured SPAD value, the bands with high correlation
between the SPAD values and the spectra of the rice canopy at different fertility stages were selected.
Subsequently, we combined the spectral characteristics with the continuous projection algorithm to
extract the characteristic band and used the PLS method in MATLAB software to analyze and calculate
the weight of each type of spectral value and the corresponding canopy SPAD value; we then used the
wavelength corresponding to the spectral value with the highest weight as the used band. Secondly, the
four methods of univariate regression, partial least squares (PLS) regression, support vector machine
(SVM) regression and back propagation (BP) neural network regression are integrated to establish the
estimation model of the SPAD value of rice canopy. Finally, the models are used to map the SPAD values
of the rice canopy. Research shows that the model with the highest decision coefficient among the four
booting stage models is “booting stage-SVR” (R2 = 0.6258), and the model with the highest decision
coefficient among the four dairy maturity models is “milk-ripe stage-BP” (R2 = 0.6716), all of which
can meet the requirement of accurately retrieving the SPAD value of rice canopy. The above results
can provide a technical reference for the accurate, rapid and non-destructive monitoring of chlorophyll
content in rice leaves and provide a core band selection basis for large-scale hyperspectral remote sensing
monitoring of rice.

Keywords: unmanned aerial vehicle (UAV); rice; hyperspectral images; chlorophyll; Soil and Plant
Analyzer Development

1. Introduction

Rice is China’s main food crop [1–4]. Rice production is not only the basis for the
economic development of agriculture, rural areas and farmers but also the cornerstone
for promoting the healthy development of the national economy and ensuring national
food security [5]. Chlorophyll, the main biochemical parameter in crops, is used to absorb
light energy during the first stage of photosynthesis and plays a central role in light uptake
in photosynthesis [6]. Its content can be used to reflect the photosynthetic capacity and
nitrogen nutrient level of rice and to monitor the stress of heavy metal contamination in
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rice [7]. Therefore, the rapid and accurate acquisition of chlorophyll content in rice is of
guiding significance for improving crop yield and quality.

Traditional methods for chlorophyll analysis mainly rely on field sampling, which is
not only time-consuming but also inefficient [8]. This has somewhat limited our ability
to monitor and manage crop growth and has prevented the development of precision
agriculture efforts. With the vigorous development of remote sensing technology, a great
deal has been achieved in the field of agriculture [9–11]. The advent of hyperspectral
remote sensing has shifted the acquisition of crop information from traditional analytical
methods to rapid, non-destructive, dynamic remote sensing monitoring [12]. At the same
time, the development of small and light Unmanned aerial vehicles (UAVs) can effectively
compensate for the high cost and complicated operation of traditional aerial photogram-
metry [13,14]. Hyperspectral remote sensing has the monitoring function to monitor farm
crop data, farm soil, crop quality, etc., continuously and dynamically grasp the growth
of farm crops, to achieve quantitative, qualitative and positioning descriptions and anal-
ysis of farm crops so as to achieve the purpose of being an accurate operation. Huang
Yayi [15] measured the chlorophyll content of Brassica napus with a UAV; Kim EJ et al. [16]
compared spectral indices of two-dimensional river algae maps using a hybrid unmanned
aerial vehicle (UAV) and unmanned surface vehicle (USV) system; Ballesteros et al. [17]
used a UAV to measure maize and onion leaf area index in a semi-arid region of Spain;
Calderón et al. [18] monitored early olive yellows disease based on a vegetation index using
a UAV with a thermal imaging spectrometer. Canopy spectral information is a mixture of
plant biochemical components, canopy structure, atmospheric and soil background, etc.,
and usually requires analysis of the spectral information according to the specific object of
study [19,20]. Canopy spectral information is too complex, leading to complexities in sensi-
tive band selection, parameter extraction, vegetation index construction, and predictive
model construction for canopy spectral chlorophyll content monitoring [21–24]. It has been
shown that the canopy spectrum is most sensitive to changes in chlorophyll content in the
visible wavelengths [25,26]. Model simulations are used to find the bands that have the
greatest influence of chlorophyll content and canopy reflectance. There are more studies on
vegetation canopy spectra, and significant results have been achieved [27–29]; however,
rice canopy spectra and chlorophyll content have not been studied much.

Therefore, this study uses a low-altitude UAV remote sensing platform equipped
with a new imaging hyperspectral instrument (SENOP RIKOLA) to perform the inversion
test on the SPAD value of the rice canopy. In order to achieve the purpose of regional
monitoring of rice chlorophyll content, hyperspectral images are used. The main objectives
are as follows: (1) Analyze the correlation between rice spectral information and SPAD
values; (2) Extract sensitive bands at different reproductive stages; (3) Use four different
types of rice canopy SPAD value inversion models to calculate SPAD values; (4) Conduct a
comparative analysis to select the optimal inversion model for each reproductive period.

2. Materials and Methods
2.1. Overview of the Study Area

The field experiment area is located at Majouba, Jiangyou City, Sichuan Province, in the
northeastern part of Sichuan Province, with the geographical coordinates of 105◦05′08” E,
32◦05′35” N. The region has favorable conditions for agricultural rice cultivation because of
the synchronization of rain and heat, which can ensure the growth of rice and meet the heat
requirements for the double ripening of rice in most parts of the territory. The red boxed area
in Figure 1 shows the extent of the rice test field in the study area.

2.2. Composition of Remote Sensing System

The remote sensing system consists of a hyperspectral instrument and an unmanned
aerial platform. The platform is a six-axis DJI M600 Pro UAV, which adopts the D-RTK
GNSS system for positioning, and the ground platform uses the GJI GS pro software to plan
the UAV flight path and set flight parameters. The hyperspectral instrument carried by the
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UAV is the SENOP RIKOLA hyperspectral imager produced in Finland. This spectroscopic
system can provide spectral images in the range from blue to near-infrared, with a spectral
range of 490–900 nm. The resolution is 6.5 cm at a height of 100 m, the spectral resolution is
up to 1 nm, and the number of effective wavelengths is 380.
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2.3. Image and Data Acquisition
2.3.1. Hyperspectral Image Acquisition

Hyperspectral images were first collected on 1 August 2019 from 11:00–13:00 in the
test area with clear, windless and good visibility when rice was at the booting stage (the
booting stage refers to the elongation and unfolding stage of the flag leaf of a cereal
crop [30]), and then images were collected again at the milk-ripe stage (The milk-ripe stage
is the early stage of seed filling of the rice spike, which is a critical period for rice yield
improvement [31]). Before the flight mission started, the whiteboard was used to calibrate
the hyper-spectrometer on the ground and correct the dark current. Set the flying height
of the unmanned aerial vehicle to 120 m, set the speed to 5 m/s, and set the time interval
for each hyperspectral image to 1.5 ms, the focal length to 9 mm, and the exposure time to
7 ms according to the intensity of sunlight. In this setting, the single frame coverage area of
the image taken by the airplane is 14 m × 10 m.

2.3.2. Determination of SPAD Values of Rice Canopy in the Field

Spectral image acquisition was accompanied by the determination of rice canopy
SPAD values in the experimental field. One hundred and twenty sample points were
sampled evenly in the experimental field, five rice plants were randomly selected from
each sample point, and two canopy leaves were selected from each rice plant; the total
number of canopy leaves sampled was 1200. The SPAD values were then measured using
a handheld chlorophyll meter, the SPAD-502 PLUS. Finally, the average measurement of
the canopy of five rice plants was used as the SPAD value for this sample point. Figure 2
shows the UAV hyperspectral system and researchers sampling SPAD values in the field.
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the field.

2.3.3. Hyperspectral Image Processing

When extracting the required information from the spectra of features, the large
amount of “burr” noise in the spectral signal needs to be smoothed out in order to eliminate
the effects of noise. In this paper, a median filter with a window of 3 × 3 was chosen to
smooth the original spectrum of rice. Because of the intrinsic properties of rice reflectance
spectra, this study performs a first-order derivative transformation of the raw hyperspectral
information. After the original hyperspectral curve is de-enveloped, both absorption valleys
and reflection peaks are highlighted, and the spectral curve is more clearly characterized.
The method normalizes the curves to a consistent background, which facilitates comparison
with other spectral curves and can then be used for spectral characterization and band
selection [32].

2.3.4. Spectral Feature Analysis and Extraction of Sensitive Bands

Vegetation exhibits different spectral characteristics under different growth periods,
fertilization conditions and environmental conditions and has different absorption and
reflection effects on electromagnetic waves of different wavelengths. This characteristic
of a substance’s response to different wavelengths is its spectral signature. A correlation
analysis was made between the SPAD value of rice canopy at different growth stages
and the corresponding original hyperspectral spectrum and the first derivative spectrum
and the de-envelope spectrum. The results are shown in Figure 3, and the correlation
curves for the different fertility stages have similar patterns. The main manifestations are:
(1) in the correlation curve between the SPAD values and the original hyper-spectrum
(Figure 3a), the canopy SPAD values in the 550–728 nm range show a highly significant
negative correlation with the spectral reflectance, and the extreme point wavelengths of
the correlation coefficients are all around 623 nm. In the 679–763 nm range, the correlation
changes from large to small and then large again. After 763 nm, the correlation coefficient
tends to be stable, showing a significant positive correlation. (2) In the correlation curves
between SPAD values and first-order derivative spectra (Figure 3b), the correlation curves
fluctuate considerably from one fertility period to another, but the overall trend is similar
in both fertility periods. The bands with high correlation are more prominent, and most
of the bands with less correlation are filtered out, which shows that the first derivative
spectrum can eliminate part of the background noise. (3) In the correlation curve between
the SPAD value and the de-envelope spectrum (Figure 3c), the booting stage performs
better in the green band, and the absolute value of the correlation R is 0.51. The milk-ripe
stage is more stable than the booting stage. There is a trough near the red light band which
is synchronized with the original spectrum. At this moment, the absolute value of the
correlation coefficient is R = 0.49.
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Based on the above analysis, the bands with a high correlation between the SPAD
value of the rice canopy at different growth stages and the spectrum are selected, and
then the continuous projection algorithm is used to extract the characteristic bands. In the
MATLAB software, the PLS method is used to analyze and calculate the weight of each
type of spectral value and the corresponding canopy SPAD value, and then the wavelength
corresponding to the highest weighted spectral value is used as the sensitive band. The
extraction results of the sensitive band are shown in Table 1.

Table 1. Selection of SPAD-sensitive bands in the rice canopy at different fertility stages.

Growth Periods Spectral Types Sensitive Bands (nm)

Booting stage
Original spectrum 567,686,770,818

First derivative spectrum 539,560,728,755
De-envelope spectrum 525,686,735

milk-ripe stage
Original spectrum 553,560,763

First derivative spectrum 518,546,728
De-envelope spectrum 647,728,818

2.4. Methods
2.4.1. Univariate Regression

The purpose of a regression analysis [33,34] is to explore the existence of a functional
correlation between the independent variable (x) and the dependent variable (y), which
can be expressed as a function y = f (x). The essence of the regression equation y = f (x) is
the correlation between the measured and predicted values, and this correlation needs
to be maximized by continuous fitting and adjusting functions between samples. The
correlation between rice canopy SPAD values and hyperspectral characteristic parameters
can be represented in several ways. We use several functions (Equations (1)–(4)) to fit the
relationship between them to reach the optimal inversion.

y = a + bx (1)

y = a + b ln x (2)

y = aebx (3)

y = a + bx + cx2 (4)

where x is the spectral data characteristic parameter or sensitive band normalized value; y
is the rice SPAD value; and a, b, and c are the regression coefficients.

2.4.2. Partial Least Squares Regression (PLSR)

PLSR is based on a combination of principal component analysis, multiple linear
regression analysis and typical correlation analysis [35,36]. It was first used in the field
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of analytical chemistry but has since been widely used in various fields due to its better
analytical capabilities. Compared with the commonly used principal component analysis
or least square method, PLSR also considers the degree of explanation of the dependent
variable (y) to the independent variable (x) and the respective principal components of y
and x. When analyzing the principal components of the independent variable, if there is
only one dependent variable, the effect of the dependent variable is accounted for, allowing
the independent and dependent variables to participate in component extraction, thus
retaining more valid information and making the regression results more stable. PLSR can
generally reduce the collinearity between variables, extract the most useful information
according to the principal component analysis method in the spectral information, and
make the rice canopy SPAD value inversion model achieve higher accuracy.

In the PLSR, to determine whether the inverse ability of the model is improved by
adding new principal components, a 5-fold cross-validation method is used to determine
the inversion ability of the model corresponding to the number of different principal
components, and therefore the cross validity Qh2 should be determined (Equation (5)).

Qh2 = 1− press(h)
ss(h− 1)

(5)

where press is the sum of squared prediction errors, h is the number of components, and ss
is the sum of squared errors.

2.4.3. Support Vector Machine Regression (SVR)

The Support Vector Machine (SVM) is a binary model that defines the largest spacing
on the feature space. The principle of SVM is to construct an optimal hyperplane (Figure 4)
by projecting the input parameters into the high-dimensional space using nonlinear map-
ping and then solving the problem of nonlinear mapping by means of nuclear functions,
thus making it easier to compute the high-dimensional data [37,38]. Support Vector Regres-
sion (SVR) also uses an optimal hyperplane to handle linear regression, but when dealing
with nonlinear regression, it is solved by adding a kernel function, and the mathematical
principle of SVR is shown below.
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Given a set of training samples X, xi is the independent variable, yi is the dependent
variable, and n is the number of samples. The idea of SVR is to find a function f ∈ F to solve
the problem of minimizing the nonlinear regression expectation risk R(f) by partitioning
the hyperplane. F denotes the set of distributed functions, and the precision of the fitted
sum is denoted by the error function coefficient ε. SVR solves the linear regression with a
fitted function: f (x) = wx + b. x, w, and b represent the sample vector, normal vector, and
offset of the regression function, respectively. This transforms the problem of solving the
regression function into a convex quadratic linear planning problem according to the idea
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of categorically optimal hyperplanes. When it is difficult to partition the hyperplane in
the linear case, sample points whose distance to the desired hyperplane is greater than 0
are introduced into the relaxation variable. The degree of penalty for sample points with
deviations greater than ε depends on whether the constant C is greater than 0 and then
introduces a Lagrangian function. The optimal programming problem is solved by solving
its saddle point, transforming the original problem into a dual problem. From this, the
optimal regression function (Equation (6)) can be obtained:

f (x) =
l

∑
i=1

(α∗i − αi)·(xi·xk) + b (6)

If the relationship between the input and output values of the modeled sample is
nonlinear, then the sample points can be mapped to the high-dimensional feature space
using the nonlinear function ϕ, allowing the nonlinear problem that is not easily solved
in the low-dimensional space to be partitioned in the multidimensional space using the
linear problem that is easily solved. In this way, only the function ϕ can be obtained, and
the inner product operation in the high-dimensional space can be replaced by selecting the
appropriate kernel function K(xi, x) so as to obtain the normal vector (Equation (7)) and the
optimal regression function of the following regression function (Equation (8)):

w =
l

∑
i=1

(αi − α∗i )xi (7)

f (x) =
l

∑
i
(α∗i − αi)·K(xi, x) + b (8)

SVR has a large number of advantages in solving the low number of modeling samples,
especially in the difficult high-dimensional model nonlinearity problem and identification
classification problem, by transforming the optimal hyperplane into a quadratic planning
problem, thus achieving the advantages of easy training and applicability.

2.4.4. The BP Neural Network Regression

The artificial neural network is composed of a large number of nodes, which is a system
that realizes intelligent processing or storage of information by simulating the human brain
neural network. The BP neural network is the most widely used artificial neural network
model due to its efficient multi-dimensional function mapping and excellent nonlinear
processing capability [39,40]. Therefore, many scholars try to use the BP neural network to
predict vegetation growth information and obtain good inversion results. The structure of
the BP neural network is shown in Figure 5.
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The process of signal processing by the BP neural network algorithm is divided into
two main steps: the transmission of the received signal to the output layer and error
feedback to the input layer. The above steps are embodied as follows: the input layer
receives the input data, transmits the signal to the next layer through each node, and finally
reaches the output layer after processing by the intermediate neural layer. The system
compares the result of the output layer with the expected value and analyzes the error,
then transmits the error back to the input layer in the incoming direction and adjusts the
weights and thresholds of each neural layer in the process. The process is repeated, and the
calculation is stopped when the output layer result is equal to the expected value.

The process by which the error is transmitted back to the input layer in the incoming
direction is called reverse propagation of the error. It is the backward transmission of errors
from the output layer to the input layer, where each neural layer adjusts the weights and
thresholds of that layer based on the feedback values received. When the error of the BP
neural network operation result is large, the “input-output-input” process is repeated. The
specific steps of the system implementation are as follows: After receiving the signal at the
input layer, let neti be the signal value of the i-th node of the hidden layer in the system,
and Ok the output value of the k-th node of the output layer. Assuming that there are P
training samples, the error of the modeled sample data when the error is back-propagated
is (Equation (9)):

Ep =
1
2

p

∑
p=1

L

∑
k=1

(
Tp

k −Op
k

)2
(9)

The values of the connection parameters in the system are modified according to the
gradient descent method in order to obtain the connection parameters for the output layer.
Finally, by sequentially combining the output layer thresholds, implied layer weights and
threshold changes, we can obtain the BP neural network input layer weights (∆wij), the
input layer thresholds ∆θ_i, the corresponding output layer weights (∆θi) and the threshold
values (∆ak).

The essence of the BP neural network algorithm is the selection of the most rapid
descent method, which alternates between forward and backward work. Based on the error
feedback received, the system modifies the weights and thresholds and repeatedly adjusts
the parameters of each layer to the optimal effect so as to obtain the most suitable results.

3. Results and Discussion
3.1. Model Construction
3.1.1. Model Construction Based on Univariate Regression

In this study, the sensitive bands extracted from Table 1 are substituted into Table 2
(common vegetation monitoring parameters) according to the actual situation and in
conjunction with previous studies so that each of these parameters has clear significance
in this paper. Table 3 lists the parameters whose determination coefficient values (R2) of
canopy SPAD values and characteristic parameters are higher than 0.4 from 90 modeling
samples selected from two growth periods. In Table 3, the characteristic parameters at the
booting stage (DVI (RNir, Rre), RVI (SDr, SDb)) and milk-ripe stage (NDVI (R818, R686), DVI
(RNir, Rre), CI (RNir, Rg), SDr) and the SPAD value of rice canopy R2 reached more than 0.6,
showing a very significant correlation.

From the correlation analysis in Table 3, it is known that these characteristic parameters
cover several chlorophyll-sensitive bands such as green peak, red edge, red valley, and NIR
in the range from 500 to 900 nm. Spectral parameters with R2 above 0.6 are more in the milk-
ripe stage than in the booting stage. We found that the rice plant just entered the growth
and development stage at the booting stage; at this time, the single leaf area is small, and the
chlorophyll content in the leaf is low. Therefore, this time the UAV hyperspectral instrument
has a weak ability to capture canopy information. While the milk-ripe stage is the peak
development period of rice plants, when the area of single leaf increases and the coverage
is high, which is easy to be identified by the UAV hyperspectral instrument. Through
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the analysis and comparison of the results of eight groups of characteristic parameters,
it is found that: in terms of weakening soil and environmental impact, the first-order
micro classification parameters (SDr, RVI(SDr, SDb)) show a higher correlation than the soil
regulation parameters (SAVI), indicating that the original spectrum can effectively weaken
the impact of environmental noise after the first-order derivative transformation.

Table 2. Commonly used vegetation index and calculation formula.

Vegetation Index Calculation Formulae or Definitions Source of Formula

NDVI (Rλi − Rλj)/(Rλi + Rλj) [41]
DVI RNir − Rre [42]
SAVI 1.5 × (Rλi − Rλj)/(Rλi − Rλj + 0.5) [43]

OSAVI (1 + 0.16) (Rλi − Rλj)/(Rλi + Rλj + 0.16) [43]
TCARI 3[(Rλi − Rλj) − 0.2(Rλi − Rg)(Rλi/Rλj)] [44]
MCARI [(Rλi-Rλj) − 0.2(Rλi − Rg)](Rλi/Rλj) [45]
RDVI

√
NDVI×DVI [46]

MTCI (Rλj − Rλi)/(Rλi − Rλk) [47]
GRVI Rλi/Rg [48]

RNDVI (Rλi − Rλj)/
√

Rλi + Rλj [49]
CI RNir/Rg − 1 [50]

RERDVI (Rλi − Rre)/
√

Rλi + Rre [51]

Note: RNir, Rre, Rg, and Rλ represent the mean of the spectral band reflectance at NIR, red, green, and wavelength
λ, respectively.

Table 3. Determination coefficient of SPAD value and characteristic parameters in rice canopy.

Characteristic Parameters
R2

Booting Stage Milk-Ripe Stage

NDVI (R818,R686) 0.5216 0.6015
DVI (RNir,Rre) 0.6252 0.6126

SAVI (R770,R647) 0.5317 0.5791
GRVI (R818,R518) 0.5864 0.5215

CI (RNir,Rg) 0.5254 0.6136
SDr 0.5571 0.6042

RVI (SDr,SDb) 0.6158 0.5181

3.1.2. Model Construction Based on Partial Least Squares Regression (PLSR)

Previous studies have shown that univariate regression yields good inversion accuracy.
The use of PLSR regression was considered, and the multivariate input parameters based
on principal component analysis were used as independent variables to invert the rice
canopy SPAD values. The seven characteristic parameters (NDVI (R818, R686), DVI (RNir,
Rre), SAVI (R770, R647), GRVI (R818, R518), CI (RNir, Rg), SDr and RVI (SDr, SDb)) in Table 3
and the sensitive bands in Table 1 were used as independent variables for the models
of different parameter types to construct the PLSR-based inversion model of rice canopy
SPAD values.

Characteristic parameter values for 90 modeling sample points at each fertility stage
and the spectral band values of sensitive bands were applied to models with different
parameter types. The correlation of different combinations is computed in MATLAB to
implement the PLSR regression modeling to select the best inversion model for different
types. Table 4 shows the construction and validation of the multivariate regression model
for rice canopy SPAD values based on the PLSR algorithm.
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Table 4. PLSR-based inversion model of SPAD values in rice canopy at different fertility stages.

Growth Stages Parameters Model Equations R2 RMSE

Booting stage

Feature parameters y = −0.551x2 + 38.540x3 − 0.103x4 + 0.036x6 + 2.846x7 − 6.505 0.6341 9.9688
Original spectrum y = −0.515R567 + 1.445R686 + 0.585R770 + 1.017R818 − 44.006 0.6115 19.528

First derivative y = 3.713R539 − 0.578R560 + 1.082R728 − 0.577R755 + 7.575 0.6150 16.0587
De-envelope y = −0.455R525 + 1.650R686 + 1.709R735 − 24.809 0.6176 7.5396

Milk-ripe stage

Feature parameters y = −32.968x1 − 1.716x2 − 4.567x3 + 6.608x4 + 0.925x5 − 0.501 0.6854 6.3586
Original spectrum y = 1.536R553 − 0.190R560 + 0.625R763 + 0.941 0.6181 22.5404

First derivative y = 0.255R518 − 1.329R546 + 1.468R728 − 1.108 0.6029 5.0406
De-envelope y = −0.551x2 + 38.540x3 − 0.103x4 + 0.036x6 + 2.846x7 − 6.505 0.6011 26.8097

Note: x1, x2, x3, x4, x5, x6, x7 are NDVI (R818, R686), DVI (RNir, Rre), SAVI (R770, R647), GRVI (R818, R518), CI (RNir,
Rg), SDr and RVI (SDr, SDb) at the corresponding values of each growth stage, Rλ represents the reflectance at the
wavelength λ.

Comparing the model in Table 4 with the univariate model in the previous section
shows that the overall inversion accuracy of the PLSR-based model is higher than the
univariate regression of the model, and the R2 models were all greater than 0.6. Among
them, the highest value is based on the characteristic parameter model R2 of the milk-ripe
stage, which reaches 0.6854. At the same time, the overall accuracy of the characteristic
parameter model is higher than that of the sensitive band model. It can be seen that the
optimal model at the booting stage is “booting stage-PLSR”, and its model equation is the
corresponding characteristic parameter model at the booting stage in Table 4. The optimal
model selection at the milk-ripe stage is consistent with the booting stage.

3.1.3. Model Construction Based on Support Vector Machine Regression (SVR)

In this study, seven characteristic parameters (NDVI (R818, R686), DVI (RNir, Rre),
SAVI (R770, R647), GRVI (R818, R518), CI (RNir, Rg), SDr and RVI (SDr, SDb)) in Table 3
and the sensitive bands corresponding to each fertility stage in Table 1 were selected as
input parameters to evaluate the prediction effect of different combinations using root
mean squared error (RMSE). The input parameters of the final booting stage are “SAVI,
GRVI and SDr”, and the input parameters of the milk-ripe period are “DVI, SAVI, CI and
SDr”. Combined with previous experience, using Gaussian radial basis (RBF) as a nuclear
function, the cross-validation method was used to generate in MATLAB software Optimal
model to obtain the optimal parameters determined by the system (penalty factor C = 100,
width factor = 0.1).

After determining the three parameters through experiments, the LIB SVM software
package is called in MATLAB to establish the booting stage input parameters (SAVI, GRVI,
SDr) and the milk-ripe stage input parameters (DVI, SAVI, CI, SDr). The parameters of the
inversion model are shown in Table 5.

Table 5. SVR-based inversion model of SPAD values in rice canopy at different fertility stages.

Growth Stages Input Parameters Kernel Function C σ2

Booting stage SAVI, GRVI, SDr RBF 100 0.1
Milk-ripe stage DVI, SAVI, CI, SDr RBF 100 0.1

Note: C and σ2 are the penalty factor and width factor of the SVR model kernel function (RBF), respectively.

3.1.4. Model Construction Based on BP Neural Network Regression

For this test, the input layer, the implicit layer and the output layer are all one layer.
According to the previous study, the inversion is better than the sensitive band when the
characteristic parameters are used as input parameters. Five characteristic parameters at
the booting stage (DVI, SAVI, GRVI, SDr and RVI) and five at the milk-ripe stage (NDVI,
DVI, SAVI, CI and SDr) were selected according to the cumulative cross-validation value
Qh2 > 0.5. The following feature parameters are used as input layer data. The number of
nodes in the implied layer is determined as five according to the formula l =

√
n + m + a,

and the number of nodes in the output layer is one. Therefore, in this experiment, the BP
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neural network model for retrieving the SPAD value of the canopy at the booting stage and
the milk-ripe stage of the experiment is that the input layer node is five, the hidden layer
node is eight, the output layer node is one, and the training method is Trainlm training
function, the training rate is 0.05.

We normalized the measured values of characteristic parameters and SPAD values
from 90 modeled samples at each fertility stage using MATLAB. The software imports the
modeling sample data and uses the Trainlm function to train the modeling sample data.
At level 0.001, the network stops training. After several training sessions, the model tends
to be stable, and the output results no longer change. Therefore, the internal parameter
values of the BP neural network model finally constructed during the two growth periods
are shown in Tables 6–9.

Table 6. Input-hidden layer parameters of BP neural network at booting stage.

Input Layer Weights

Hidden Layer Weights
1 2 3 4 5 6 7 8

1 0.2165 1.2019 1.2364 −1.1247 −1.1021 0.5656 0.3653 1.0321
2 −1.8763 0.3487 0.7825 −0.9571 −1.9274 1.1894 0.7453 0.7985
3 1.0912 −0.9875 −0.6873 0.2094 1.3595 −0.1209 −1.2673 1.8632
4 0.2317 0.5423 −0.4501 1.7389 1.6120 −0.1075 1.2984 −0.5417
5 −0.7612 1.3211 1.2938 −0.5210 −1.9127 −1.0836 −0.1279 −1.8237

Threshold (b) 2.1835 −1.5408 1.7225 0.7613 0.9187 −0.6521 1.2013 −1.6091

Table 7. Output-hidden layer parameters of BP neural network at booting stage.

Hidden
Layer Nodes Weights Threshold Hidden

Layer Nodes Weights Threshold

1 1.9812

0.472

5 −0.3017

0.472
2 0.4709 6 1.0145
3 −1.3747 7 0.6430
4 −0.5862 8 −1.5436

Table 8. Input-hidden layer parameters of BP neural network at milk-ripe stage.

Input Layer Weights

Hidden Layer Weights
1 2 3 4 5 6 7 8

1 1.1904 −0.8730 0.5134 −0.8107 1.3467 0.7564 1.3875 −1.3108
2 0.7237 1.5719 −1.7891 1.3416 0.9134 −1.1876 0.1283 1.0234
3 −1.5064 0.3781 −0.3475 −1.9871 −0.3453 −0.6034 −0.8967 0.3246
4 0.3984 −1.0137 −0.4501 0.3401 1.7486 1.8793 −1.4113 1.2803
5 −1.1350 1.4503 1.2938 −0.0519 −0.5348 −1.0434 0.1987 −1.3146

Threshold (b) 1.1701 −1.1746 −0.3114 0.3260 −0.7408 −1.8430 −0.7634 0.8753

Table 9. Output-hidden layer parameters of BP neural network at milk-ripe stage.

Hidden
Layer Nodes Weights Threshold Hidden

Layer Nodes Weights Threshold

1 −1.4578

0.5015

5 1.3014

0.5015
2 −0.3418 6 0.4357
3 2.0134 7 −1.5834
4 1.3619 8 0.3101
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3.2. Model Accuracy Analysis
3.2.1. Univariate Model Accuracy Analysis

The characteristic parameters with R2 above 0.6 in Table 3 were selected to construct
an inversion model of the SPAD value of the rice canopy. The spectral values of 30 test
sample points at each fertility stage in the experimental field were substituted into the
above model as independent variables and canopy SPAD values as dependent variables.
The prediction accuracy of the model was checked in SPSS software using three statistical
indicators: coefficient of determination (R2), root mean square error (RMSE) and mean
relative error (RE). The closer the R2 is to one, the smaller the RMSE and RE, indicating
higher model accuracy, and the results of the analysis are shown in Figure 6 and Table 10.
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ripe stage-SDr).

Table 10. Univariate regression-based inversion model accuracy check of rice canopy SPAD values.

Models Model Equations R2 RMSE RE

Booting stage DVI(RNir,Rre) y = 74.486x0.8695 0.5296 5.29 14.6
RVI(SDr,SDb) y = −0.0629x2 + 4.3705x + 9.9008 0.5576 5.15 14.3

Milk-ripe stage

NDVI(R818,R686) y = 70.601x + 6.1291 0.4857 7.73 15.3
DVI(RNir,Rre) y = −10.817x2 + 101.17x + 17.075 0.5828 6.99 15.1

CI(RNir,Rg) y = 0.1896x2 + 5.0079x + 25.901 0.5341 7.35 16.3
SDr y = 0.0055x2 + 1.7285x − 13.78 0.5641 8.53 14.5
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Based on the test results, the coefficient of determination of the booting stage model
“booting stage-RVI (SDr, SDb)” (R2 = 0.5576) is closer to one. The root mean square error
(RMSE = 5.29) and the relative error (RE = 14.6) are smaller, which indicates that the model
“booting stage-RVI (SDr, SDb)” with greater predictive power and accuracy. In the same
analysis, the corresponding model “milk-ripe stage-DVI (RNir, Rre)” has a higher predictive
power and accuracy during the milk-ripe stage and therefore can be used as an inverse
model for the respective fertility period.

3.2.2. PLSR Model Accuracy Analysis

In the MATLAB software, the spectral values of the 30 test samples at each fertility
stage of the test field were substituted into the optimal models in Table 4 (“booting stage-
PLSR” and “milk-ripe stage-PLSR”). The predicted SPAD values for the sample points were
obtained and then fitted and analyzed to the measured SPAD values, and the estimation
capability and accuracy of the model were checked using R2, RMSE, and RE, the results of
which are shown in Figure 7 and Table 11.
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Table 11. PLSR-based accuracy check of rice canopy SPAD value inversion models.

Growth Stages Models R2 RMSE RE

Booting stage Booting stage-PLSR 0.6228 7.17 21.2
Milk-ripe stage Milk-ripe stage-PLSR 0.6757 9.12 17.9

Comparing the inversion results of the modeled samples with the test samples in the
PLSR model shows that the R2 and RMSE results of the modeled samples are similar to
those of the test samples. This indicates that PLSR-based multiple regression models have
good stability and generalizability. This shows that when inverting rice canopy SPAD
values, the PLSR model is effective in inverting rice canopy SPAD values based on the
structural robustness of the PLSR model; even if a certain input parameter changes, it is
not easy to affect the overall inversion effect.

3.2.3. SVR Model Accuracy Analysis

According to the above study, under the optimal condition of each parameter, the
inversion model of SPAD values in rice canopy based on the SVR algorithm was set as
“booting stage-SVR” and “milk-ripe stage-SVR” at two reproductive stages. The spectral
values of the 30 test sample points at each fertility stage were then substituted into the
model to obtain the predicted SPAD values of the sample points, which were fitted to the
measured SPAD values for analysis, and the predictive ability and accuracy of the model
were tested using R2, RMSE, and RE, with the results shown in Figure 8 and Table 12.
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Table 12. SVR-based accuracy check of rice canopy SPAD value inversion models.

Growth Stages Models R2 RMSE RE

Booting stage Booting
stage-SVR 0.6399 6.56 16.3

Milk-ripe stage Milk-ripe
stage-SVR 0.6825 8.11 14.7

From Figure 6, it can be seen that the SVR model is better predicted and the model
accuracy has improved. The dispersion between the predicted and measured values of the
SPAD values on the graph is low and overall realistic. Combined with Table 5, it is found
that the RMSE and RE of both fertility groups are lower than those in the previous section,
indicating that the SVR model can effectively predict rice canopy SPAD through machine
learning to further improve the model prediction accuracy.

3.2.4. BP Neural Network Model Accuracy Analysis

The optimal inversion models of rice canopy SPAD values were set as “booting stage-
BP” and “milk-ripe stage-BP” for each fertility stage, respectively. The remaining 30 test
sample values from each fertility stage were then substituted into the model to obtain the
SPAD values for different fertility stages in the rice canopy. The predicted and measured
SPAD values were fitted and analyzed in MATLAB software to check the predictive ability
and accuracy of the model using three parameters: R2, RMSE, and RE, and the results are
shown in Figure 9 and Table 13.

Table 13. Accuracy check of BP neural network-based inversion model for rice canopy SPAD values.

Growth Stages Models R2 RMSE RE

Booting stage Booting stage-BP 0.6537 5.68 15.2

Milk-ripe stage Milk-ripe
stage-BP 0.7076 8.22 17.6
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Figure 9. Correlation analysis between measured and predicted SPAD values in rice canopy based
on BP neural network (a) Booting stage-BP; (b) Milk-ripe stage-BP.

From Figure 9 and Table 13, it can be seen that the BP neural network model performs
better during the inversion of the coronal SPAD values in both fertility stages. In particular,
in the analysis of the fit between predicted and measured values at the milk-ripe stage,
R2 reached above 0.7 for the first time, reflecting a very good inversion of the Effect. In
addition, the RMSE value is smaller while obtaining a higher R2, and the distribution of
test sample point values is more uniform in the figure, which shows that the BP neural
network can be effectively used in the rice canopy SPAD value inversion test.

3.3. Optimal Inversion Model Selection

The spectral data from the two reproductive periods in the study area were solved using
the corresponding four optimal models to fill in the figure. Since there are only 120 sample
points in total, it is difficult to be sure of the accuracy of the inversion if it is validated using a
point-to-point approach. Therefore, nine sample points are used as a unit, that is, a similar
smooth method is used to randomly sample the study area in a 4 m × 4 m window, and the
inversion accuracy is evaluated based on the correlation between the measured mean and
predicted mean of the sample points in each unit. Twenty research areas were collected for
each growth period (Figure 10).
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Figure 10. Mapping sample areas of booting and milk-ripe stage (a) Booting stage; (b) Milk-ripe stage.

The specific implementation steps are: (1) use the ENVI software to obtain the spectral
reflectance values of the image pixels in the study area; (2) the spectral values are substituted
for the feature parameters into the model to get the value of feature parameters, and the
value of feature parameters as input parameters into the model to perform the operation to
get SPAD prediction values; (3) dividing the SPAD prediction values into different levels,
which are represented in the ENVI software with different color gradations, to obtain a
SPAD value inversion chart (Figure 11).
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Figure 11. Distribution of SPAD value in rice canopy at different growth stages (a) Regression
mapping of Booting-RVI(SDr,SDb)model; (b) Regression mapping of Booting-PLSR model; (c) Regres-
sion mapping of Booting-SVR model; (d) Regression mapping of Booting-BP model; (e) Regression
mapping of Milk-DVI(RNir,Rre) model; (f) Regression mapping of Milk-PLSR model; (g) Regression
mapping of Milk-SVR model; (h) Regression mapping of Milk-BP model.
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It can be seen from the inversion results that the overall SPAD value at the booting
stage is lower than that at the milk-ripe stage. The mean SPAD values in most field plots
were in the 20–50 range during the booting stage, which is more consistent with the lower
SPAD values in the rice canopy during the actual booting stage. The model “booting
stage-SVR” has fewer outliers and no low or high values for the whole area, which is better.
In contrast, during the milk-ripe stage, rice development is vigorous, and most of the
rice canopy has high SPAD values, with many areas having SPAD values of 70 and above.
Therefore, there are more orange-red color parts in the SPAD value inversion diagram,
which contrasts with soil blue, and the gaps in the test field are distinct, but further model
accuracy check is needed to select the most suitable inversion model for each fertility stage.
In order to check the accuracy of the fill-in maps, the mean of the inversion plot SPAD values
was fitted to the mean of the measured values at the sample points (Figures 12 and 13). In
the case where the RMSE is minimum, the slope and R2 are closest to one, and the closer
the fitting result is to the 1:1 line (dashed line in the above figures), the more accurate the
estimation result is. It can be seen that among the four test models at the booting stage, the
regression slope (1.2626) and the determination coefficient (R2 = 0.6258) of the “booting
stage-SVR” model are closest to one, and the root mean square error is the smallest (RMSE
= 7.3651). The inversion estimates the highest accuracy of the mapping results. In the
four models of the milk-ripe stage test, the regression slope (1.0868) and the coefficient of
determination (R2 = 0.6717) of the “milk-ripe stage-BP” model are closest to one, and the
root mean square error is the smallest (RMSE = 6.3266). The inversion estimates the highest
accuracy of the mapping results.
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Comparing the statistical characteristics of the SPAD values on the prediction maps of
each model (Table 13), it can be seen that the estimation of the SPAD value of the rice canopy
by the univariate regression model as a whole is low and the mapping inspection at the
milk-ripe stage is better than the booting stage. The PLSR model has an overly concentrated
distribution of estimates of SPAD values. The SVR model has a discrete distribution of
estimates of SPAD values, with over-estimation of high values and under-estimation of low
values. The BP model works well overall, but there is an overfitting of individual cells.
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Based on the fitting results of the two growth periods (Table 14), the univariate
regression model has the largest difference between the estimated value of SPAD and the
measured value, and the inversion accuracy is low. This is due to the prevalence of both
homogeneous and heterogeneous spectra on hyperspectral images. The univariate-based
model cannot fully reflect the differences in SPAD values of different canopies due to the
limited use of spectral information. Therefore, there are large errors in the SPAD values
of rice canopies estimated by the model when generating inversion estimates. Since the
PLSR, SVR and BP models use multiple spectral parameters as independent variables, the
spectral information is used to a greater extent, which greatly reduces the errors caused by
the same-spectrum foreign objects and the same-spectrum heterogeneous phenomena, so
the prediction results are closer to the true value.

Table 14. Different model inversion accuracy tests for different fertility stages.

Growth
Stages Models Gradient R2 RMSE RE

Booting stage

RVI (SDr,SDb) 1.2596 0.5511 9.1527 21.1
PLSR 1.2584 0.6187 7.9526 18.6
SVR 1.2551 0.6258 7.8599 20.6
BP 1.2626 0.6206 7.9001 20.6

Milk-ripe
stage

DVI
(RNir,Rre) 1.1193 0.5752 11.1030 20.1

PLSR 1.1805 0.6509 9.9778 19.6
SVR 1.17 0.6611 9.6688 16.5
BP 1.0868 0.6716 8.7710 15.8

By further comparing the three multiple regression models, PLSR also considers the
independent variables, the principal components of the dependent variables and the degree
of explanation of the independent variables by the dependent variables. Through principal
component analysis, we can make the best use of spectral information so as to better achieve
modeling accuracy and estimation effect. SVR adopts the idea of constructing the optimal
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hyperplane and uses the kernel function to avoid the nonlinear mapping displayed so as
to solve the calculation difficulties caused by the high-dimensional space. The model is
easy to train, and there is no local minimum value. Therefore, when the measured value of
the SPAD value at the booting stage is small, a good inversion effect can be obtained. The
BP neural network has the characteristics of self-learning, automatic adjustment and fault
tolerance, and it has great advantages in dealing with nonlinear problems. By simulating
the neural transmission feedback modulation, the training was repeated many times, and
the final SPAD value prediction was closer to the measured value.

Based on the above charts and conclusions, this paper compares the effects of four
different models to invert the SPAD value of a rice canopy and finally selects the optimal
inversion model for the SPAD value of a rice canopy at different growth stages: “booting
stage-SVR” and “milk-ripe stage-BP”. This can prove that the use of an imaging hyper-
spectrometer mounted on the UAV platform can effectively identify the spectral information
of rice, can achieve non-destructive, real-time and efficient monitoring of rice canopy SPAD
values, and can be effectively applied to real life, providing scientific evidence for the
development of precision agriculture.

4. Conclusions

In this study, we used an unmanned aerial vehicle (UAV)-based hyperspectral im-
ager and a high-resolution camera to obtain hyperspectral images of a rice canopy at the
low-altitude canopy scale; we analyzed the corresponding spectral features, extracted ten
sensitive bands at the booting stage and eight sensitive bands at the milk-ripe stage, and
established four estimation models. The model was applied to invert the hyperspectral
images to obtain a visualization and quantitative distribution map of the SPAD values at
the rice canopy scale. The inversion results are of high accuracy, which enables a com-
prehensive study from basic spectral analysis to the practical application of the model,
thus providing an intuitive and quantitative interpretation basis for the monitoring of
rice canopy SPAD values and diagnosis of health conditions. This proves that UAV-based
remote sensing platforms can provide a scientific basis for decision-making for actual
agricultural production. Similar conclusions were reached by Mingyang Ma [52], who
concluded that inversion of SPAD using UAV HD imagery was feasible and that BP neural
networks with multiple feature inputs based on NRI, B/R and R-B predicted SPAD in japon-
ica rice with an 11% improvement in accuracy compared to the NRI-based one-dimensional
linear regression analysis model. Songtao Ban [53] compared the chlorophyll content of
rice in two different regions (Ningxia and Shanghai) using UAV-based spectral imagery
and showed that the chlorophyll content of rice in both regions was significantly correlated
with the reflectance of green, red and near-red-edge bands and eight vegetation indices
including the normalized difference vegetation index (NDVI), and the PLSR model was
more stable than SVR and ANN in estimating chlorophyll content. Yuan Weinan [54] pro-
posed a different method for estimating chlorophyll in rice canopy leaves from this paper:
he used UAV HD images, a dimensionality reduction method based on principal substrate
analysis to construct a principal substrate with concentrated waveform information, and
a least squares regression model for chlorophyll content estimation. The method is also
important for the estimation of chlorophyll content of plant leaves.

In this study, although some results have been achieved in rice canopy SPAD value
estimation using UAV hyperspectral images, the changes that cause the spectral charac-
teristics of the rice canopy are multifactorial. Other biophysical and chemical parameters
such as canopy water content, nitrogen content and leaf area index also affect their spectral
variation. If the influence of many factors on spectral changes can be expressed in different
weights, it will further improve the inversion accuracy of rice canopy SPAD values based
on UAV hyperspectral data and enable better monitoring of rice growth status and dynamic
changes in a comprehensive manner.
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