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Abstract: The visual process begins with the absorption of photons by photopigments of cone and
rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine
monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic
nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity
can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the
channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share
structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated
potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded
by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1)
result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel
(CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG
channels and describe their physiological and pathophysiological roles in the retina. Moreover, we
summarize recent activities in the field of gene therapy aimed at developing the first gene therapies
for CNG channelopathies.

Keywords: achromatopsia; CNG; cyclic nucleotide-gated channel; cGMP; channelopathies; Ca2+;
gene therapy; inherited retinal disease; IRD; knockout; photoreceptor; vision; retinitis pigmentosa; RP

1. Introduction

Cyclic nucleotides, such as cAMP and cGMP, are second messengers that regulate
important signaling pathways in our body by controlling the activity of several effector
proteins, including cyclic nucleotide-binding domain (CNBD)-containing cation channels.
Among CNBD-containing ion channels, cyclic nucleotide-gated (CNG) channels are the
only strictly ligand-gated channels because their opening requires binding of cAMP or
cGMP [1]. In vertebrates, the CNG channel gene family includes six homologous members.
CNGA1, CNGA2, and CNGA3 encode subunits that confer key channel properties and have
been shown to form functional homotetrameric ion channels in heterologous expression
systems [1]. CNGA4, CNGB1, and CNGB3 encode structurally similar subunits that cannot
form functional ion channels by themselves, but are important for the correct localization
of native channel complexes and confer specific biophysical properties to the channel [1].
Four of the CNG channel genes are linked to inherited retinal disorders (IRD): mutations in
CNGA1 and CNGB1 are known to cause retinitis pigmentosa (RP) and mutations in CNGA3
and CNGB3 cause achromatopsia (ACHM).

2. Insights on Structure and Activation of CNG Channels

Each of the six CNG channel genes encode a membrane protein with six α-helical
transmembrane segments (S1–S6), a channel core consisting of a reentrant pore (P) loop
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between S5 and S6, and cytosolic N- and C-termini. S5, S6, and the intervening reentrant
pore (P) loop form the actual pore domain [2] (Figure 1). Similar to classical voltage-
gated channels, S4 hosts multiple positively charged residues and S1–S4 form a voltage-
sensor-like domain (VSLD). However, unlike canonical voltage-gated channels, the VSLD
structure is segmented and the positively charged amino acids are not regularly spaced [3].
This hinders appropriate charge movement and helps to explain why the function of the
CNG channel does not depend on voltage [3]. The C-terminus harbors the CNBD and is
connected to the S6 via the C-linker (Figure 1). Single particle cryo-electron microscopy
structures of native human rod and cone CNG channels confirmed the heterotetrameric
3:1 stoichiometry of the native rod [4] and cone [5] channel complex previously postulated
on the basis of biophysical and biochemical experiments [6–9] (Figure 1). The native CNG
channels in the outer segments of rod photoreceptors are heterotetramers consisting of
three CNGA1 and one CNGB1 subunit. The CNG channel in the outer segments of cone
photoreceptors is formed by three CNGA3 and one CNGB3 subunit. Unlike other members
of the voltage-gated channel superfamily, but similar to HCN channels, the four subunits of
the tetrameric CNG channel complex are arranged in a non-swapped configuration where
the VSLD interacts only with the pore domain of the same subunit [3,10].

CNG channel structures captured at different activation states in the presence of
cGMP and/or pharmacological blockers revealed details about the architecture of the
ion-conducting pore and contributed to our understanding of channel function and the
effects of pathogenic mutations on channel function [4,5,11–14]. Based on comparisons of
available structures in the open and closed states and previous mutagenesis studies [15–18],
activation of the CNG channel is thought to involve coordinated movements of at least three
basic elements, the CNBD, the C-linker with its gating ring, and the channel gate [10,19].
The binding of cyclic nucleotides to the CNBD results in a rotational change of the entire C-
terminus relative to the pore. The C-linker, a domain that allosterically couples the binding
of cyclic nucleotides to the channel gate via its gating ring, also follows this rotation and
moves partially upward. The channel gate, located in the intracellular part of the S6
segment, is constricted and presumably kept in a closed state by the constant forces of the
C-linker. After binding of the ligand, the movements described above cause the inhibitory
forces of the C-linker to subside and the channel pore is opened, allowing ions to permeate.
Despite a sequence identity of only about 35%, the structures of CNGB1 and CNGA1
align well and exhibit similar domain arrangements, which results in a quite symmetrical
pore of the closed heterotetrameric CNGA1/CNGB1 channel [4]. In homotetrameric
CNG channels, all four A subunits show symmetrical rotational movements that lead
to pore opening. However, opening of the heterotetrameric CNGA1/CNGB1 channel is
asymmetrical [4]. Only the two CNGA1 subunits left and opposite of the CNGB1 subunit
show the movements known from the homomeric channel, whereas CNGB1 and the
other CNGA1 subunit barely move, resulting in an asymmetrical open-pore geometry [4].
Structures of the heteromeric cone CNG channel in different activation states are still
missing. However, the solved structures revealed an asymmetrical pore architecture
already at the closed state with an arginine residue of the CNGB1 S6 projecting directly into
and occluding the ion conduction pathway of the pore [5,14]. Mutation of this arginine to a
glycine led to a higher single channel conductance [4]. Despite these significant advances
in our understanding of the structure and function of CNG channels, there are still gaps
in our knowledge, particularly with respect to the gating mechanism of the cone CNG
channel or the N- and C-terminal regions, which, for technical reasons, could so far only
be modeled for the bovine rod CNG channel [4,5,14]. Further insights are expected from
studies aimed at determining the structure of specific pathogenic ACHM- or RP-causing
CNG channel mutants with yet unexplained effects on channel structure and function.
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Figure 1. Structure and activation of CNG channels. (A) Membrane topology of CNG channel sub-
units: 1–6, transmembrane segment 1–6; C, carboxy-terminus; CNBD, cyclic nucleotide-binding do-
main; N, amino-terminus. (B) Model of the CNG channel complex embedded in the plasma mem-
brane based on the human rod CNGA1/CNGB1 channel structure (PDB 7RHH). (C) Top and bottom 
views of the heterotetrameric human rod CNGA1/CNGB1 channel complex. (D) Subunit composi-
tion of the CNG channels from rods and cones. Structures in this figure were generated with the 
RSCB PDB 3D View tool (www.rcsb.org/3d-view/ accessed on 19 Dec 2022) based on PDB 7RHH. 

3. Role of CNG Channels in Signal Transduction in Photoreceptors 
Vertebrates have two types of highly specialized photoreceptors, rods and cones, 

which have similar but distinct phototransduction signaling cascades and enable the de-
tection of light under different ambient conditions (Figure 2). Rods mediate vision in low 
light, whereas daylight vision is conferred by cones and only to a lesser extent by rods. 
The cone visual system also enables color vision because it can discriminate between 
wavelengths by comparing inputs from two (in most vertebrates) or three (in humans and 
some nonhuman primates) types of cones, which are equipped with different cone opsin 
variants with varying spectral sensitivities [20,21]. In both rods and cones, signal trans-
duction follows the same principle and is facilitated by enzymes that control the concen-
tration of cyclic guanosine monophosphate (cGMP). In turn, cGMP controls activation of 
the CNG channel in the plasma membrane of outer segments (Figure 2). In the dark, the 
constant activity of transmembrane guanylyl cyclases results in high cGMP concentra-
tions that maintain the CNG channels in an open conformation [22,23]. CNG channels 
conduct a constant, non-inactivating Na+ and Ca2+ current (“dark current”) that depolar-
izes the photoreceptor and promotes glutamate release at the photoreceptor synaptic ter-
minals. In response to a light-triggered conformational change, opsins, being G-protein-
coupled receptors, release their G protein transducin, which in turn binds to and activates 
PDE6-type cGMP phosphodiesterases [24]. PDE6 enzymes hydrolyze cGMP, leading to 

Figure 1. Structure and activation of CNG channels. (A) Membrane topology of CNG channel
subunits: 1–6, transmembrane segment 1–6; C, carboxy-terminus; CNBD, cyclic nucleotide-binding
domain; N, amino-terminus. (B) Model of the CNG channel complex embedded in the plasma
membrane based on the human rod CNGA1/CNGB1 channel structure (PDB 7RHH). (C) Top and
bottom views of the heterotetrameric human rod CNGA1/CNGB1 channel complex. (D) Subunit
composition of the CNG channels from rods and cones. Structures in this figure were generated with
the RSCB PDB 3D View tool (www.rcsb.org/3d-view/ accessed on 19 Dec 2022) based on PDB 7RHH.

3. Role of CNG Channels in Signal Transduction in Photoreceptors

Vertebrates have two types of highly specialized photoreceptors, rods and cones, which
have similar but distinct phototransduction signaling cascades and enable the detection
of light under different ambient conditions (Figure 2). Rods mediate vision in low light,
whereas daylight vision is conferred by cones and only to a lesser extent by rods. The cone
visual system also enables color vision because it can discriminate between wavelengths by
comparing inputs from two (in most vertebrates) or three (in humans and some nonhuman
primates) types of cones, which are equipped with different cone opsin variants with
varying spectral sensitivities [20,21]. In both rods and cones, signal transduction follows
the same principle and is facilitated by enzymes that control the concentration of cyclic
guanosine monophosphate (cGMP). In turn, cGMP controls activation of the CNG channel
in the plasma membrane of outer segments (Figure 2). In the dark, the constant activity
of transmembrane guanylyl cyclases results in high cGMP concentrations that maintain
the CNG channels in an open conformation [22,23]. CNG channels conduct a constant,
non-inactivating Na+ and Ca2+ current (“dark current”) that depolarizes the photoreceptor
and promotes glutamate release at the photoreceptor synaptic terminals. In response
to a light-triggered conformational change, opsins, being G-protein-coupled receptors,
release their G protein transducin, which in turn binds to and activates PDE6-type cGMP
phosphodiesterases [24]. PDE6 enzymes hydrolyze cGMP, leading to CNG channel closure
and photoreceptor hyperpolarization, thus reducing synaptic glutamate release. Ca2+

www.rcsb.org/3d-view/
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influx into the outer segments is mediated exclusively by the CNG channels [1,25,26] and
balanced by Ca2+ outflow via the Na+/Ca2+, K+ exchangers [25,27–30]. The closure of
CNG channels upon light stimulation, together with the constant activity of Na+/Ca2+,
K+ exchangers, leads to a decrease in intracellular Ca2+ concentration. This reduced Ca2+

contributes to recovery from the light response by modulating the activities of PDE6 and
guanylyl cyclases [24,31–33].

Biomedicines 2023, 11, x FOR PEER REVIEW 4 of 19 
 

CNG channel closure and photoreceptor hyperpolarization, thus reducing synaptic glu-
tamate release. Ca2+ influx into the outer segments is mediated exclusively by the CNG 
channels [1,25,26] and balanced by Ca2+ outflow via the Na+/Ca2+, K+ exchangers [25,27-
30]. The closure of CNG channels upon light stimulation, together with the constant ac-
tivity of Na+/Ca2+, K+ exchangers, leads to a decrease in intracellular Ca2+ concentration. 
This reduced Ca2+ contributes to recovery from the light response by modulating the ac-
tivities of PDE6 and guanylyl cyclases [24,31-33]. 

 
Figure 2. Role of CNG channels in rod and cone photoreceptor signaling. Phototransduction in outer 
segments of rod (A) and cone (B) photoreceptors. The principle of the phototransduction is similar 
in both cell types, but key proteins are encoded by distinct but homologous genes (human gene 

Figure 2. Role of CNG channels in rod and cone photoreceptor signaling. Phototransduction in outer
segments of rod (A) and cone (B) photoreceptors. The principle of the phototransduction is similar in
both cell types, but key proteins are encoded by distinct but homologous genes (human gene names
are indicated in the boxes next to the proteins). In the dark, the cyclic nucleotide-gated (CNG) channel
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(CNGA1/B1 in rods and CNGA3/B3 in cones) of the outer membrane is kept open by high concen-
trations of cyclic guanosine monophosphate (cGMP) produced by retinal guanylyl cyclase (retGC)
(note: GUCY2E is a pseudogene in humans, whereas Gucy2e is functional in rodents and the major
retGC encoding gene). The resulting influx of Na+ and Ca2+ depolarizes the plasma membrane. Light
activates the opsin, which in turn activates transducin (Gt), whose alpha subunit activates a phospho-
diesterase (PDE6) that leads to hydrolysis of cGMP. The decrease in the cGMP concentration leads
to the closure of the CNG channel, resulting in membrane hyperpolarization. Ca2+ is an important
regulator of phototransduction. At high concentrations, Ca2+ binds to guanylyl-cyclase-activating
proteins (GCAP), leading to the inhibition of retGC. High Ca2+ concentrations also lead to a slight
reduction in the cGMP affinity of the CNG channel through Ca2+/calmodulin-mediated feedback
inhibition (not illustrated). Ca2+ is cleared from the outer segment via a Na+-Ca2+-K+-exchanger
(NCKX1 in rods, NCKX2/4 in cones). At low Ca2+ levels, Ca2+-free GCAPs can bind and activate
retGC to stimulate cGMP production and reopen the CNG channel.

The key activities in this phototransduction cascade are the same in rods and cones but
are often mediated by functionally equivalent proteins encoded by distinct genes. This is
also the case for the rod and cone CNG channels, which have basically the same functional
properties and differ only in some specific features. Notable examples are the higher Ca2+

permeability of the cone CNG channel and the stronger Ca2+-dependent inhibition of
ligand sensitivity in the rod CNG channel [1,34]. However, these differences cannot fully
explain the different sensitivity and kinetics of rods and cones [1,35].

4. Genetics and Biology of the Rod and Cone CNG Channel
4.1. The Rod CNGA1/CNGB1 Channel

Dysfunction of the rod CNG channel causes autosomal recessive retinitis pigmentosa
(RP) [36,37]. RP comprises a genetically diverse group of progressive degenerative retinal
diseases primarily affecting the photoreceptors of the retina [38]. Common symptoms
of RP include night blindness, progressive constriction of the visual field, and abnormal
migration and accumulation of pigment in the retina [39]. The disease is characterized
by a primary loss of rod function followed by degeneration and loss of rod photorecep-
tors, which can vary from patient to patient depending on the underlying gene mutation.
As rod loss progresses, cone photoreceptor morphology and function become impaired,
affecting daylight vision. This leads to a gradual constriction of the visual field under
daylight conditions. In advanced stages, RP leads to impaired visual acuity and may lead
to blindness in the final stage. More than 70 genes have already been linked to RP, with
different forms of inheritance [40] (see also https://web.sph.uth.edu/RetNet/ accessed
on 19 December 2022). Many RP genes encode proteins involved in the phototransduction
cascade (Figure 2) or proteins required for the maintenance of photoreceptor architecture.
CNGA1 (OMIM #123825) and CNGB1 (OMIM #600724) are linked to autosomal recessive
RP (arRP). The prevalence of mutations that cause CNGA1-RP varies in different geo-
graphic regions ranging from 1–8% of arRP [37,38,41–44]. Most of the identified CNGA1
mutations cause deletions of key functional domains or result in impaired membrane
trafficking [1,2,37,45]. Mutations in CNGB1 account for 1–4% of arRP cases, and again the
prevalence is expected to vary in different geographic areas [36,38,40,42,46–49]. Although
the known CNGB1 mutations cause only minor deletions or single amino acid substitutions,
the phenotype is comparable to the RP phenotype in CNGA1-RP patients. Functional
characterization studies of some CNGB1 mutations have been performed, showing that
some mutations affect rod CNG channel stability or transport, whereas others do not affect
expression but result in functionally inactive CNG channels [36,48,50,51].

Today, animal models exist for both CNGA1-RP and CNGB1-RP [52–58] (Table 1).
However, most phenotypic data come from Cngb1 animal models, some of which have been
available for more than two decades and have been extensively characterized [54–57,59–62].

A naturally occurring Cnga1 mutation has been identified in a Shetland sheepdog
breed with progressive retinal atrophy [52]. However, detailed information on the retinal

https://web.sph.uth.edu/RetNet/
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phenotype is still missing. Recently, a mouse model with a targeted deletion in exon 2
of Cnga1 was reported [53]. Cnga1 knockout mice carry a 65-bp frame-shift deletion that,
although not experimentally verified at the protein level, should lead to a premature stop
codon and loss of most of the Cnga1 protein shortly after deletion. Homozygous mice show
loss of most photoreceptors at 16 weeks of age [53]. Dark-adapted electroretinogram (ERG)
responses to a single flash of 3 cd*s/m2 were greatly reduced in these mice after 3 weeks,
which further decreased after 10 weeks [53]. More recently, an N-ethyl-N-nitrosourea
(ENU)-induced Cnga1 mutant mouse model was generated and characterized [63]. The
mutant mice carry a c.1526 A > G mutation in Cnga1 that leads to a Y509C exchange in the
CNBD of the Cnga1 protein. Y509 corresponds to Y513 in the human CNGA1 protein and
participates in the formation of the b3 strand of the CNBD [1]. The Y509C mutation appears
to impair the stability of the rod CNG channel complex, resulting in a complete loss of
Cnga1 and Cngb1 proteins despite largely unchanged mRNA levels. As a result, rod-driven
ERG responses were diminished by 3 weeks of age. Non-functional rods degenerated over
time, and from the sixth month of life, secondary progressive degeneration of cones was
observed, which was completed by 1 year of age, a time point at which ERG responses
were no longer measurable [63].

Nearly two decades ago, a first Cngb1 knockout mouse model was described [54].
This mouse model carries a deletion of exon 26 of the Cngb1 gene which encodes S6.
The deletion also leads to a reading frame shift that generates a stop codon at the first
triplet of exon 27, thus terminating translation [54]. This leads to a loss of Cngb1 protein
expression, but also to degradation of the Cnga1 protein, which appears to require Cngb1
for proper expression. These Cngb1-X26 knockout mice completely lack rod CNG channel
function which manifests in diminished responses of rods to light and reduced scotopic
ERG responses. The dysfunction is paralleled by the progressive degeneration of the
rods and the secondary degeneration of the primarily unaffected cones. Degeneration of
the cone photoreceptors begins at 6 months of age, when approximately 50% of the rods
have been lost. At about 1 year of age, only 10–20% of the photoreceptors are left in the
retina [54]. Overall, the phenotypes of Cngb1- and Cnga1-deficient mice are very similar
in terms of disease manifestation and progression. This is most likely because the loss of
either CNG channel subunit leads to the secondary degradation and loss of the remaining
CNG channel subunit protein. In both cases, this results in a complete loss of the rod CNG
channel complex and its functions, which explains the phenotypic similarities observed in
the corresponding mouse models.

A spontaneous mutation in CNGB1 was also found in a Papillon dog breed with
markedly reduced or absent rod function and slowly progressive retinal degeneration [55].
Interestingly, this c.2387delA;2389_2390insAGCTAC mutation found in this naturally oc-
curring dog model leads to premature termination of the Cngb1 protein at almost the same
position as in the engineered Cngb1-X26 mice [54,55,58]. Comparative analyses revealed
that CNGB1-RP patients and mouse and dog models with Cngb1 deficiency have a sim-
ilar phenotype characterized by early loss of rod function and slow degeneration of rod
photoreceptors along with a secondary decrease in cone function [59]. The existence of
this canine model for CNGB1-RP is of great importance for evaluating the translational
potential of future gene therapies. This is due to the structural similarities of canine and
human eyes in terms of size and, to some extent, in terms of the spatial distribution of
photoreceptor subtypes (e.g., the canine eye has a cone-rich visual stripe that partially
mimics the human macula). Moreover, the fact that CNGB1 mutant dogs and Cngb1-X26
mice have genetic alterations that result in the termination of the transcript at an almost
identical position increases confidence in extrapolating results from the two models to the
situation in humans.

The CNGB1 locus encodes multiple transcripts with distinct expression patterns.
The longest transcript uses all 33 exons and produces the CNGB1 (also termed CNGB1a)
subunit of the rod CNG channel [64]. The first 11 or 16 exons (including a unique alternative
exon) [64] give rise to separate cytosolic proteins corresponding to portions of the glutamic-
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acid-rich protein (GARP) in the N terminus of CNGB1a. Another mouse model with
a genetic modification in exon 1 of Cngb1 (Cngb1-X1 mice) was generated to study the
effect of GARP deletion [56]. In principle, Cngb1-X1 mice exhibited similar functional
defects as Cngb1-X26 mice, but they showed more dramatically impaired outer rod segment
morphology, suggesting that soluble and channel-bound GARP proteins are essential for
rod disc morphogenesis and outer segment integrity. Additional studies have shown that
channel-attached and soluble GARPs are inherently unfolded [65] and play distinct roles in
shaping the morphology of the outer rod segment, transport, and function of the CNG rod
channel [50,61,64,66–69]. These findings are relevant to CNGB1-RP patients who harbor
mutations in parts of the CNGB1 locus that give rise to GARP proteins.

4.2. The Cone CNGA3/CNGB3 Channel

Dysfunction of the cone CNG channel causes achromatopsia (ACHM), a rare retinal
disease that is inherited in an autosomal recessive manner and affects approximately one
in 30,000 individuals [70]. Unlike color blindness, in which mutations in genes encoding
the various cone photopigments affect only spectral sensitivity [71], ACHM has severe
consequences for all aspects of daylight vision. Symptoms include poor visual acuity,
photophobia, nystagmus, and lack of color discrimination [72]. The symptoms reflect a
functional defect of the cone photoreceptors that occurs in early infancy and is characterized
by a lack of light-adapted ERG but preserved scotopic ERG signal [73,74]. In addition to the
functional deficits, structural changes can be observed in the cone-rich central portion of
the retina, ranging from loss of cone outer segments to profound atrophy of the retina [72].
Up to 90% of ACHM cases are due to mutations in CNGA3 (OMIM #216900) and CNGB3
(OMIM #262300) [75–77]. The remaining cases are due to mutations in ATF6 (OMIM
#616517), GNAT2 (OMIM #613856), PDE6C (OMIM #613093), PDE6H (OMIM #610024), or
yet unknown genes [78,79].

To date, more than 250 mutations in CNGA3 [80–88] and more than 160 mutations in
CNGB3 [76,77,80,83,89–94] were found to cause ACHM in humans. Mutations in CNGB3
are more common in Europe and the United States and account for 50–60% of ACHM
cases [76,89], and in the Netherlands even close to 90% [83]. Most CNGB3 mutations are
nonsense, frameshift, or splice mutations [77,80]. A missense mutation in the CNGB3 gene
(S435F) was identified in colorblind individuals originating from the Pingelap atoll of
Micronesia [90]. In this small island ACHM is very frequent and affects nearly 10% of the
native population [90,91,95–97]. An estimated 28–36% of patients in the Western population
carry mutations in CNGA3 (ACHM2) [81,84]. In the Middle East and Chinese populations,
mutations in CNGA3 account for approximately 80% of ACHM cases [42,80,98,99]. Interest-
ingly, a digenic and triallelic inheritance pattern with mutations in both CNGA3 and CNGB3
was also found in a subset of ACHM patients [100]. The majority of CNGA3 mutations are
missense mutations affecting only single amino acid residues of the protein [81–86,88]. Fold-
ing, intracellular processing, and transport are thought to be impaired [101]. While some
insights have been gained, the precise mechanisms linking specific amino acid substitutions
to the ACHM phenotype are still poorly understood. The effects of individual amino acid
substitutions on CNGA3 protein function have been studied largely in vitro [85,100–116].

Several genetically modified and naturally occurring animal models of ACHM exist
(Table 1) that have helped to elucidate disease mechanisms and serve as disease models
for the preclinical development of emerging gene therapies [58,70]. The first animal model
of ACHM described was the Cnga3 knockout mouse, which carries a homozygous dele-
tion of exon 7, leading to the deletion of all channel domains downstream of the third
transmembrane segment (S3), including the pore and the CNBD [117]. This results in a
complete loss of cone CNG channel function. As a consequence, Cnga3 knockout mice show
a selective deficiency of cone-mediated light responses from birth [117], followed by the
progressive degeneration and cell death of cones [117,118]. Cone degeneration affects M-
and S-cones differentially and cell death proceeds significantly faster in ventral and nasal
(S-cone-rich) than in dorsal and temporal (M-cone-rich) parts of the retina. Ventral cones are
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almost completely missing after the third postnatal month, whereas residual dorsal cones
are present even in aged knockout mice [118]. In addition, a naturally occurring mouse
model of ACHM has been described. The mouse line designated cpfl5 (cone photoreceptor
function loss 5) carries a point mutation in Cnga3 leading to a p.T203A substitution in
the cytoplasmic loop between S2 and S3. To date, no missense mutation affecting this
phylogenetically conserved threonine, corresponding to p.T224 in human CNGA3 protein,
has been reported. Although the exact mechanism remains unclear, this mutation results in
the loss of Cnga3 protein expression and a phenotype similar to that observed in the Cnga3
knockout mouse [119].

Moreover, a naturally occurring sheep model of ACHM was reported with congenital
visual impairment characterized by diminished cone, but normal rod function [120,121]. Af-
fected lambs were found to be homozygous for a nonsense mutation in Cnga3 (p.R236X) [121].
Subsequently, a Cnga3 missense mutation (p.G540S) was identified in another breed, caus-
ing a similar phenotype of day blindness [120]. In addition, two spontaneous canine
models of ACHM have been described [122]. One is a Labrador retriever with a p.V644del
mutation that removes a conserved valine within a C-terminal domain shown to be im-
portant for heterotetrameric channel assembly and stability [6]. The second model is a
German shepherd, carrying a p.R424W mutation. This amino acid is found in the gating
ring within the C-linker that connects transmembrane domain S6 with the CNBD and is
conserved in eukaryotes. Importantly, a mutation that leads to a R-to-W substitution of
the corresponding human CNGA3 sequence (p.R410W) was also found in achromatopsia
patients [82]. Recent cryo-electron microscopy (cryo-EM) studies with the C. elegans channel
tax-4 version (CNGA3/p.R421W) have shed light on the potential pathogenic mechanism
of this missense mutation [11]. Careful analysis of cryo-EM data in conjunction with elec-
trophysiological and biochemical data led to the conclusion that this R-to-W substitution in
the gating ring destabilizes the closed state of the channel and favors spontaneous channel
opening in the absence of the ligand [11]. Thus, if the channel is expressed in the cone
outer segments of CNGA3/p.R421W patients, its excessive activity could induce (e.g.,
Ca2+-mediated) cell death and cone degeneration.

Various animal models also exist for CNGB3-linked ACHM (Table 1). A Cngb3 knock-
out mouse with a genetic deletion that causes a frame shift and removes part of S1 and
all other channel domains has been described [123]. These knockout mice lack Cngb3
protein expression and show strongly reduced Cnga3 protein levels. The lack of the cone
CNG channel severely impairs cone function and leads to progressive cone degeneration
reminiscent of the Cnga3 knockout mouse phenotype [123,124]. Residual cone function is
observed in this model, most likely conferred by irregular homomeric CNGA3 channels.
In addition to the Cngb3 knockout mouse, a naturally occurring mouse model designated
cpfl10 has been described [125]. The mice carry a c.692G>A point mutation leading to
p.R231H [125]. Basic characterization of the mouse line revealed a loss of cone-driven ERG
responses and slow progressive degeneration of the cones [125].

Two naturally occurring canine cone degeneration models with mutations in Cngb3
have been identified in Alaskan malamute and German shorthaired pointer breeds [126].
Genetic analysis has shown that in the Alaskan malamute, the complete gene is deleted,
while in the German shorthaired pointers the disease is caused by a missense mutation
c.784G > A;p.D262N affecting a conserved aspartate residue in S2 [126]. Affected Alaskan
malamute pups develop day blindness and photophobia resembling the clinical phenotype
of human ACHM patients. Symptoms are present only in bright light, while vision in dim
light is normal. The cone ERG signals begin to diminish a few weeks after birth and are
extinguished in older affected dogs [127]. Recently, a viral vector-delivered CRISPR-Cas9
strategy was used to generate an in situ knockout model of CNGB3-ACHM in cynomolgus
monkeys [128]. This acute model can provide valuable information about the pathobiology
of CNGB3 deficiency in a non-human primate retina with a foveo-macular structure similar
to that in the human eye.
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The existence of the numerous animal models of CNGA3- and CNGB3-ACHM not
only contributes to a better understanding of the biology of the cone CNG channel, but
also greatly facilitates the development and testing of potential treatments. As mentioned
for the rod CNG channel, the availability of the large animal models with morphological
similarities to the human eye (in terms of size and cell distribution) is of paramount
importance for translational studies. Other than for rod CNG channel models, Cnga3-
and Cngb3-deficient mouse models exhibit some phenotypic differences, possibly due to
cone-specific morphologic features that, in the absence of Cngb3, still allow a more efficient
transport of homotetrameric Cnga3 channels to the outer segment, thereby supporting
residual CNG channel function. However, in the absence of Cnga3, Cngb3 cannot support
channel function on its own.

Table 1. Overview of retinal CNG genes, associated human diseases, animal models, and preclinical
studies. NCT ID, www.clinicaltrials.gov identifier (accessed on 19 December 2022). OMIM, Online
Mendelian Inheritance in Man. POC, prove of concept.

Gene Chromosomal
Location

Phenotype,
OMIM Animal Models POC

Studies

Preclinical
Safety

Studies

Clinical
Trials

(NCT ID)

CNGA1 4q12 RP49,
613756

knockout mouse [53]
mutant mouse [63]
canine model [52]

- - -

CNGB1 16q21 RP45,
613767

knockout mouse [54,56]
canine model [55,57,59]

Refs.
[59,129,130] - -

CNGA3 2q11.2 ACHM2,
600053

knockout mouse [117]
mutant mouse [131]
canine model [122]
ovine model [121]

Refs.
[119,132–138]

Refs.
[137–142]

02610582
02935517
03758404
03278873

CNGB3 8q21.3 ACHM3,
605080

knockout mouse [123]
mutant mouse [125]
canine model [126]

in situ NHP model [128]

Refs. [143–145] Refs.
[146–148]

02599922
03001310
03278873

5. Gene Therapy for the Treatment of CNG Channelopathies

To date, there is no curative treatment for any CNG channelopathy, and clinical
treatment is currently limited to specialized genetic counseling, use of visual aids, and tinted
contact lenses or glasses to reduce symptoms of photophobia. Our improved understanding
of CNG channel biology, the availability of suitable animal models, and the emergence of
efficient and safe adeno-associated virus (AAV) vectors led to the initiation of several gene
therapy programs for potential treatment of CNG-channel-related retinopathies (Table 1).

ACHM and RP caused by mutations in CNG channel genes are inherited in an autoso-
mal recessive manner. Unlike most autosomal inherited retinopathies, it is not necessary to
remove a (dominant) pathogenic variant, and the addition of a functional gene copy would
be sufficient for therapeutic benefit. Therefore, the gene therapy approaches aim at adding
a healthy copy of the disease-causing gene into the affected cells (in this case, the cone
or rod photoreceptors). Some of these so-called gene supplementation (or augmentation)
approaches have already reached the clinical phase of development. The following sections
provide an introduction into the AAV vector technology and summarize the key findings
of preclinical studies and publicly available data from clinical trials.

5.1. The AAV Vector Technology

AAVs are small (diameter of 25 nm), non-enveloped, non-pathogenic DNA viruses
that can only replicate in the presence of adeno, papilloma, or herpes viruses. Multiple
naturally occurring AAV serotypes exist and have been explored for their use as vectors for
gene transfer [149,150]. The AAV vector platform has already been clinically validated, and
five gene therapy products have been approved for ophthalmic, CNS, and other indications

www.clinicaltrials.gov
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in recent years (www.ema.europa.eu and www.fda.gov accessed on 19 December 2022).
More than three decades ago, AAVs were vectorized by the replacement of the viral genes
rep and cap with a gene expression cassette of choice [151]. The AAV rep and cap genes
are provided in trans during recombinant AAV production process in form of helper
plasmids [152]. AAVs consist of a 60-mer capsid of structural viral proteins (VP1, VP2, and
VP3) assembled in a 5:5:50 ratio and an approximately 4.7 kb long single-stranded DNA
genome containing the desired gene expression cassette for the gene of interest, flanked by
two inverted terminal repeats (ITR) [153]. Such AAV-derived viral vectors can deliver their
genome into the target cell nucleus where it remains episomal and transcribes the gene
of interest without integrating into the host genome. In recent years, AAV vectors have
evolved as the gold standard gene delivery vector for retinal photoreceptors and retinal
pigment epithelial cells with proven tropism and efficacy. Their success is based on the fact
that they are easy to produce at large scale and show a generally good safety profile with
limited immunogenicity and dose-dependent toxicity [154,155].

5.2. Gene Therapy for CNG-Channel-Linked RP

To date, there are no gene therapy approaches for CNGA1-linked RP. For CNGB1-
linked RP, successful proof-of-concept studies for AAV-based gene supplementation have
been reported in both the Cngb1 knockout mouse model [129] and the Cngb1 mutant dog
model [59]. To enable the efficient packaging and rod-specific expression of the relatively
large full-length Cngb1 cDNA (~4 kb), the two studies used an AAV expression cassette
with a short rod- [129] or photoreceptor-specific [59] promoter to drive expression of a
species-matched Cngb1 cDNA (e.g., mouse or canine). In both species, subretinal injection of
therapeutic AAV gene supplementation vectors (serotype 5 or 8) led to efficient expression
of the Cngb1 protein and the restoration of CNG channel expression and localization.
This resulted in the improvement of rod-mediated retinal function, preservation of retinal
structure, and delay of secondary cone degeneration. Finally, treated Cngb1 knockout mice
as well as CNGB1 mutant dogs performed significantly better than untreated controls in
rod-dependent vision-guided behavior tests [59,129]. These promising results facilitated the
initiation of translational studies with a humanized vector version (AAV5-RHO-CNGB1)
in which a short human rhodopsin promoter drives expression of the full-length human
CNGB1 [130]. When administered via single subretinal injection in 4-week-old Cngb1
knockout mice, AAV5-RHO-CNGB1 led to efficient expression of the human CNGB1 protein
in mouse rods and restored the expression of the endogenous mouse Cngb1 protein [130].
The treatment resulted in a dose-dependent recovery of rod-driven ERG responses and
the preservation of retinal structure [130]. Studies in large animal models are currently
underway to support the implementation of this gene therapy approach for the future
treatment of CNGB1-RP patients.

5.3. Gene Therapy for CNG-Channel-Linked ACHM
5.3.1. ACHM Gene Therapy: Preclinical Proof-of-Concept Studies

An AAV5 vector expressing human CNGB3 cDNA under control of one of three differ-
ent truncated versions of the human M/L opsin promoter was evaluated in a gene augmen-
tation approach in dogs affected by achromatopsia due to mutations in CNGB3 [143]. The
dogs were injected unilaterally into the subretinal space at 3 to 81 weeks of age. Improve-
ment in cone function was observed as early as 4 weeks after treatment under photopic
conditions using ERG and behavior and persisted for at least 14 months. The best treatment
results were achieved in 3-week-old-animals, whereas treatment was minimally effective in
dogs 1 year of age and older [143]. The exact reasons for the age-dependence of treatment
are not known, but could be related to morphological changes observed in later stages of
the disease. Accordingly, efficacy in this dog model was improved in older dogs when the
AAV gene augmentation was combined with the administration of ciliary neurotrophic
factor (CNTF), which is known to cause a temporal deconstruction of photoreceptor outer
segments [144].

www.ema.europa.eu
www.fda.gov
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A positive proof-of-concept for gene supplementation therapy with an AAV5 vec-
tor driving expression of mouse Cnga3 cDNA under control of a short mouse S opsin
promoter was also achieved in the Cnga3 knockout mouse model of achromatopsia [132].
Two-week-old mice treated with subretinal injection showed cone-driven ERG responses,
normalization of cGMP levels and expression of cone CNG channel complexes and opsins,
and delay of cone cell death. In addition, ganglion cells from treated but not untreated
Cnga3 knockout mice showed cone-driven light-evoked spiking activity, suggesting that sig-
nals generated in the outer retina are transmitted to the brain. Finally, it was demonstrated
that the newly acquired sensory information was translated into cone-mediated, vision-
guided behavior [132]. The therapeutic effect was stable for at least 12 months and was
also seen with an AAV8 serotype vector or with treatment at 3 months of age [133]. Similar
effects were obtained in different Cnga3 mouse models after subretinal administration of
an AAV5 vector and the human M/L opsin promoter [119] as well as intravitreal delivery
of engineered AAV8 (Y447, 733F) [134] or AAV2.GL [135] vectors. In line with the dog
studies, an AAV8 vector driving expression of the human CNGB3 cDNA under control of a
short human ARR3 promoter was shown to efficiently rescue cone-driven ERG responses
and visual acuity in the Cngb3 knockout mouse model of achromatopsia [145]. Successful
AAV-based gene supplementation therapy has also been described in the Awassi sheep
model of CNGA3 achromatopsia [136]. Significant long-term improvement in cone function
was demonstrated for at least 6 years after a single dose of an AAV vector expressing
human CNGA3 [137,138].

These promising preclinical studies led to the initiation of a total of five independent
gene therapy programs for CNGA3- and CNGB3-linked achromatopsia. Safety studies
in sheep and non-human primates revealed some inflammation after subretinal CNGA3
gene delivery, but overall showed an acceptable safety profile for at least two different
translatable CNGA3 gene therapy products [138–140,156]. Safety data have not yet been
published for the third CNGA3 gene therapy product. For one of the two CNGB3 programs,
safety data obtained in mice, dogs, and cynomolgus monkeys were published showing
acceptable safety with vector- and dose-dependent inflammation and toxicity [146–148].

5.3.2. ACHM Gene Therapy: Clinical Studies

All of the aforementioned translational programs for CNGA3- and CNGB3-linked
achromatopsia have already reached the clinical phase [70] (Table 1). The German aca-
demic research consortium RD-CURE initiated the first clinical trial which evaluated the
effect of three different doses (1 × 1010, 5 × 1010, and 1 × 1011 total vector genomes per
eye) of AAV8.CNGA3 administered via subretinal injection into one eye. The study en-
rolled nine patients in three dose groups. Despite the highly invasive delivery procedure,
which involved vitrectomy and the detachment of the foveo-macular retina, the treatment
was well tolerated and resulted in dose-independent mild and transient procedure- or
drug-related adverse events [157,158] and transient subclinical induction of inflammatory
markers [140,142]. Treatment led to improvement in secondary end points related to cone
function, including improvement in visual acuity and contrast sensitivity from baseline in
all treated patients [158], which showed a tendency to be dose-dependent and persisted
until at least 3 years after treatment [157]. A phase IIb clinical trial targeting treatment of
the second eye of the first patients and treatment of children aged 6 to 12 years is currently
ongoing (Table 1).

Four other programs are currently in phase I/II of clinical trials, two on CNGA3-
ACHM and an additional two on CNGB3-ACHM (Table 1). Preliminary safety and ef-
ficacy data from industry-sponsored clinical trials testing the safety and efficacy of the
gene therapy products AGTC-401 and AGTC-402 in CNGB3- and CNGA3-related achro-
matopsia, respectively, were presented at the annual meeting of the American Society for
Vision Research and Ophthalmology (ARVO). Both gene therapy products used a modified
AAV2 capsid with three surface-exposed Y to F mutations (Y275F, Y447F, and Y733F),
and designated AAV2tYF and a 1.7 kb human M/L opsin promoter driving expression
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of either CNGA3 or CNGB3. The AGTC-401 study enrolled 21 adult and 10 pediatric
CNGB3 achromatopsia patients in six dose groups (1.2 × 1011 vector genomes (vg)/mL to
3.2 × 1012 vg/mL). The AGTC-402 trial included 16 adult and 8 pediatric CNGA3 achro-
matopsia patients distributed into five dose groups (4 × 1010 vg/mL to 3.2 × 1012 vg/mL).
In both studies, dose-limiting toxicity was noted at the highest dose (3.2 × 1012 vg/mL)
in children, which included uveitis and posterior segment changes. The highest dose
was better tolerated in adult patients. Gene therapy improved photosensitivity in some
CNGB3-ACHM patients but less in CNGA3-ACHM patients. Long-term follow-up studies
were initiated for both programs (Table 1), but recently, the company announced that the
CNGA3-ACHM program will not be developed further. The other industry-sponsored
CNGA3 and CNGB3 gene therapy programs have released only limited safety data at
clinicaltrials.gov (https://clinicaltrials.gov/ct2/show/results/NCT03758404, accessed on
19 December 2022), but communicated plans to initiate late-stage clinical studies.

6. Conclusions and Outlook

The four retinal CNG channelopathies are severe inherited retinopathies leading
to either achromatopsia or a retinitis pigmentosa phenotype. Although they are rare
disorders, the estimated total number of affected patients is a quarter of a million [42].
Several well-characterized small and large animal models have contributed to a better
understanding of the underlying pathomechanisms and are important for preclinical testing
of novel therapies based on AAV vectors. Gene therapy programs targeting CNGA3- or
CNGB3-linked ACHM are already in early clinical development but need to demonstrate
clinical proof-of-concept in pivotal clinical trials before marketing approval can be granted.
Additional programs for CNG-linked RP are expected to follow in the near future to address
the remaining gaps in the treatment of CNGA1- and CNGB1-linked forms of RP.
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