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Abstract: Applying hyperspectral remote sensing technology to the prediction of soil moisture
content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for
advancing the development of modern precision agriculture. This investigation focuses on SMC
during the flowering stage under varying nitrogen application levels and film mulching treatments.
The soybean canopy’s original hyperspectral data, acquired at the flowering stage, underwent 0–2-
order differential transformation (with a step size of 0.5). Five spectral indices exhibiting the highest
correlation with SMC were identified as optimal inputs. Three machine learning methods, namely
support vector machine (SVM), random forest (RF), and back propagation neural network (BPNN),
were employed to formulate the SMC prediction model. The results indicate the following: (1) The
correlation between the optimal spectral index of each order, obtained after fractional differential
transformation, and SMC significantly improved compared to the original hyperspectral reflectance
data. The average correlation coefficient between each spectral index and SMC under the 1.5-order
treatment was 0.380% higher than that of the original spectral index, with mNDI showing the highest
correlation coefficient at 0.766. (2) In instances of utilizing the same modeling method with different
input variables, the SMC prediction model’s accuracy follows the order: 1.5 order > 2.0 order > 1.0
order > 0.5 order > original order. Conversely, with consistent input variables and a change in the
modeling method, the accuracy order becomes RF > SVM > BPNN. When comprehensively assessing
model evaluation indicators, the 1.5-order differential method and RF method emerge as the preferred
order differential method and model construction method, respectively. The R2 for the optimal SMC
estimation model in the modeling set and validation set were 0.912 and 0.792, RMSEs were 0.005
and 0.004, and MREs were 2.390% and 2.380%, respectively. This study lays the groundwork for
future applications of hyperspectral remote sensing technology in developing soil moisture content
estimation models for various crop growth stages and sparks discussions on enhancing the accuracy
of these different soil moisture content estimation models.

Keywords: soybean; hyperspectrum; fractional order differentiation; optimal spectral index; soil
moisture content

1. Introduction

Soybean is one of the most essential oil products in the world agricultural trade [1].
China, a significant soybean producer, has consistently ranked fourth globally in total
output in recent years [2]. In the past, China was one of the major consumers of soybean;
China used to purchase around 62% of the soybean that was traded internationally, and
only 14.3% of its soybean consumption was self-sufficient. The self-sufficiency rate of
soybean is less than 15%, which strains the global food supply [3]. The production and
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quality of soybeans hold a crucial strategic role in constructing a modern product with
distinct Chinese characteristics. Soybean output and quality directly impact China’s food
security level [4]. The developmental condition of soybeans during the flowering stage
significantly affects their subsequent reproductive growth and ultimate yield formation. A
soil moisture content (SMC) that is too high or too low will directly affect the flowering
quality of soybean, thus affecting the yield and quality of soybean [5,6]. A scientific and
efficient acquisition of SMC is significant for growth status evaluation and yield prediction
of soybean at the flowering stage [7].

SMC plays a crucial role in the creation, alteration, and utilization of surface water
resources [8]. SMC stands as a crucial indicator for assessing crop soil drought conditions,
while also serving as a pivotal determinant of crop yield and overall crop quality [9]. Moni-
toring soil moisture holds substantial significance in advancing water-efficient irrigation
practices and optimizing water resource utilization [5]. Many conventional drying methods
of determining SMC persist, as the drying method is characterized by its high precision and
accuracy [10]. Notably, it has been formally adopted as both a national and international
standard. Nevertheless, in situ methodologies for measuring SMC face difficulties in consis-
tently attaining continuous observations and require considerable time and labor [11]. Zai
Songmei’s research has revealed the feasibility of using a spectrophotometer to determine
soil moisture content, providing evidence for the rapid assessment of soil moisture content
through soil spectral characteristics [12]. Cao Qi’s study found that the radar ground
wave method can accurately invert soil volumetric water content, but inversion accuracy is
influenced by land use types [13]. Gamma-ray transmission methods have been precisely
employed in the study of agricultural soil properties [14]. A study by Medhat discovered
that the gamma-ray transmission method, utilizing a portable cadmium telluride detector,
offers practical, cost-effective, nondestructive, and rapid analytical advantages in mea-
suring soil density and volumetric water content. However, it places high demands on
instrument accuracy [15,16].

Researchers have utilized remote sensing data to explore the intricate relationship
between soil spectral properties and moisture levels [17]. However, the direct evaluation
of soil moisture through remote sensing technology necessitates extensive field sampling
periods. Hence, the trend towards indirect SMC detection, established by relating crop
reflectance to soil moisture, is on the rise. The direct link between reflectance and vegetation
water content forms the cornerstone of SMC monitoring techniques [18]. Numerous
studies have underscored the reflectance–water content relationship across various crops,
wheat included [19–22]. Additionally, Gouvea et al. [23] probed the impact of soil water
stress on physiological traits like photosynthesis, stomatal conductance, transpiration, and
CO2 levels in soybean plants. Thus, the utilization of remote sensing technology and its
correlation with crop canopy reflectance provides a viable avenue for SMC monitoring.

While numerous studies have investigated the derivation of crop water status via
spectral measurements, the direct assessment of SMC through crop reflectance remains
relatively rare. Sobrino et al. [24] estimated soil moisture content across diverse crops
and growth stages using both airborne hyperspectral scanners (AHSs) and satellite im-
agery. Panigrahi and Das employed ground-based hyperspectral measurements to simulate
soil water potential in paddy fields during multiple growth stages [25]. However, the
effectiveness of soil moisture prediction models utilizing canopy spectral data can be im-
peded by factors such as canopy structure, leaf area, angles, positions, shadows, and soil
backgrounds [26,27]. These complexities hinder the establishment of a robust quantita-
tive relationship between soil moisture and canopy reflectance, consequently limiting the
generalizability of developed models when applied to novel agricultural regions [28].

Certain researchers have leveraged the integer differential transformation method to
preprocess raw hyperspectral reflectance data, thus attenuating background noise to some
degree and bolstering modeling precision [29]. Nevertheless, it is worth noting that the
application of first-order, second-order, and even higher-order integer-order differential
transformation techniques, while dampening background noise, has been observed to
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disregard the continuity and gradient of spectral information, ultimately leading to a loss
of spectral characteristics [30,31]. This scenario prompts the emergence of fractional differ-
ential transform, a mathematical extension of the integer-order differential approach. This
novel approach holds the capability to accentuate subtle shifts within spectral information,
enhancing weaker spectral features and amplifying the signal-to-noise ratio inherent in
spectral reflectance [32]. Tang et al. [33] demonstrated the estimation of soil salinity through
a machine learning framework grounded in remote sensing fractional derivative. Despite
these advancements, limited research has been dedicated to investigating the nuanced
connection between crop canopy reflectance and soil moisture subsequent to fractional
differential transformation.

This study investigates the flowering stage SMC across various nitrogen application
rates and film mulching treatments. The original hyperspectral reflectance data underwent
fractional differential transformation of 0–2 orders with a step size of 0.5. Employing the
correlation matrix method, spectral bands exhibiting the highest correlation with SMC
within the 350 to 1830 nm range were identified, leading to the construction of five sets
of 25 optimal spectral indices. Building upon this foundation, a predictive model for
flowering SMC was established using support vector machine (SVM), random forest (RF),
and back propagation neural network (BPNN) algorithms. This study further scrutinized
the influence of diverse differential orders and machine learning methods on the predictive
accuracy of the SMC model. By doing so, this investigation aims to furnish a theoretical
framework that contributes to a more precise and rapid determination of flowering SMC.
It also provides a theoretical basis for artificial intelligence applications to quickly and
accurately analyze large-scale hyperspectral satellite remote sensing information [34].

2. Materials and Methods
2.1. Research Area and Test Design

In this study, a two-year (2021–2022) soybean field experiment was conducted at the
Institute of Water-Saving Agriculture (34◦18′ N, 108◦24′ E, 524.7 m a.s.l.) within the Key
Laboratory of Agricultural Water and Soil Engineering of the Ministry of Education at
Northwest A & F University (Figure 1). The mean maximum temperature for June to
October 2021 was 30.3 ◦C, with a minimum of 20.0 ◦C, while in 2022, it was 31.3 ◦C and
21.2 ◦C, respectively. Precipitation during the sowing period in 2021 and 2022 was 432.6 mm
and 279.5 mm, respectively. In comparison to the 30-year average rainfall of 345 mm during
the soybean season (1991–2020), 2021 was categorized as a wet year, whereas 2022 was
considered a dry year.
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In this experiment, three nitrogen application levels were set: N1: 60 kg/hm2, N2:
120 kg/hm2, N3: 180 kg/hm2. Four mulching treatments were also set: NM: no mulching



Agronomy 2024, 14, 184 4 of 21

treatment, SM: straw mulching, FM: agricultural film mulching, SFM: straw + agricultural
film mulching. The straw mulching amount was 6000 kg/hm2. The FM and SFM treatments
were carried out by ridging and covering the film side. Two ridges with a width of 40 cm
and a height of 25 cm were raised in the experimental plot, and the ridge surface was
covered with a 60 cm wide plastic film. Soybeans were sown at 5 cm on the film side with a
row spacing of 50 cm. This study designed 12 treatments, 2 replicates, and a total of 24 plots.
The experimental plot area was 2.5 m × 6 m = 15 m2. Slow-release nitrogen fertilizer (SNF),
potassium fertilizer (K2O, 30 kg/hm2), and phosphorus fertilizer (P2O5, 30 kg/hm2) were
applied as base fertilizer before sowing. The soybean variety used in the experiment was
Shanning 17. It was sown on 17 June 2021 and 9 June 2022 and harvested on 30 September
2021 and 28 September 2022, respectively. The soybean flowering periods were 28 July
2021–24 August 2021 and 23 July 2022–20 August 2022, respectively. There were no obvious
diseases and insect pests during the soybean growth period. The experimental scheme
design of this study is shown in Table 1.

Table 1. Test scheme design.

SFM NM SFM SM SM FM

N1 N3 N2 N3 N2 N1

NM SFM SM FM FM NM

N1 N3 N1 N3 N2 N1

SFM SFM SFM NM NM FM

N2 N1 N3 N3 N2 N3

SM SM SM NM FM FM

N2 N1 N3 N2 N2 N1

2.2. Measurements and Methods
2.2.1. Data Acquisition

This study used the most basic drying method to measure SMC during the soybean
flowering period (6 August 2021 and 10 August 2022) in the two-year experiment. At the
same time, the spectral data were collected. The weather was sunny, and the light was
stable. During the flowering period of soybean, soil samples were taken from the middle of
two plants, at a position of 15 cm from each plant and at a horizontal position in the middle
of bare land. Soil samples were taken at intervals of 20 cm in each soil layer from 0 cm
to 60 cm of soil depth. The soil samples were mixed thoroughly and dried in an oven at
105 ◦C for 8 h to determine SMC. In this study, six sites were randomly selected in each plot
during the flowering period of soybean to determine soil moisture content. The mean value
of the six sampling points was the soil moisture content of the plot for a total of 24 plots,
and the corresponding hyperspectral remote sensing information was obtained at the same
time. A total of 48 groups of SMC and hyperspectral reflectance samples were obtained
and tested in the two-year experiment (Table 2).

Table 2. Statistics of soil moisture content of soybean at flowering stage.

Statistical Indicators Soil Moisture Content

Sample Size 48.00
Maximum Value 0.16
Minimum Value 0.11

Mean Value 0.08
Standard Deviation 0.01

Coefficient of Variation/% 12.5
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This study selected the original hyperspectral information under the SFMN3, SMN3,
FMN3, and NMN3 treatments and plotted its spectral characteristic curves, as shown in
Figure 2.
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2.2.2. Spectral Data Acquisition of Soybean Crown Height

This study collected the hyperspectral reflectance data of soybean canopy in the
experimental area from 10:40 a.m. to 1:00 p.m. on 6 August 2021 and 10 August 2022,
respectively. During this period, the light was sufficient, the spectral information was
measured, and the error was small. The hyperspectral measurement instrument for the
experiment was the Field Spec4 visibl/near-infrared portable ground object hyperspectral
spectrometer produced by the American company ASD (Analytical Spectral Devices, Inc.,
Boulder, CO, USA). The instrument’s band range is 350~1830 nm. The spectral resolution
of 350~1000 nm is 3 nm, and the sampling interval is 1.4 nm. The 1000~1830 nm resolution
is 10 nm, and the sampling interval is 2 nm. The instrument automatically interpolates the
sampling data to 1 nm interval output, and the field of view is 25◦.

Prior to obtaining hyperspectral data, the spectrometer underwent preheating and op-
timization, with the reference plate test and comparison completed within 1 min. Following
the acquisition of hyperspectral reflectance data for the initial test area, reference plate cor-
rection was conducted before acquiring hyperspectral reflectance data for the subsequent
test area. In each experimental plot, a crop canopy with balanced growth was selected. The
testers held a spectral sensor probe and collected data vertically downwards 75 cm from
the top of the crop canopy. A total of 10 hyperspectral reflectance data were collected and
recorded each time. According to the ‘3σ’ principle [33], each plot’s final hyperspectral
reflectance data were used as the average value of the remaining spectral bands.

2.2.3. Soil Moisture Content Data Collection

In this study, the most basic drying method was used to determine the SMC in the field.
Three sites were randomly selected in 48 experimental plots to collect soil samples. After
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drying, the mean value was calculated as the measured value of each experimental field,
and the data were collected on the day of hyperspectral reflectance data image acquisition.

2.3. Spectral Data Processing

In this study, the Savitzky–Golay (SG) smoothing method was used to denoise the
spectral data. The G-L fractional differential algorithm executed a 0–2-order (step size 0.5)
fractional differential transformation on the hyperspectral reflectance data. This algorithm
has the capability to extend the conventional integer order differential to any order differ-
ential, enabling a more comprehensive representation of nuanced changes and overall data
information. The formula for the α-order differential of hyperspectral reflectance data in
this experiment is as follows [29]:

dα f (x)
dxα ≈ f (x) + (−α) f (x − 1) +

(−α)(−α + 1)
2

f (x − 2) + ... +
Γ(−α + 1)

n!Γ(−α + n1)
f (x − n) (1)

In the formula, x is the value of the corresponding point; α is the fractional differential
order; Γ is the Gamma function; and n is the difference between the upper and lower limits
of differentiation. The order is 0, indicating no preprocessing.

Spectral data preprocessing and spectral index calculation were completed in MAT-
LAB2021 (MathWorks, Inc., Natick, MA, USA), and Origin2021 (Origin Lab Corp., Northamp-
ton, MA, USA) was used for graphic drawing.

2.4. Selection and Construction of Spectral Index

In this study, 10 spectral indices were selected. The ratio vegetation index (RI) and
triangular vegetation index (TVI) have a strong correlation with chlorophyll content and
LAI of plants, but when vegetation is dense, their sensitivity will be reduced [33]. The
modified simple ratio (mSR) and modified normalized difference index (mNDI) can op-
timize the specular emission effect of leaves and are sensitive to changes in leaves [35].
The difference vegetation index (DI), normalized difference vegetation index (NDVI), and
soil-adjusted vegetation index (SAVI) can reflect the background influence of the plant
canopy and eliminate some radiation errors [36,37]. The correlation between the three-band
index (TBI-1, TBI-2, TBI-3) and SMC is more stable [38]. The specific spectral index formula
is shown in Table 3.

Table 3. Spectral index and construction formula.

Select Index Computing Formula Reference

RI Ri/Rj [33]
TVI 0.5

[
120(Ri − R550)− 200

(
Rj − R550

)]
[33]

DI Ri − Rj [36]
NDVI Ri − Rj/Ri + Rj [36]
SAVI (1 + 0.16) Ri−Rj

Ri+Rj+0.16
[37]

mSR Ri − R455/Rj − R455 [35]
mNDI Ri − Ri/Rj + Rj − 2R455 [35]
TBI-1 R1400/(R i + Rj

)
[38]

TBI-2 (R 1400 − Ri)/(R 1400 + Rj

)
[38]

TBI-3 (R 1400 − Ri)−(R λ1 − Rj

)
[38]

Ri (i = 1, 2, 3) is reflectance at any band; Rj (j = 1, 2, 3) is reflectance at any band; R455 and R1400 are hyperspectral
reflectance at 455 nm and 1400 nm wavelengths.

2.5. Model Construction

In this research study, the most effective combination of spectral indices of various
orders served as the input variable, and three machine learning techniques, namely BPNN,
SVM, and RF, were employed for modeling and predicting SMC during the flowering stage.
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The training-set-to-validation-set ratio was set at 2:1, and the final model fitting result in
this experiment was determined by averaging multiple prediction fitting outcomes from
the machine learning models.

BPNN is a multi-layer network that propagates forward according to error and is
mostly used to solve difficult nonlinear problems [39]. The optimal BPNN combination
forecasting model uses m prediction methods to obtain the predicted results as the input of
the network and the actual historical data value as the network’s output. The weights of
various prediction methods in the prediction are obtained according to the self-learning of
the network [40].

SVM is a binary classification machine learning algorithm utilizing a Gaussian kernel
and polynomial kernel as the foundational kernel function. The weight coefficient is opti-
mized using a gradient descent algorithm. SVM demonstrates an excellent generalization
ability and robustness, without the issue of overfitting. Its widespread applications include
pattern recognition, classification, and small-sample regression analysis, guided by the
principle of minimizing cross-validation error [41,42].

RF is a composite model founded on the ‘Bagging’ model. Due to its simplicity and
convenience, it finds extensive application in diverse regression and prediction challenges.
As the RF model employs weighted averages of each tree’s results to attain the final output,
its implementation involves constructing numerous decision trees. The model builds a set
of decision trees through the exchange and alteration of covariates to enhance prediction
performance [43,44]. This study determined the number of decision trees in the RF model
to be 100 after multiple training and error analyses.

2.6. Data Processing

(1) Model evaluation index

The model fitting results were evaluated by a determination coefficient (R2), root mean
square error (RMSE), and mean relative error (MRE) [45,46]. The closer R2 is to 1, the higher
the model’s prediction accuracy is. The smaller the MRE, the more stable the performance
of the model and the more concentrated the prediction results. The calculation formula is
as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (2)

RMSE =

√
∑n

i=1(yi − y)2

n
(3)

MRE =
1
n∑n

i=1
|ŷi − yi|

yi
× 100% (4)

In the formula, ŷi is model prediction; yi is actual sample value; y is average; and n is
number of samples.

(2) Significance test

Concerning the autocorrelation coefficient test table, when the degree of freedom (i.e.,
sample size) is 48 and the correlation coefficient is greater than 0.361, it reaches an extremely
significant correlation level (p < 0.01). When the degree of freedom is 32 and the correlation
coefficient value is greater than 0.436, it reaches an extremely significant correlation level
(p < 0.01). When the degree of freedom is 16 and the correlation coefficient is greater than
0.590, it reaches an extremely significant correlation level (p < 0.01).

3. Results and Analysis
3.1. Spectral Index Construction and Optimal Spectral Index Band Combination Extraction

To maximize the utilization of information within hyperspectral reflectance data, this
study selected 10 representative spectral indices. Firstly, the spectral indices of all bands of
hyperspectral reflectance after 0–2-order fractional differential treatment were calculated by
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band-by-band spectral indices. Then, the correlation matrix method was used to analyze
the correlation between spectral indices and SMC. The i and j wavelengths with the largest
correlation coefficient were used to construct different-order spectral indices. From the
set of ten spectral indices, five with the strongest correlation to SMC were chosen to form
the optimal spectral index combination. The correlation matrix diagram, depicted below,
illustrates the correlation between the spectral indexes and SMC, ranging from a high
negative correlation in blue to a high positive correlation in red.

Figures 3–7 show the correlation matrix diagrams of 0–2-order fractional differential
hyperspectral spectral indexes and SMC after fractional differential treatment. The correla-
tion of SMC with each order spectral index is greater than 0.361 (p < 0.01), reaching a very
significant correlation level, indicating that the 10 spectral indexes selected in this study
can be used to predict SMC at the flowering stage. The average values of the correlation
coefficients between the 0–2-order spectral index and SMC were 0.523, 0.688, 0.728, 0.721,
and 0.718, respectively. The correlation between the optimal spectral index and SMC
calculated by the fractional differential treatment was significantly improved compared
with the original spectral index. Under the 1.5-order differential treatment, the highest
correlation coefficient with SMC was mNDI, the correlation coefficient value was 0.763, and
the wavelength combination coordinate was (740, 696). The correlation coefficient values of
each spectral index and SMC ranked from high to low are mNDI > TBI-1 > NDVI > TVI >
TBI-3 > DI = SAVI = mSR > RI > TBI-2. From the aforementioned ten spectral indices, five,
namely mNDI, TBI-1, NDVI, TVI, and TBI-3, exhibiting the highest correlation coefficients,
were chosen to compose the optimal spectral index combinations. The associated bands,
(740, 696), (726, 700), (688, 729), (754, 708), and (726, 700), were identified as the optimal
spectral index band combinations. Table 4 displays the corresponding bands for both
the remaining fractional differential optimal spectral index combination and the optimal
spectral index combination.

3.2. Construction and Comparison of Soil Moisture Content Prediction Model

The optimal spectral index combination of each order was used as the independent
variable, and SMC was used as the response variable. SVM, RF, and BPNN were used
to construct the SMC estimation model of the soybean flowering stage. The accuracy of
the model was comprehensively evaluated in terms of three aspects, namely R2, RMSE,
and MRE. The prediction results of different modeling methods for SMC are shown in
Table 5. The results show that the R2 of each SMC estimation model under different order
differential transformation treatments is 1.5 order > 2 order > 1 order > 0.5 order > 0 order.
The MRE performance of each model is 1.5 order < 2 order < 1 order < 0.5 order < 0 order.
The RMSEs of the validation set of each model of 1.5 order are 0.01977, 0.00507, and 0.00579,
which are smaller than the corresponding models of other orders. The validation set R2 of
the SVM, RF, and BPNN prediction models of SMC constructed by a 1.5-order differential
spectral index are 0.90576, 0.91233, and 0.87778, respectively, which are higher than 0.539,
reaching a very significant correlation level and having an excellent linear fitting effect.
Under the same order differential transformation processing, the accuracy of the modeling
set and verification set of the SMC estimation model constructed by the three modeling
methods is as follows: RF > SVM > BPNN. Under each order differential treatment, the
validation set R2 of the SMC prediction model based on RF was 0.025–0.287 higher than
that of SVM and GA-BP. The MRE decreased by 11.17–45.81%. In summary, the 1.5-order
differential treatment and the RF model are the optimal differential order and the optimal
model in this study, respectively. The R2 of the modeling set and the verification set of the
optimal SMC estimation model are 0.912 and 0.792, and the RMSEs are 0.912 and 0.792,
respectively.
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Figure 5. (c1–c10): The correlation matrix of RI, DI, SAVI, TVI, mSR, mNDI, NDVI, TBI-1, TBI-2,
TBI-3, and soil moisture content under 1—order differential.
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TBI-3, and soil moisture content under 1.5—order differential.
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Table 4. Preferred spectral index wavelength combinations under various differential orders.

Differential Order Spectral Index Correlation Coefficient Position of
Wavelength (i, j)/(nm)

Optimal Spectral
Index Combination

0

DI 0.647 ** 747, 745

DI, SAVI, TVI, mSR,
TBI-3

RI 0.411 ** 717, 720
NDVI 0.412 ** 717, 720
SAVI 0.589 ** 717, 720
TVI 0.659 ** 759, 670
mSR 0.619 ** 719, 718

mNDI 0.447 ** 719, 718
TBI-1 0.376 ** 758, 759
TBI-2 0.368 ** 757, 717
TBI-3 0.711 ** 747, 745

0.5

DI 0.726 ** 690, 720

RI, SAVI, TBI-3, mNDI,
NDVI

RI 0.651 ** 737, 748
NDVI 0.698 ** 745, 737
SAVI 0.731 ** 748, 737
TVI 0.682 ** 757, 692
mSR 0.653 ** 719, 717

mNDI 0.690 ** 717, 720
TBI-1 0.648 ** 720, 753
TBI-2 0.668 ** 753, 696
TBI-3 0.737 ** 737, 748

1

DI 0.719 ** 731, 721

DI, NDVI, TBI-3,
mNDI, TVI

RI 0.688 ** 673, 726
NDVI 0.722 ** 711, 734
SAVI 0.716 ** 726, 673
TVI 0.722 ** 737, 696
mSR 0.713 ** 721, 720

mNDI 0.763 ** 757, 681
TBI-1 0.700 ** 729, 690
TBI-2 0.628 ** 700, 724
TBI-3 0.719 ** 673, 726

1.5

DI 0.721 ** 726, 700

mNDI, TVI, TBI-1,
NDVI, TBI-3

RI 0.689 ** 676, 738
NDVI 0.736 ** 688, 729
SAVI 0.721 ** 726, 700
TVI 0.726 ** 754, 708
mSR 0.721 ** 692, 726

mNDI 0.766 ** 740, 696
TBI-1 0.737 ** 726, 700
TBI-2 0.671 ** 726, 677
TBI-3 0.722 ** 726, 700

2

DI 0.685 ** 700, 726

TVI, NDVI, TBI-1, mSR,
mNDI

RI 0.669 ** 694, 746
NDVI 0.729 ** 727, 682
SAVI 0.685 ** 726, 700
TVI 0.703 ** 723, 714
mSR 0.718 ** 700, 726

mNDI 0.762 ** 755, 720
TBI-1 0.736 ** 759, 694
TBI-2 0.698 ** 675, 676
TBI-3 0.687 ** 747, 737

‘**’ indicates that the correlation is significant at 0.01.
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Table 5. Comparison of model prediction accuracy evaluation under different differential order.

Differential
Order

Evaluating
Indicator

BPNN RF SVM

Training Sets Validation Set Training Sets Validation Sets Training Set Validation Set

0
R2 0.629 0.652 0.714 0.722 0.642 0.679

RMSE (g/kg) 0.007 0.027 0.005 0.006 0.006 0.006
MRE (%) 4.31 4.477 3.467 4.622 3.903 4.565

0.5
R2 0.652 0.693 0.838 0.725 0.678 0.695

RMSE (g/kg) 0.007 0.031 0.005 0.005 0.008 0.007
MRE (%) 3.42 11.76 3.765 3.116 4.552 4.887

1
R2 0.794 0.707 0.842 0.737 0.799 0.719

RMSE (g/kg) 0.007 0.029 0.006 0.007 0.02 0.029
MRE (%) 4.428 5.471 3.164 4.831 4.444 6.4

1.5
R2 0.878 0.759 0.912 0.792 0.906 0.772

RMSE (g/kg) 0.006 0.027 0.005 0.004 0.02 0.027
MRE (%) 3.674 3.176 2.891 2.780 2.988 3.974

2
R2 0.863 0.745 0.889 0.762 0.867 0.757

RMSE (g/kg) 0.02 0.007 0.006 0.004 0.02 0.026
MRE (%) 3.918 5.189 2.448 2.542 2.838 5.574

4. Discussion

In this study, the differential transform method is introduced for processing vegetation
canopy spectra, providing an advantageous technique for analyzing reflectance spectra.
This approach effectively addresses the challenge of multicollinearity inherent in high-
dimensional spectral data [47,48]. The employment of differential transform technology
significantly impacts peak extraction in finely detailed spectra, thereby enhancing sensi-
tivity to spectral features and curves. This method facilitates baseline correction [49,50],
thereby intensifying the correlation between hyperspectral reflectance and SMC, subse-
quently enhancing inversion model accuracy [32,51]. As depicted in Figure 8, the highest
accuracy is observed with 1.5-order processing. Consequently, the fractional order differen-
tial algorithm demonstrates superior capability in extracting SMC-relevant spectral data
from hyperspectral spectrometers when compared to integer-order derivatives. Never-
theless, with increasing differential orders, background noise gradually diminishes while
high-frequency noise progressively amplifies. This phenomenon concurrently leads to a
reduction in potential sensitive information within reflectivity data, consequently lowering
the signal-to-noise ratio of spectral information, thereby affecting model accuracy [52].
Table 4 displays the model results, indicating that the accuracy of certain fractional differ-
ential models surpasses that of raw spectral data, as well as first and second derivatives.
Notably, accurate prediction models often cannot be established solely with raw spectral
reflectance data. This underscores the foundational rationale behind employing spectral
preprocessing for robust spectral data analysis.

The optimal band combination algorithm effectively addresses wavelength interac-
tions within band combinations and handles the overlapping absorption of soil compo-
nents [53]. This method has found application in numerous studies [54,55]. In the context of
this study, five optimal spectral indices were selected from a pool of ten spectral indices. The
varying maximum R2 values derived from these optimal spectral indices under different
fractional order differential transformations (Table 4) reveal dissimilar correlations between
SMC and the spectral indexes. This disparity indicates variations in the ten spectral indices’
propensity to correlate with SMC. Within the 1.5-order reflectivity context, the mNDI index
excels, exhibiting a peak R2 value of 0.766. Selecting the ideal spectral index and processing
all spectral data are typically formidable tasks [23]. This underscores the advantage of
spectral index combinations. Additionally, the methodology enhances modeling accuracy
by extracting information-rich bands while eliminating irrelevant predictors, a contrast to
full-spectrum data. The optimal spectral indices, constructed through band screening across
the entire spectrum, encapsulate more meaningful information linked to SMC. Among the
50 spectral indices spanning 0–2 orders, 25 corresponding bands are positioned within the
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red or near-infrared domains. As SMC considerably influences chlorophyll content, canopy
chlorophyll indirectly reflects SMC [11]. The red edge band exhibits robust chlorophyll
absorption and leaf reflection into the near-infrared, thus rendering it the fastest-growing
region in green plant reflectance and a pivotal indicator of plant physiological traits [52].
The red edge band accommodates over 80% of plant physiochemical parameters’ spectral
information [56]. Hierarchical differential processing not only filters background noise
but also preserves the red edge band’s capacity to describe plant physiochemical param-
eters. As such, the band combinations sieved under each differential order in this study
demonstrate a substantial correlation with SMC, primarily inhabiting the 670–760 nm range,
corroborating prior research outcomes [57].

In this study, the optimal spectral index combinations for each order were chosen as
input data, and three machine learning methods—SVM, RF and BPNN—were employed to
construct SMC prediction models. Among these methods, the RF-based SMC prediction
model exhibited the highest accuracy. This outcome underscores RF’s robust capability to
extract canopy chlorophyll-associated information from spectral reflectance data, conse-
quently enhancing SMC inversion accuracy. The robustness of the RF algorithm, marked
by its strong anti-interference and anti-overfitting attributes, alongside its high tolerance
to background noise and outliers, renders it particularly adept at addressing nonlinear
problems [58]. This conclusion aligns with the findings of Eyo et al. in their SMC inversion
study [59]. BPNN stands as one of the most extensively employed neural network architec-
tures. Through iterative adjustments of the network’s interneuron weights, the algorithm
minimizes the discrepancy between final output and anticipated results [60]. Yet, the inher-
ent limitations of the BPNN algorithm, such as convergence into local extremes, weight
converging to local minima, and sluggish convergence speed, tend to impede the accuracy
and generalization capacity of neural network models [42]. In this study, the accuracy of
the BPNN model was inferior to that of RF. This discrepancy might have arisen from the
relatively limited sample size and the extensive model training iterations, contributing to
a reduction in model precision and generalization capability [44]. When compared to RF
and BPNN, the predictive efficacy of the SVM model on SMC was less impressive. This
could potentially be attributed to SVM’s limited anti-interference capacity and constraints
stemming from parameter selection, including kernel functions and penalty factors [61].

Currently, substantial progress has been achieved in developing models for crop at-
tributes such as leaf area index (LAI), biomass, nitrogen content, and chlorophyll content
employing hyperspectral data [62–65]. However, the commonly employed ground-based
hyperspectral data can solely be collected at specific locations, limiting their widespread ap-
plication. The findings of this investigation reveal that optimal accuracy can be attained by
utilizing a 1.5-order optimal spectral index combination as input variables and employing
RF to construct a soil moisture content (SMC) prediction model. These findings necessi-
tate validation and refinement through experimentation across varied regions, scales, and
crop varieties. Such extensive validation ensures the model’s adaptability and estimation
precision, serving as a foundation for SMC prediction through diverse remote sensing
techniques, including multispectral and UAV hyperspectral data. Furthermore, there exists
an avenue for exploring fractional differential transformation of hyperspectral reflectance.

This study employed a step size of 0.5 for fractional order differentiation, which may
result in relatively lower accuracy in processing high-spectral information and weaker
details in data handling compared to a smaller step size, with a relatively modest com-
pensatory effect. Additionally, the selection of a fixed band in the construction of the
three-dimensional spectral index had a certain impact on modeling accuracy. This step lays
the groundwork for subsequent fractional order differentiation with a smaller step size.
Moreover, this study provides a scientific basis for the rapid and accurate determination of
soil moisture content during the crop growing season.
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Figure 8. Model evaluation results. (a1–a5) is the 0–2−order soil moisture content prediction model 
constructed by the BPNN method; (b1–b5) are the results of the 0–2−order soil moisture content 

Figure 8. Model evaluation results. (a1–a5) is the 0–2−order soil moisture content prediction model
constructed by the BPNN method; (b1–b5) are the results of the 0–2−order soil moisture content
prediction model constructed by the SVM method. (c1–c5) are the results of the 0–2−order soil
moisture content prediction model constructed by the RF method.
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5. Conclusions

In this study, the SMC at the flowering stage was taken as the research object, and the
SMC and canopy hyperspectral reflectance data were measured. The original hyperspectral
reflectance data were processed by 0–2-order fractional differential, and the band-by-band
spectral index was calculated. The correlation matrix method was used to extract the
optimal wavelength combination for different order spectral index construction. Finally,
based on the optimal spectral index of each order and three machine learning models,
namely SVM, RF and BPNN, the SMC prediction model was constructed. The conclusions
are as follows:

(1) Compared with the original hyperspectral reflectance data, the correlation between
the optimal spectral index of each order extracted after fractional differential transfor-
mation and SMC was significantly improved. The average value of the correlation
coefficient between each spectral index and SMC under the 1.5-order treatment was
0.380% higher than that of the original spectral index. Among them, mNDI showed
the highest correlation, with a correlation coefficient of 0.766.

(2) When the modeling method is the same, and the input variables are different, the
accuracy of the SMC prediction model is as follows: 1.5 order > 2.0 order > 1.0 order >
0.5 order > original order. When the input variables are the same and the modeling
method changes, the accuracy of the SMC prediction model is as follows: RF > SVM
> BPNN. A comprehensive comparison of the model’s evaluation indicators shows
that the 1.5-order differential and RF methods are the optimal differential order and
optimal model construction methods in this study, respectively. The R2 of the optimal
SMC estimation model modeling set and validation set are 0.912 and 0.792, the RMSE
is 0.00507 and 0.00393, and the MRE is 2.3901% and 2.3802%.
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