Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hyperpolarization-activated cation current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 954 KB  
Review
The Dual Nature of Sinoatrial Node Remodelling in Athletes: A Systematic Review of Electrophysiological Adaptations and the Pathological Tipping Point
by Liang Yue, Jiaying Li, Hui Wang, Shuang Li and Henggui Zhang
Int. J. Mol. Sci. 2025, 26(24), 12052; https://doi.org/10.3390/ijms262412052 - 15 Dec 2025
Viewed by 289
Abstract
The “athlete’s heart” phenotype, featuring resting bradycardia, has traditionally been viewed as a benign adaptation. However, emerging evidence associates prolonged, high-intensity endurance training with an increased risk of clinical sinoatrial node dysfunction. This systematic review synthesizes evidence on exercise-induced intrinsic Sinoatrial Node (SAN) [...] Read more.
The “athlete’s heart” phenotype, featuring resting bradycardia, has traditionally been viewed as a benign adaptation. However, emerging evidence associates prolonged, high-intensity endurance training with an increased risk of clinical sinoatrial node dysfunction. This systematic review synthesizes evidence on exercise-induced intrinsic Sinoatrial Node (SAN) electrophysiological remodelling and evaluates its dual nature along the adaptation–pathology continuum. Following PRISMA guidelines, a systematic search of PubMed, Web of Science, and Google Scholar (2000–2025) identified 17 eligible studies. Analysis revealed that in humans, rodents, and rabbits, exercise induces intrinsic SAN electrophysiological remodelling—a “membrane clock” reset characterized by coordinated downregulation of pacemaker currents, notably Hyperpolarization-activated cyclic nucleotide-gated cation channel (If), via the Nkx2.5-miR-423-5p transcription factor pathway. Evidence for “calcium clock” involvement remains inconsistent. In contrast, large animal models (e.g., dogs, horses) show only parasympathetic-mediated bradycardia without intrinsic remodelling. Training loads may induce structural changes (e.g., fibrosis), providing an anatomical substrate for pathology. Moderating factors such as training type and ageing contribute to a phenotype of “acquired SAN reserve reduction. Exercise-induced intrinsic SAN remodelling is a physiological adaptation mechanism that, under certain conditions, can cross a threshold to become a pathological cause of clinical dysfunction. Recognizing this continuum is essential for risk stratification and future therapeutic innovation. Full article
Show Figures

Figure 1

19 pages, 1804 KB  
Article
Modulation of INa, Ih, and IK(erg) by Extracellular or Intracellular QX-314 (N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide) in Pituitary Tumor Cells
by Jeffrey Chi-Fei Wang, Hung-Tsung Hsiao and Sheng-Nan Wu
Int. J. Mol. Sci. 2025, 26(17), 8469; https://doi.org/10.3390/ijms26178469 - 31 Aug 2025
Viewed by 920
Abstract
QX-314 is a positively charged lidocaine derivative with the membrane-impermeant property. This compound applied at the intracellular side has been shown to suppress the voltage-gated Na+ current (INa), while lidocaine itself acts to suppress the hyperpolarization-activated cation current ( [...] Read more.
QX-314 is a positively charged lidocaine derivative with the membrane-impermeant property. This compound applied at the intracellular side has been shown to suppress the voltage-gated Na+ current (INa), while lidocaine itself acts to suppress the hyperpolarization-activated cation current (Ih). To what extent this drug may exert any effects on various plasmalemmal ionic currents still remains largely unknown. This investigation focused on the impact of QX-314 on ionic currents in GH3 cells derived from pituitary tumors. This compound applied extracellularly was noted to differentially suppress the amplitude of transient and late INa with an IC50 value of 93 and 42 μM, respectively. In GH3 cells dialyzed with QX-314 (10 μM), the INa(T) amplitude evoked by a brief depolarizing step was decreased, and its inactivation was increased. Moreover, QX-314, when applied extracellularly at 100 μM, diminished the amplitude of the Ih current with an IC50 of 68 μM. Intracellular dialysis with QX-314 also suppressed Ih amplitude; moreover, the later application of oxaliplatin reversed this suppression. As cells were extracellularly and continually exposed to QX-314, the magnitude of the erg-mediated K+ current (IK(erg)) was also effectively suppressed with an IC50 value of 73 μM. Furthermore, upon intracellular dialysis with QX-314 (10 μM), the degree of the voltage-dependent hysteresis (Hys(V)) of IK(erg) during the long-lasting isosceles-triangular ramp voltage was decreased; during continued exposure to QX-314, further extracellular bath additions of PD118057 (10 μM) counteracted QX-314-induced suppression. However, the extracellular addition of QX-314 (100 μM) mildly suppressed the outward delayed rectifier K+ current in GH3 cells. Collectively, QX-314 effectively suppressed INa, Ih, and IK(erg) in GH3 cells, a model of endocrine function, and these actions may contribute to their physiological functions, if similar effects are observed in vivo. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 2433 KB  
Review
Massive Activation of GABAA Receptors: Rundown, Ionic and Neurodegenerative Consequences
by Sergey A. Menzikov, Danila M. Zaichenko, Aleksey A. Moskovtsev, Sergey G. Morozov and Aslan A. Kubatiev
Biomolecules 2025, 15(7), 1003; https://doi.org/10.3390/biom15071003 - 13 Jul 2025
Cited by 2 | Viewed by 1829
Abstract
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs [...] Read more.
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs by the agonist could potentially lead to depolarization/excitation of the Vm. Although the ionic mechanisms of GABAA-mediated depolarization remain incompletely understood, a combination of the outward chloride current and the inward bicarbonate current and the resulting pH shift are the main reasons for this event. The GABAA responses are determined by the ionic gradients—neuronal pH/bicarbonate homeostasis is maintained by carbonic anhydrase and electroneutral/electrogenic bicarbonate transporters and the chloride level is maintained by secondary active cation–chloride cotransporters. Massive activation can also induce the rundown effect of the receptor function. This rundown effect partly involves phosphorylation, Ca2+ and the processes of receptor desensitization. In addition, by various methods (including fluorescence and optical genetic methods), it has been shown that massive activation of GABAARs during pathophysiological activity is also associated with an increase in [Cl]i and a decline in the pH and ATP levels in neurons. Although the relationship between the neuronal changes induced by massive activation of GABAergic signaling and the risk of developing neurodegenerative disease has been extensively studied, the molecular determinants of this process remain somewhat mysterious. The aim of this review is to summarize the data on the relationship between the massive activation of inhibitory signaling and the ionic changes in neurons. The potential role of receptor dysfunction during massive activation and the resulting ionic and metabolic disruption in neurons during the manifestation of network/seizure activity will be considered. Full article
Show Figures

Figure 1

24 pages, 5413 KB  
Review
Recent Advances in Ionic Mechanisms in Pituitary Cells: Implications for Electrophysiological and Electropharmacological Research
by Sheng-Nan Wu, Ya-Jean Wang, Zi-Han Gao, Rasa Liutkevičienė and Vita Rovite
J. Clin. Med. 2025, 14(9), 3117; https://doi.org/10.3390/jcm14093117 - 30 Apr 2025
Viewed by 2019
Abstract
Pituitary cells are specialized cells located within the pituitary gland, a small, pea-sized gland situated at the base of the brain. Through the use of cellular electrophysiological techniques, the electrical properties of these cells have been revealed. This review paper aims to introduce [...] Read more.
Pituitary cells are specialized cells located within the pituitary gland, a small, pea-sized gland situated at the base of the brain. Through the use of cellular electrophysiological techniques, the electrical properties of these cells have been revealed. This review paper aims to introduce the ion currents that are known to be functionally expressed in pituitary cells. These currents include a voltage-gated Na+ current (INa), erg-mediated K+ current (IK(erg)), M-type K+ current (IK(M)), hyperpolarization-activated cation current (Ih), and large-conductance Ca2+-activated K+ (BKCa) channel. The biophysical characteristics of the respective ion current were described. Additionally, we also provide explanations for the effect of various drugs or compounds on each of these currents. GH3-cell exposure to GV-58 can increase the magnitude of INa with a concurrent rise in the inactivation time constant of the current. The presence of esaxerenone, an antagonist of the aldosterone receptor, directly suppresses the magnitude of peak and late INa. Risperidone, an atypical antipsychotic agent, is effective at suppressing the IK(erg) amplitude directly, and di(2-ethylhexyl)-phthalate suppressed IK(erg). Solifenacin and kynurenic acid can interact with the KM channel to stimulate IK(M), while carisbamate and cannabidiol inhibit the Ih amplitude activated by sustained hyperpolarization. Moreover, the presence of either rufinamide or QO-40 can enhance the activity of single BKCa channels. To summarize, alterations in ion currents within native pituitary cells or pituitary tumor cells can influence their functional activity, particularly in processes like stimulus–secretion coupling. The effects of small-molecule modulators, as demonstrated here, bear significance in clinical, therapeutic, and toxicological contexts. Full article
(This article belongs to the Special Issue Advances in Pituitary Adenomas)
Show Figures

Figure 1

12 pages, 3368 KB  
Communication
Flow-Dependent Modulation of Endothelial Ca2+ Dynamics by Small Conductance Ca2+-Activated K+ Channels in Mouse Carotid Arteries
by Mark S. Taylor, Michael Francis and Chung-Sik Choi
Biomedicines 2024, 12(12), 2900; https://doi.org/10.3390/biomedicines12122900 - 20 Dec 2024
Viewed by 1016
Abstract
Background: Small conductance Ca2+ activated K+ channels (KCa2.3) are important regulators of vascular function. They provide Ca2+-dependent hyperpolarization of the endothelial membrane potential, promoting agonist-induced vasodilation. Another important mechanism of influence may occur through positive feedback regulation [...] Read more.
Background: Small conductance Ca2+ activated K+ channels (KCa2.3) are important regulators of vascular function. They provide Ca2+-dependent hyperpolarization of the endothelial membrane potential, promoting agonist-induced vasodilation. Another important mechanism of influence may occur through positive feedback regulation of endothelial Ca2+ signals, likely via amplification of influx through membrane cation channels. KCa2.3 channels have recently been implicated in flow-mediated dilation of the arterial vasculature and may contribute to the crucial homeostatic role of shear stress in preventing vascular wall remodeling and progressive vascular disease (i.e., atherosclerosis). The impact of KCa2.3 channels on endothelial Ca2+ signaling under physiologically relevant shear stress conditions remains unknown. Methods: In the current study, we employ mice expressing an endothelium-specific Ca2+ fluorophore (cdh5-GCaMP8) to characterize the KCa2.3 channel influence on the dynamic Ca2+ signaling profile along the arterial endothelium in the presence and absence of shear-stress. Results: Our data indicate KCa2.3 channels have a minimal influence on basal Ca2+ signaling in the carotid artery endothelium in the absence of flow, but they contribute substantially to amplification of Ca2+ dynamics in the presence of flow and their influence can be augmented through exogenous positive modulation. Conclusions: The findings suggest a pivotal role for KCa2.3 channels in adjusting the profile of homeostatic dynamic Ca2+ signals along the arterial intima under flow. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 6557 KB  
Article
Spinal Nerve Axotomy: Effects on Ih In Vivo and HCNs in DRG Neurons
by Yuanlong Song and Linlin Gao
Int. J. Mol. Sci. 2024, 25(23), 12889; https://doi.org/10.3390/ijms252312889 - 30 Nov 2024
Viewed by 1354
Abstract
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (Ih) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts [...] Read more.
In vitro experiments performed on dissociated dorsal root ganglion (DRG) neurons suggest the involvement of the hyperpolarization-activated cation current (Ih) in enhancing neuronal excitability, potentially contributing to neuropathic pain. However, the more confirmative in vivo information about how nerve injury interacts with Ih is lacking. In this study, Ih was recorded in vivo using the dynamic single-electrode voltage clamp (dSEVC) technique on L5 DRG neurons of normal rats and those seven days after spinal nerve axotomy (SNA). Compared to normal rats, SNA unexpectedly inhibited the activity of Ih channels on A-fiber DRG neurons: (a) the Ih current magnitude, density, and conductance were consistently diminished; and (b) the Ih activation velocity was slowed and the voltage for Ih activation was hyperpolarized. The half-activation voltage (V0.5) exhibited a negative shift, and the time constant for Ih activation was prolonged across all test potentials, indicating the reduced availability of Ih after SNA. To further investigate the mechanisms of SNA on Ih, the underlying HCN channels and the correlated mRNA were quantified and compared. The mRNA expression level of HCN1-4 was uniformly enhanced after SNA, which might have contributed to the increased cytoplasmic HCN1 intensity observed in both medium- and large-sized DRG neurons. This finding contradicted the functional reduction of Ih after SNA. Surprisingly, the HCN labeling pattern was altered after SNA: the labeling area of HCN1 and HCN2 at the membranous ring region of the axotomized large neurons became significantly thinner or absent. We concluded that the diminished ring immunoreactivity for HCN1 and HCN2 correlated with a reduced availability of Ih channels, elucidating the observed decrease in Ih in axotomized A-fiber neurons. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

17 pages, 3227 KB  
Article
Cannabidiol Modulates M-Type K+ and Hyperpolarization-Activated Cation Currents
by Yen-Chin Liu, Edmund Cheung So and Sheng-Nan Wu
Biomedicines 2023, 11(10), 2651; https://doi.org/10.3390/biomedicines11102651 - 27 Sep 2023
Cited by 8 | Viewed by 3016
Abstract
Cannabidiol (CBD) is a naturally occurring compound found in the Cannabis plant that is known for its potential therapeutic effects. However, its impact on membrane ionic currents remains a topic of debate. This study aimed to investigate how CBD modifies various types of [...] Read more.
Cannabidiol (CBD) is a naturally occurring compound found in the Cannabis plant that is known for its potential therapeutic effects. However, its impact on membrane ionic currents remains a topic of debate. This study aimed to investigate how CBD modifies various types of ionic currents in pituitary GH3 cells. Results showed that exposure to CBD led to a concentration-dependent decrease in M-type K+ currents (IK(M)), with an IC50 of 3.6 μM, and caused the quasi-steady-state activation curve of the current to shift to a more depolarized potential with no changes in the curve’s steepness. The CBD-mediated block of IK(M) was not reversed by naloxone, suggesting that it was not mediated by opioid receptors. The IK(M) elicited by pulse-train stimulation was also decreased upon exposure to CBD. The magnitude of erg-mediated K+ currents was slightly reduced by adding CBD (10 μM), while the density of voltage-gated Na+ currents elicited by a short depolarizing pulse was not affected by it. Additionally, CBD decreased the magnitude of hyperpolarization-activated cation currents (Ih) with an IC50 of 3.3 μM, and the decrease was reversed by oxaliplatin. The quasi-steady-state activation curve of Ih was shifted in the leftward direction with no changes in the slope factor of the curve. CBD also diminished the strength of voltage-dependent hysteresis on Ih elicited by upright isosceles-triangular ramp voltage. Collectively, these findings suggest that CBD’s modification of ionic currents presented herein is independent of cannabinoid or opioid receptors and may exert a significant impact on the functional activities of excitable cells occurring in vitro or in vivo. Full article
Show Figures

Figure 1

17 pages, 4616 KB  
Review
Modulating Hyperpolarization-Activated Cation Currents through Small Molecule Perturbations: Magnitude and Gating Control
by Cheng-Shih Chen, Edmund Cheung So and Sheng-Nan Wu
Biomedicines 2023, 11(8), 2177; https://doi.org/10.3390/biomedicines11082177 - 2 Aug 2023
Cited by 6 | Viewed by 3100
Abstract
The hyperpolarization-activated cation current (Ih) exhibits a slowly activating time course of the current (Ih) when the cell membrane is hyperpolarized for an extended duration. It is involved in generating electrical activity in various excitable cells. Numerous [...] Read more.
The hyperpolarization-activated cation current (Ih) exhibits a slowly activating time course of the current (Ih) when the cell membrane is hyperpolarized for an extended duration. It is involved in generating electrical activity in various excitable cells. Numerous structurally distinct compounds or herbal drugs have the potential to impact both the magnitude and gating kinetics of this current. Brivaracetam, a chemical analog of levetiracetam known to be a ligand for synaptic vesicle protein 2A, could directly suppress the Ih magnitude. Carisbamate, an anticonvulsant agent, not only inhibited the Ih amplitude but also reduced the strength of voltage-dependent hysteresis (Hys(V)) associated with Ih. Cilobradine, similar to ivabradine, inhibited the amplitude of Ih; however, it also suppressed the amplitude of delayed-rectifier K+ currents. Dexmedetomidine, an agonist of α2-adrenergic receptor, exerted a depressant action on Ih in a concentration-dependent fashion. Suppression of Ih amplitude was observed when GAL-021, a breathing control modulator, was present at a concentration exceeding 30 μM. Lutein, one of the few xanthophyll carotenoids, was able to suppress the Ih amplitude as well as to depress Hys(V)’s strength of Ih. Pirfenidone, a pyridine derivative known to be an anti-fibrotic agent, depressed the Ih magnitude in a concentration- and voltage-dependent fashion. Tramadol, a synthetic centrally active analgesic, was shown to reduce the Ih magnitude, independent of its interaction with opioid receptors. Various herbal drugs, including ent-kaurane-type diterpenoids from Croton tonkinensis, Ganoderma triterpenoids, honokiol, and pterostilbene, demonstrated efficacy in reducing the magnitude of Ih. Conversely, oxaliplatin, a platinum-based chemotherapeutic compound, was observed to effectively increase the Ih amplitude. Collectively, the regulatory effects of these compounds or herbal drugs on cellular function can be partly attributed to their perturbations on Ih. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

19 pages, 1747 KB  
Review
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies
by Maximilian J. Gerhardt, Siegfried G. Priglinger, Martin Biel and Stylianos Michalakis
Biomedicines 2023, 11(2), 269; https://doi.org/10.3390/biomedicines11020269 - 19 Jan 2023
Cited by 14 | Viewed by 4773
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by [...] Read more.
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies. Full article
(This article belongs to the Special Issue 10th Anniversary of Biomedicines—Ophthalmology Disorders)
Show Figures

Figure 1

17 pages, 1952 KB  
Review
Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents
by Sheng-Nan Wu, Chao-Liang Wu, Hsin-Yen Cho and Chi-Wu Chiang
Int. J. Mol. Sci. 2022, 23(16), 9453; https://doi.org/10.3390/ijms23169453 - 21 Aug 2022
Cited by 15 | Viewed by 3406
Abstract
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. [...] Read more.
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih’s Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih’s Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih’s Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih’s Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs)
Show Figures

Figure 1

16 pages, 2201 KB  
Article
The Modulation of Ubiquinone, a Lipid Antioxidant, on Neuronal Voltage-Gated Sodium Current
by Te-Yu Hung, Sheng-Nan Wu and Chin-Wei Huang
Nutrients 2022, 14(16), 3393; https://doi.org/10.3390/nu14163393 - 18 Aug 2022
Cited by 3 | Viewed by 2305
Abstract
Ubiquinone, composed of a 1,4-benzoquinone and naturally produced in the body, actively participates in the mitochondrial redox reaction and functions as an endogenous lipid antioxidant, protecting against peroxidation in the pituitary-dependent hormonal system. However, the questions of if and how ubiquinone directly affects [...] Read more.
Ubiquinone, composed of a 1,4-benzoquinone and naturally produced in the body, actively participates in the mitochondrial redox reaction and functions as an endogenous lipid antioxidant, protecting against peroxidation in the pituitary-dependent hormonal system. However, the questions of if and how ubiquinone directly affects neuronal ionic currents remain largely unsettled. We investigated its effects on ionic currents in pituitary neurons (GH3 and MMQ cells) with the aid of patch-clamp technology. Ubiquinone decreased the peak amplitude of the voltage-gated Na+ current (INa) with a slowing of the inactivation rate. Neither menadione nor superoxide dismutase modified the ubiquinone-induced INa inhibition. In response to an isosceles-triangular ramp pulse, the persistent INa (INa(P)) at high- and low- threshold potentials occurred concurrently with a figure-eight hysteresis loop. With ubiquinone, the INa(P) increased with no change in the intersection voltage, and the magnitude of the voltage-dependent hysteresis of the current was enhanced. Ubiquinone was ineffective in modifying the gating of hyperpolarization-activated cation currents. In MMQ lactotrophs, ubiquinone effectively decreased the amplitude of the INa and the current inactivation rate. In sum, the effects of ubiquinone demonstrated herein occur upstream of its effects on mitochondrial redox processes, involved in its modulation of sodium channels and neuronal excitability. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

18 pages, 3986 KB  
Article
Characterization of Inhibitory Capability on Hyperpolarization-Activated Cation Current Caused by Lutein (β,ε-Carotene-3,3′-Diol), a Dietary Xanthophyll Carotenoid
by Chao-Wei Chuang, Kuo-Pin Chang, Hsin-Yen Cho, Tzu-Hsien Chuang, Meng-Cheng Yu, Chao-Liang Wu and Sheng-Nan Wu
Int. J. Mol. Sci. 2022, 23(13), 7186; https://doi.org/10.3390/ijms23137186 - 28 Jun 2022
Cited by 7 | Viewed by 2583
Abstract
Lutein (β,ε-carotene-3,3′-diol), a xanthophyll carotenoid, is found in high concentrations in the macula of the human retina. It has been recognized to exert potential effectiveness in antioxidative and anti-inflammatory properties. However, whether and how its modifications on varying types of plasmalemmal ionic currents [...] Read more.
Lutein (β,ε-carotene-3,3′-diol), a xanthophyll carotenoid, is found in high concentrations in the macula of the human retina. It has been recognized to exert potential effectiveness in antioxidative and anti-inflammatory properties. However, whether and how its modifications on varying types of plasmalemmal ionic currents occur in electrically excitable cells remain incompletely answered. The current hypothesis is that lutein produces any direct adjustments on ionic currents (e.g., hyperpolarization-activated cation current, Ih [or funny current, If]). In the present study, GH3-cell exposure to lutein resulted in a time-, state- and concentration-dependent reduction in Ih amplitude with an IC50 value of 4.1 μM. There was a hyperpolarizing shift along the voltage axis in the steady-state activation curve of Ih in the presence of this compound, despite being void of changes in the gating charge of the curve. Under continued exposure to lutein (3 μM), further addition of oxaliplatin (10 μM) or ivabradine (3 μM) could be effective at either reversing or further decreasing lutein-induced suppression of hyperpolarization-evoked Ih, respectively. The voltage-dependent anti-clockwise hysteresis of Ih responding to long-lasting inverted isosceles-triangular ramp concentration-dependently became diminished by adding this compound. However, the addition of 10 μM lutein caused a mild but significant suppression in the amplitude of erg-mediated or A-type K+ currents. Under current-clamp potential recordings, the sag potential evoked by long-lasting hyperpolarizing current stimulus was reduced under cell exposure to lutein. Altogether, findings from the current observations enabled us to reflect that during cell exposure to lutein used at pharmacologically achievable concentrations, lutein-perturbed inhibition of Ih would be an ionic mechanism underlying its changes in membrane excitability. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs)
Show Figures

Figure 1

34 pages, 18408 KB  
Article
Effects of Axonal Demyelination, Inflammatory Cytokines and Divalent Cation Chelators on Thalamic HCN Channels and Oscillatory Bursting
by Tengiz Oniani, Laura Vinnenberg, Rahul Chaudhary, Julian A. Schreiber, Kathrin Riske, Brandon Williams, Hans-Christian Pape, John A. White, Anna Junker, Guiscard Seebohm, Sven G. Meuth, Petra Hundehege, Thomas Budde and Mehrnoush Zobeiri
Int. J. Mol. Sci. 2022, 23(11), 6285; https://doi.org/10.3390/ijms23116285 - 3 Jun 2022
Cited by 11 | Viewed by 5447
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects [...] Read more.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1β; IL-6; INF-α; INF-β) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1β. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1β increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1β and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines. Full article
(This article belongs to the Collection State-of-the-Art Molecular Neurobiology in Germany)
Show Figures

Figure 1

24 pages, 2875 KB  
Article
Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, If, in Adult Mouse Heart Primary Pacemaker Myocytes
by Wei Hu, Robert B. Clark, Wayne R. Giles, Colleen Kondo and Henggui Zhang
Int. J. Mol. Sci. 2022, 23(8), 4299; https://doi.org/10.3390/ijms23084299 - 13 Apr 2022
Cited by 3 | Viewed by 3624
Abstract
A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the [...] Read more.
A number of distinct electrophysiological mechanisms that modulate the myogenic spontaneous pacemaker activity in the sinoatrial node (SAN) of the mammalian heart have been investigated extensively. There is agreement that several (3 or 4) different transmembrane ionic current changes (referred to as the voltage clock) are involved; and that the resulting net current interacts with direct and indirect effects of changes in intracellular Ca2+ (the calcium clock). However, significant uncertainties, and important knowledge gaps, remain concerning the functional roles in SAN spontaneous pacing of many of the individual ion channel- or exchanger-mediated transmembrane current changes. We report results from patch clamp studies and mathematical modeling of the hyperpolarization-activated current, If, in the generation/modulation of the diastolic depolarization, or pacemaker potential, produced by individual myocytes that were enzymatically isolated from the adult mouse sinoatrial node (SAN). Amphotericin-mediated patch microelectrode recordings at 35 °C were made under control conditions and in the presence of 5 or 10 nM isoproterenol (ISO). These sets of results were complemented and integrated with mathematical modeling of the current changes that take place in the range of membrane potentials (−70 to −50 mV), which corresponds to the ‘pacemaker depolarization’ in the adult mouse SAN. Our results reveal a very small, but functionally important, approximately steady-state or time-independent current generated by residual activation of If channels that are expressed in these pacemaker myocytes. Recordings of the pacemaker depolarization and action potential, combined with measurements of changes in If, and the well-known increases in the L-type Ca2+ current, ICaL, demonstrated that ICaL activation, is essential for myogenic pacing. Moreover, after being enhanced (approximately 3-fold) by 5 or 10 nM ISO, ICaL contributes significantly to the positive chronotropic effect. Our mathematical model has been developed in an attempt to better understand the underlying mechanisms for the pacemaker depolarization and action potential in adult mouse SAN myocytes. After being updated with our new experimental data describing If, our simulations reveal a novel functional component of If in adult mouse SAN. Computational work carried out with this model also confirms that in the presence of ISO the residual activation of If and opening of ICaL channels combine to generate a net current change during the slow diastolic depolarization phase that is essential for the observed accelerated pacemaking rate of these SAN myocytes. Full article
(This article belongs to the Special Issue New Insights into Cardiac Ion Channel Regulation 2.0)
Show Figures

Figure 1

17 pages, 2327 KB  
Article
Effective Perturbations on the Amplitude and Hysteresis of Erg-Mediated Potassium Current Caused by 1-Octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino]-octanoate (SM-102), a Cationic Lipid
by Hsin-Yen Cho, Tzu-Hsien Chuang and Sheng-Nan Wu
Biomedicines 2021, 9(10), 1367; https://doi.org/10.3390/biomedicines9101367 - 1 Oct 2021
Cited by 17 | Viewed by 6515
Abstract
SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino]-octanoate) is an amino cationic lipid that has been tailored for the formation of lipid nanoparticles and it is one of the essential ingredients present in the ModernaTM COVID-19 vaccine. However, to what extent it may modify varying types of [...] Read more.
SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino]-octanoate) is an amino cationic lipid that has been tailored for the formation of lipid nanoparticles and it is one of the essential ingredients present in the ModernaTM COVID-19 vaccine. However, to what extent it may modify varying types of plasmalemmal ionic currents remains largely uncertain. In this study, we investigate the effects of SM-102 on ionic currents either in two types of endocrine cells (e.g., rat pituitary tumor (GH3) cells and mouse Leydig tumor (MA-10) cells) or in microglial (BV2) cells. Hyperpolarization-activated K+ currents in these cells bathed in high-K+, Ca2+-free extracellular solution were examined to assess the effects of SM-102 on the amplitude and hysteresis of the erg-mediated K+ current (IK(erg)). The SM-102 addition was effective at blocking IK(erg) in a concentration-dependent fashion with a half-maximal concentration (IC50) of 108 μM, a value which is similar to the KD value (i.e., 134 μM) required for its accentuation of deactivation time constant of the current. The hysteretic strength of IK(erg) in response to the long-lasting isosceles-triangular ramp pulse was effectively decreased in the presence of SM-102. Cell exposure to TurboFectinTM 8.0 (0.1%, v/v), a transfection reagent, was able to inhibit hyperpolarization-activated IK(erg) effectively with an increase in the deactivation time course of the current. Additionally, in GH3 cells dialyzed with spermine (30 μM), the IK(erg) amplitude progressively decreased; moreover, a further bath application of SM-102 (100 μM) or TurboFectin (0.1%) diminished the current magnitude further. In MA-10 Leydig cells, the IK(erg) was also blocked by the presence of SM-102 or TurboFectin. The IC50 value for SM-102-induced inhibition of IK(erg) in MA-10 cells was 98 μM. In BV2 microglial cells, the amplitude of the inwardly rectifying K+ current was inhibited by SM-102. Taken together, the presence of SM-102 concentration-dependently inhibited IK(erg) in endocrine cells (e.g., GH3 or MA-10 cells), and such action may contribute to their functional activities, assuming that similar in vivo findings exist. Full article
(This article belongs to the Special Issue Actions of Small Molecules on Varying Type of Membrane Ion Channels)
Show Figures

Figure 1

Back to TopTop