Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = hyper-arid ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1003 KB  
Article
Exploring and Documenting Wadi Phycodiversity: Cosmarium yassinii sp. nov. (Desmidiaceae, Charophyta)—A New Desmid Species from Egypt
by Abdullah A. Saber, Mostafa M. El-Sheekh, Forough Salehipour-Bavarsad, Hoda H. Senousy, Nicola Angeli, Frans A. C. Kouwets and Marco Cantonati
Water 2026, 18(2), 246; https://doi.org/10.3390/w18020246 - 16 Jan 2026
Viewed by 123
Abstract
A new desmid microalga species, Cosmarium yassinii A.A. Saber, El-Sheekh, Kouwets et Cantonati sp. nov., was isolated from two hyper-arid mountain valleys, so-called “wadis”, in the Eastern Desert of Egypt. The distinctive morphological features of this new species were established using light and [...] Read more.
A new desmid microalga species, Cosmarium yassinii A.A. Saber, El-Sheekh, Kouwets et Cantonati sp. nov., was isolated from two hyper-arid mountain valleys, so-called “wadis”, in the Eastern Desert of Egypt. The distinctive morphological features of this new species were established using light and scanning electron microscopy observations, and also by documenting its life-cycle stages. Taxonomically, C. yassinii is characterized by a cell wall sculpture consisting of isolated granules or small warts arranged circularly in the swollen mid-region of each semicell, never forming parallel vertical ridges or costae as in morphologically similar species, and the interesting shape of the marginal granules appears as small emarginate “combs” or crenae, including its knobby zygospores. Similarities and differences with the morphologically most closely related species are discussed in detail. Ecologically, C. yassinii seems to prefer alkaline freshwater environments with lower nutrient concentrations and a NaCl/HCO3 water type. The detailed assessment and documentation of the biodiversity of these peculiar freshwater ecosystems are a fundamental prerequisite to adequately inform their protection strategies. Full article
(This article belongs to the Special Issue Protection and Restoration of Freshwater Ecosystems)
16 pages, 2475 KB  
Article
Assessing the Crucial Role of Marine Fog in Early Soil Development and Biocrust Dynamics in the Atacama Desert
by María del Pilar Fernandez-Murillo, Erasmo Cifuentes, Antonia Beggs, Marlene Manzano, Ignacio Gutiérrez-Cortés, Constanza Vargas, Camilo del Río and Fernando D. Alfaro
Soil Syst. 2026, 10(1), 12; https://doi.org/10.3390/soilsystems10010012 - 13 Jan 2026
Viewed by 101
Abstract
Marine fog is a key non-rainfall water source that sustains microbial activity and transports dissolved nutrients inland, influencing early soil development in hyperarid ecosystems. However, the mechanisms through which sustained fog inputs drive soil surface modification and biocrust formation remain poorly understood. This [...] Read more.
Marine fog is a key non-rainfall water source that sustains microbial activity and transports dissolved nutrients inland, influencing early soil development in hyperarid ecosystems. However, the mechanisms through which sustained fog inputs drive soil surface modification and biocrust formation remain poorly understood. This study evaluated the effects of long-term fog augmentation on soil surface development, biocrust dynamics, and associated microbial communities in the Atacama Desert. We implemented a four-year fog addition field experiment with three sampling times (T0, T24, T48) to assess changes in soil physicochemical properties, biocrust composition, and the integrated multi-diversity of archaea, bacteria, fungi and protist. Sustained fog input transformed bare soils into biological soil crusts, particularly lichen- and moss-dominated stages. This transition was accompanied by increases in soil nitrogen, variations in organic matter accumulation, a shift from alkaline to near-neutral pH, and improvements in soil stability and water retention. Multi-diversity increased over time and was positively associated with ecosystem variables linked to water availability, structural stabilization, and decomposition. These functions, integrated into an ecosystem multifunctionality index, also increased under prolonged fog input, revealing a positive relationship between multifunctionality and multi-diversity. Overall, the results demonstrate that sustained fog input strongly enhances early soil surface development and biocrust establishment, highlighting the ecological importance of marine fog in shaping biodiversity and ecosystem functioning in hyperarid landscapes. Full article
(This article belongs to the Special Issue Microbial Community Structure and Function in Soils)
Show Figures

Graphical abstract

29 pages, 2977 KB  
Article
Metagenomic Profiling Reveals the Role of Soil Chemistry–Climate Interactions in Shaping the Bacterial Communities and Functional Repertories of Algerian Drylands
by Meriem Guellout, Zineb Guellout, Hani Belhadj, Aya Guellout, Antonio Gil Bravo and Atef Jaouani
Eng 2026, 7(1), 40; https://doi.org/10.3390/eng7010040 - 12 Jan 2026
Viewed by 193
Abstract
Arid and semi-arid soils represent extreme habitats where microbial life is constrained by high temperature, low water availability, salinity, and nutrient limitation, yet these ecosystems harbor unique bacterial communities that sustain key ecological processes. To explore the diversity and functional potential of prokaryotic [...] Read more.
Arid and semi-arid soils represent extreme habitats where microbial life is constrained by high temperature, low water availability, salinity, and nutrient limitation, yet these ecosystems harbor unique bacterial communities that sustain key ecological processes. To explore the diversity and functional potential of prokaryotic assemblages in Algerian drylands, we compared soils from three contrasting sites: The Oasis of Djanet (RM1), the hyper-arid Tassili of Djanet desert (RM2), and the semi-arid El Ouricia forest in Sétif (RM3). Physicochemical analyses revealed strong environmental gradients: RM2 exhibited the highest pH (8.66), electrical conductivity (11.7 dS/m), and sand fraction (56%), whereas RM3 displayed the greatest moisture (10.9%), organic matter (7.6%), and calcium carbonate (20.7%) content, with RM1 generally showing intermediate levels. High-throughput 16S rRNA gene sequencing generated >60,000 effective reads per sample with sufficient coverage (>0.99). Alpha diversity indices indicated the highest bacterial richness and diversity in RM2 (Chao1 = 3144, Shannon = 10.0), while RM3 showed lower evenness and the dominance of a few taxa. Across sites, 66 phyla and 551 genera were detected, dominated by Actinobacteriota (38–45%) and Chloroflexi (13–44%), with Proteobacteria declining from RM1 (17.5%) to RM3 (3.3%). Venn analysis revealed limited overlap, with only 58 operational taxonomic units shared among all sites, suggesting highly habitat-specific communities. Predictive functional profiling (PICRUSt2, Tax4Fun, FAPROTAX) indicated metabolism as the dominant functional category (≈50% of KEGG Level-1), with carbohydrate and amino acid metabolism forming the metabolic backbone. Notably, transport functions (ABC transporters), lipid metabolism, and amino acid degradation pathways were enriched in RM2–RM3, consistent with adaptation to osmotic stress, nutrient limitation, and energy conservation under aridity. Collectively, these findings demonstrate that Algerian arid and semi-arid soils host diverse, site-specific bacterial communities whose functional repertoires are strongly shaped by soil chemistry and climate, highlighting their ecological and biotechnological potential. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 2374 KB  
Article
Assessing Groundwater Sustainability in Siwa Oasis, Egypt: Evaluating Physico-Chemical and Hydrochemical Suitability for Human and Agricultural Use
by Mohamed H. H. Ali, Mohamad S. Abdelkarim, Khadija M. Attwa and Afify D. G. Al-Afify
Sustainability 2026, 18(1), 357; https://doi.org/10.3390/su18010357 - 30 Dec 2025
Viewed by 237
Abstract
Groundwater wells are essential for sustaining biodiversity in arid and hyper-arid regions. Wells are easily affected by external disturbances, particularly in hyper-arid regions like the Siwa Oasis, where the environmental variables influencing groundwater communities remain understudied. This study assessed the quality of several [...] Read more.
Groundwater wells are essential for sustaining biodiversity in arid and hyper-arid regions. Wells are easily affected by external disturbances, particularly in hyper-arid regions like the Siwa Oasis, where the environmental variables influencing groundwater communities remain understudied. This study assessed the quality of several groundwater wells and agricultural drains based on the physical, chemical and hydrochemical parameters. The results classified the wells and drains into three distinct groups: (1) highly mineralized, carbonated systems with high concentrations of potassium, calcium, sodium, magnesium, chloride, and sulfate, and an average electrical conductivity (EC) of 12.01 mS/cm; (2) low-mineralized wells with an average EC of 2.15 mS/cm; and (3) a moderate one averaging 7.77 mS/cm. The major ions were dominated by Na+ (59.3%) and Mg2+ (26.8%) for cations, and Cl (79.1%) and SO42− (13.4%) for anions in meq/L. Collectively, the evaluation based on total dissolved solids (TDS), sodium percentage (Na%), sodium adsorption ratio (SAR), and the US Salinity Laboratory (USSL) diagram revealed that about 80% of the analyzed wells are unsuitable for irrigation, with only three wells (W03, W12, and W16) deemed suitable for drinking. These findings confirmed a critical vulnerability of the oasis ecosystem. The uncontrolled and extensive use of finite, non-renewable aquifers for agricultural and other purposes is directly exacerbating water salinization and soil sodicity, posing a threat to the future sustainability of the oasis’s water resources. Full article
Show Figures

Figure 1

22 pages, 4884 KB  
Article
Integrating Microtopographic Engineering with Native Plant Functional Diversity to Support Restoration of Degraded Arid Ecosystems
by Yassine Fendane, Mohamed Djamel Miara, Hassan Boukcim, Sami D. Almalki, Shauna K. Rees, Abdalsamad Aldabaa, Ayman Abdulkareem and Ahmed H. Mohamed
Land 2025, 14(12), 2445; https://doi.org/10.3390/land14122445 - 18 Dec 2025
Viewed by 356
Abstract
Active restoration structures such as microtopographic water-harvesting designs are widely implemented in dryland ecosystems to improve soil moisture, reduce erosion, and promote vegetation recovery. We assessed the combined effects of planted species identity, planting diversity (mono-, bi- and multi-species mixtures), and micro-catchment (half-moon) [...] Read more.
Active restoration structures such as microtopographic water-harvesting designs are widely implemented in dryland ecosystems to improve soil moisture, reduce erosion, and promote vegetation recovery. We assessed the combined effects of planted species identity, planting diversity (mono-, bi- and multi-species mixtures), and micro-catchment (half-moon) structures on seedling performance and spontaneous natural regeneration in a hyper-arid restoration pilot site in Sharaan National Park, northwest Saudi Arabia. Thirteen native plant species, of which four—Ochradenus baccatus, Haloxylon persicum, Haloxylon salicornicum, and Acacia gerrardii—formed the dominant planted treatments, were established in 18 half-moons and monitored for survival, growth, and natural recruitment. Seedling survival after 20 months differed significantly among planting treatments, increasing from 58% in mono-plantings to 69% in bi-plantings and 82% in multi-plantings (binomial GLMM, p < 0.001), indicating a positive effect of planting diversity on establishment. Growth traits (height, collar diameter, and crown dimensions) were synthesized into an Overall Growth Index (OGI) and an entropy-weighted OGI (EW-OGI). Mixed-effects models revealed strong species effects on both indices (F12,369 ≈ 7.2, p < 0.001), with O. baccatus and H. persicum outperforming other taxa and cluster analysis separating “fast expanders”, “moderate growers”, and “decliners”. Trait-based modeling showed that lateral crown expansion was the main driver of overall performance, whereas stem thickening and fruit production contributed little. Between 2022 and 2024, half-moon soils exhibited reduced electrical conductivity and exchangeable Na, higher organic carbon, and doubled available P, consistent with emerging positive soil–plant feedbacks. Spontaneous recruits were dominated by perennials (≈67% of richness), with perennial dominance increasing from mono- to multi-plantings, although Shannon diversity differences among treatments were small and non-significant. The correlation between OGI and spontaneous richness was positive but weak (r = 0.29, p = 0.25), yet plots dominated by O. baccatus hosted nearly two additional spontaneous species relative to other plantings, highlighting its strong facilitative role. Overall, our results show that half-moon micro-catchments, especially when combined with functionally diverse native plantings, can simultaneously improve soil properties and promote biotic facilitation, fostering a transition from active intervention to passive, self-sustaining restoration in hyper-arid environments. Full article
Show Figures

Figure 1

18 pages, 13630 KB  
Article
Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach
by Jahanbakhsh Balist, Hassan Darabi and Abdolhossein Hoveyzavi
Buildings 2025, 15(21), 3975; https://doi.org/10.3390/buildings15213975 - 3 Nov 2025
Viewed by 754
Abstract
While many studies have investigated ecosystem services, the cooling potential of green and blue infrastructures (GBIs) for alleviating extreme heat in arid regions has been studied less frequently. The aim of this study is to measure GBI cooling potential for mitigating extreme heat [...] Read more.
While many studies have investigated ecosystem services, the cooling potential of green and blue infrastructures (GBIs) for alleviating extreme heat in arid regions has been studied less frequently. The aim of this study is to measure GBI cooling potential for mitigating extreme heat in arid and semi-arid regions, using Ahvaz City (south-west Iran) as a case study. Multiple data sources were used with the InVEST urban cooling model to estimate cooling ecosystem services (CESs) by evaluating the cumulative effects of shade, evapotranspiration, and albedo. Results show: (a) spatial heterogeneity in GBI cooling effects; (b) the highest cooling capacity (Cooling Capacity Index = 0.75) is achieved along the Karun River corridor and adjacent irrigated agriculture, where land surface temperature is reduced by 2–6 °C relative to built-up areas; and (c) interconnected GBIs and high vegetation density enhance cooling. High cooling capacity (>0.6) covers only 8.3% of the city (14.2 km2), predominantly the Karun River (4.2 km2) and adjacent agriculture (10.0 km2). In contrast, built-up areas (76% of the city) exhibit low cooling capacity (<0.3). Therefore, improving GBI connectivity and integrating passive cooling strategies are essential to enhance thermal resilience and should be prioritized in urban planning to maximize CES effectiveness and reduce heat-related risks. Full article
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Investigating Dew Trends and Drivers Using Ground-Based Meteorological Observations at the Namib Desert
by Sara Javanmardi, Na Qiao, Eugene Marais and Lixin Wang
Atmosphere 2025, 16(11), 1257; https://doi.org/10.3390/atmos16111257 - 31 Oct 2025
Viewed by 668
Abstract
In arid environments such as the Namib Desert, non-rainfall water sources—including dew and fog—constitute indispensable yet understudied components of the regional hydrological cycle. These moisture inputs play a critical role in sustaining ecological functionality and biogeochemical processes, but remain among the least quantified [...] Read more.
In arid environments such as the Namib Desert, non-rainfall water sources—including dew and fog—constitute indispensable yet understudied components of the regional hydrological cycle. These moisture inputs play a critical role in sustaining ecological functionality and biogeochemical processes, but remain among the least quantified facets of desert ecohydrology. The present study investigates multi-year trends in morning dew formation within the Namib Desert, utilizing observations from the Gobabeb–Namib Research Institute between 2015 and 2022. Meteorological data from the Southern African Science Service Centre for Climate and Adaptive Land Management (SASSCAL), in conjunction with direct field observations of dew, were used to develop an empirical equation to estimate dew occurrence. A sensitivity analysis verified the robustness of this formulation, and subsequent validation using field data confirmed its reliability (84.84% accuracy). During this eight-year period, the annual number of days with morning dew decreased from 170 in 2015 to 140 in 2022, representing an overall decline of approximately 18%. However, the total daily dew occurrence across 24 h remained relatively constant, indicating that the observed decline is confined primarily to morning condensation events. Dew formation was most prevalent during the wet season (December–May). Both monthly and annual analyses revealed a discernible declining trend in morning dew occurrence across this hyperarid ecosystem (p < 0.05). This decline corresponded with a gradual increase in both air and soil temperatures (approximately +0.03 °C yr−1) and a slight but consistent decrease in relative humidity (approximately −0.26% yr−1) between 2015 and 2022. The principal drivers of this decline include rising soil and air temperatures and decreasing atmospheric humidity. The analysis further identified an inverse relationship between air temperature and dew formation, implying that climatic warming intensifies evaporative demand and thereby suppresses dew condensation. Random forest analysis identified soil temperature, air temperature, and relative humidity as the most important predictors influencing dew occurrence, whereas wind speed and direction played lesser roles. Collectively, these findings underscore the vulnerability of dew-dependent ecosystems to anthropogenic climate change and highlight the imperative to continue investigating non-rainfall moisture dynamics in desert environments. Full article
(This article belongs to the Special Issue Analysis of Dew under Different Climate Changes)
Show Figures

Figure 1

12 pages, 9199 KB  
Article
Weideverbot Enhances Fire Risk: A Case Study in the Turpan Region, China
by Chengbang An and Liyuan Zheng
Land 2025, 14(11), 2131; https://doi.org/10.3390/land14112131 - 26 Oct 2025
Viewed by 461
Abstract
Grassland ecosystems in arid regions are critical for ecological balance and human livelihoods but face threats from degradation and climate change. Weideverbot (grazing prohibition) is widely adopted for restoration, yet its impact on fire risk in extreme arid environments remains unclear. This study [...] Read more.
Grassland ecosystems in arid regions are critical for ecological balance and human livelihoods but face threats from degradation and climate change. Weideverbot (grazing prohibition) is widely adopted for restoration, yet its impact on fire risk in extreme arid environments remains unclear. This study investigates how grazing prohibition affects fire risk in Turpan, China—a hyper-arid region with 16 mm annual precipitation—by analyzing vegetation dynamics (2000–2023) and fire records. To quantify changes in fuel properties and fire risk, we integrated remote sensing data (MODIS-derived Net Primary Productivity [NPP], Fractional Vegetation Cover [FVC], and Normalized Difference Moisture Index [NDMI]) and field observations, complemented by meteorological data (temperature, precipitation, potential evapotranspiration) and local fire records. We used paired-sample t-tests to compare vegetation metrics before (2000–2010) and after (2011–2023) Weideverbot, with Cohen’s d to assess effect sizes. The results show that Weideverbot significantly increases net primary productivity (NPP: 92 to 109 g C·m−2·yr−1, Cohen’s d > 0.8) and fractional vegetation cover (FVC: 18% to 22%, Cohen’s d > 0.8), enhancing fuel load and connectivity. Vegetation water content shows no significant change (Cohen’s d < 0.2). Post-prohibition, fire frequency increased ~8-fold, driven by elevated fuel availability and regional warming/aridification. These findings indicate that Weideverbot exacerbates fire risk in hyper-arid grasslands by altering fuel dynamics. Balancing restoration and fire management requires adaptive strategies like moderate grazing, tailored to local aridity and vegetation traits. Full article
Show Figures

Figure 1

26 pages, 6792 KB  
Article
Predicting Wildfire Risk in Southwestern Saudi Arabia Using Machine Learning and Geospatial Analysis
by Liangwei Liao and Xuan Zhu
Remote Sens. 2025, 17(21), 3516; https://doi.org/10.3390/rs17213516 - 23 Oct 2025
Cited by 2 | Viewed by 982
Abstract
In recent years, ecosystems in Saudi Arabia have experienced severe degradation due to factors such as hyperaridity, overgrazing, climate change, urban expansion, and an increase in uncontrolled wildfires. Among these, wildfires have emerged as the second most significant threat to forests after urban [...] Read more.
In recent years, ecosystems in Saudi Arabia have experienced severe degradation due to factors such as hyperaridity, overgrazing, climate change, urban expansion, and an increase in uncontrolled wildfires. Among these, wildfires have emerged as the second most significant threat to forests after urban expansion. This study aims to map wildfire susceptibility in southwestern Saudi Arabia by identifying key driving factors and evaluating the performance of several machine learning models under conditions of limited and imbalanced data. The models tested include Maxent, logistic regression, random forest, XGBoost, and support vector machine. In addition, an NDVI-based phenological approach was applied to assess seasonal vegetation dynamics and to compare its effectiveness with conventional machine learning-based susceptibility mapping. All methods generated effective wildfire risk maps, with Maxent achieving the highest predictive accuracy (AUC = 0.974). The results indicate that human activities and dense vegetation cover are the primary contributors to wildfire occurrence. This research provides valuable insights for wildfire risk assessment in data-scarce regions and supports proactive fire management strategies in non-traditional fire-prone environments. Full article
Show Figures

Figure 1

32 pages, 9525 KB  
Article
Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin
by Yuxin Cen, Li He, Zhengwei He, Fang Luo, Yang Zhao, Jie Gan, Wenqian Bai and Xin Chen
Remote Sens. 2025, 17(21), 3511; https://doi.org/10.3390/rs17213511 - 22 Oct 2025
Cited by 1 | Viewed by 1084
Abstract
Monitoring ecosystem dynamics in arid regions requires robust indicators that can capture spatial heterogeneity and diverse ecological drivers. In this study, we introduce and evaluate two novel ecological indices: the Arid-region Remote Sensing Ecological Index (ARSEI), specifically designed for desert environments, and the [...] Read more.
Monitoring ecosystem dynamics in arid regions requires robust indicators that can capture spatial heterogeneity and diverse ecological drivers. In this study, we introduce and evaluate two novel ecological indices: the Arid-region Remote Sensing Ecological Index (ARSEI), specifically designed for desert environments, and the Composite Remote Sensing Ecological Index (CoRSEI), which integrates both desert and non-desert systems. These indices are compared with the traditional Remote Sensing Ecological Index (RSEI) in the Tarim River Basin from 2000 to 2023. Principal component analysis (PCA) revealed that RSEI maintained the highest structural compactness (average PCA1 = 87.49%). In contrast, ARSEI (average PCA1 = 78.62%) enhanced sensitivity to albedo and vegetation (NDVI) in arid environments. Spearman correlation analysis further demonstrated that ARSEI was more strongly correlated with NDVI (ρ = 0.49) and precipitation (ρ = 0.62) than RSEI, confirming its improved responsiveness under water-limited conditions. CoRSEI exhibited higher internal consistency and spatial adaptability (mean values ranging from 0.45 to 0.56), with slight ecological improvements observed between 2000 and 2023. Ecological drivers varied across habitat types. In desert areas, evapotranspiration, precipitation, and soil moisture were the main determinants of ecological status, showing high coupling and synchrony. In non-desert regions, soil moisture and precipitation remained dominant, but vegetation indices and disturbance factors (e.g., fire density) exerted stronger long-term influences. Partial dependence analyses further confirmed nonlinear, region-specific responses, such as the threshold effects of precipitation on vegetation growth. Overall, our findings highlight the importance of differentiated ecological modeling. ARSEI enhances sensitivity in desert ecosystems, whereas CoRSEI captures landscape-scale variability across desert and non-desert regions. Both indices contribute to more accurate long-term ecological assessments in hyper-arid environments. Full article
Show Figures

Figure 1

27 pages, 6232 KB  
Article
Insights from Earth Map: Unraveling Environmental Dynamics in the Euphrates–Tigris Basin
by Ayhan Ateşoğlu, Mustafa Hakkı Aydoğdu, Kasım Yenigün, Alfonso Sanchez-Paus Díaz, Giulio Marchi and Fidan Şevval Bulut
Sustainability 2025, 17(16), 7513; https://doi.org/10.3390/su17167513 - 20 Aug 2025
Viewed by 2110
Abstract
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and [...] Read more.
The Euphrates–Tigris Basin is experiencing significant environmental transformations due to climate change, Land Use and Land Cover Change (LULCC), and anthropogenic pressures. This study employs Earth Map, an open-access remote sensing platform, to comprehensively assess climate trends, vegetation dynamics, water resource variability, and land degradation across the basin. Key findings reveal a geographic shift toward aridity, with declining precipitation in high-altitude headwater regions and rising temperatures exacerbating water scarcity. While cropland expansion and localized improvements in land productivity were observed, large areas—particularly in hyperarid and steppe zones—show early signs of degradation, increasing the risk of dust source expansion. LULCC analysis highlights substantial wetland loss, irreversible urban growth, and agricultural encroachment into fragile ecosystems, with Iraq experiencing the most pronounced transformations. Climate projections under the SSP245 and SSP585 scenarios indicate intensified warming and aridity, threatening hydrological stability. This study underscores the urgent need for integrated water management, Land Degradation Neutrality (LDN), and climate-resilient policies to safeguard the basin’s ecological and socioeconomic resilience. Earth Map is a vital tool for monitoring environmental changes, offering rapid insights for policymakers and stakeholders in this data-scarce region. Future research should include higher-resolution datasets and localized socioeconomic data to improve adaptive strategies. Full article
(This article belongs to the Special Issue Drinking Water, Water Management and Environment)
Show Figures

Figure 1

19 pages, 2261 KB  
Article
Assessing the Changes in Precipitation Patterns and Aridity in the Danube Delta (Romania)
by Alina Bărbulescu and Cristian Ștefan Dumitriu
J. Mar. Sci. Eng. 2025, 13(8), 1529; https://doi.org/10.3390/jmse13081529 - 9 Aug 2025
Viewed by 811
Abstract
Understanding long-term precipitation variability is essential for assessing the climate’s impact on sensitive ecosystems, particularly in regions of high environmental value, such as the Danube Delta Biosphere Reserve (DDBR). This study examines the temporal dynamics of monthly precipitation in the Danube Delta, Romania, [...] Read more.
Understanding long-term precipitation variability is essential for assessing the climate’s impact on sensitive ecosystems, particularly in regions of high environmental value, such as the Danube Delta Biosphere Reserve (DDBR). This study examines the temporal dynamics of monthly precipitation in the Danube Delta, Romania, spanning the period from 1965 to 2019. Three approaches were used to analyze climatic variability: Change Point detection (CPD) to identify shifts in precipitation regimes, the De Martonne Index (IM) to assess aridity trends, and the Standardized Precipitation Index (SPI) to evaluate drought conditions across annual and monthly scales. Using robust monthly precipitation and temperature datasets from the Sulina meteorological station, CPD analysis revealed statistically significant structural breaks in precipitation trends, suggesting periods of altered climate behavior likely associated with broader regional or global climate changes. IM values indicated mostly hyper-aridity and aridity at monthly and annual scales, respectively. No monotonic trend was found in this index during the analyzed segments, as emphasized by the Mann–Kendall (MK) test. SPI values provided further evidence of variability in the precipitation regime, highlighting a transition toward more extreme hydrological conditions in the region. The combined use of these indices offers a comprehensive view of the evolution of climatic conditions in the Danube Delta. The findings underscore the growing vulnerability of this unique wetland ecosystem to climatic variability, supporting the need for adaptive water management strategies in the face of anticipated future changes. Full article
Show Figures

Figure 1

28 pages, 2931 KB  
Review
Remote Sensing-Based Phenology of Dryland Vegetation: Contributions and Perspectives in the Southern Hemisphere
by Andeise Cerqueira Dutra, Ankur Srivastava, Khalil Ali Ganem, Egidio Arai, Alfredo Huete and Yosio Edemir Shimabukuro
Remote Sens. 2025, 17(14), 2503; https://doi.org/10.3390/rs17142503 - 18 Jul 2025
Cited by 2 | Viewed by 2791
Abstract
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and [...] Read more.
Leaf phenology is key to ecosystem functioning by regulating carbon, water, and energy fluxes and influencing vegetation productivity. Yet, detecting land surface phenology (LSP) in drylands using remote sensing remains particularly challenging due to sparse and heterogeneous vegetation cover, high spatiotemporal variability, and complex spectral signals. Unlike the Northern Hemisphere, these challenges are further compounded in the Southern Hemisphere (SH), where several regions experience year-round moderate temperatures. When combined with irregular rainfall, this leads to highly variable vegetation activity throughout the year. However, LSP dynamics in the SH remain poorly understood. This study presents a review of remote sensing-based phenology research in drylands, integrating (i) a synthesis of global methodological advances and (ii) a systematic analysis of peer-reviewed studies published from 2015 through April 2025 focused on SH drylands. This review reveals a research landscape still dominated by conventional vegetation indices (e.g., NDVI) and moderate-spatial-resolution sensors (e.g., MODIS), though a gradual shift toward higher-resolution sensors such as PlanetScope and Sentinel-2 has emerged since 2020. Despite the widespread use of start- and end-of-season metrics, their accuracy varies greatly, especially in heterogeneous landscapes. Yet, advanced products such as solar-induced chlorophyll fluorescence or the fraction of absorbed photosynthetically active radiation were rarely employed. Gaps remain in the representation of hyperarid zones, grass- and shrub-dominated landscapes, and large regions of Africa and South America. Our findings highlight the need for multi-sensor approaches and expanded field validation to improve phenological assessments in dryland environments. The accurate differentiation of vegetation responses in LSP is essential not only for refining phenological metrics but also for enabling more realistic assessments of ecosystem functioning in the context of climate change and its impact on vegetation dynamics. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

13 pages, 1707 KB  
Article
The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities
by Itaii Applebaum, Gil Eshel, Tirza Doniger and Yosef Steinberger
Land 2025, 14(6), 1281; https://doi.org/10.3390/land14061281 - 15 Jun 2025
Viewed by 886
Abstract
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study [...] Read more.
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study examined the impact of various almond orchard management practices on the soil microbial community composition in a hyper-arid ecosystem. High-throughput sequencing was used to compare the microbial communities in two adjacent almond orchards managed with either organic (ORG) or regenerative agriculture (RA) practices, alongside an uncultivated (UC) site. Notably, little is known about the responses of soil bacterial communities in hyper-arid regions to intercrop mulch from service crops. This study may offer insights into the ecological limits of the benefits of service crops in promoting soil health under extreme conditions. Our findings demonstrate that RA management can alter soil organic carbon levels and reshape microbial communities by increasing overall bacterial abundance and enriching specific keystone taxa. These changes may have significant implications for nutrient cycling processes in hyper-arid agroecosystems. Full article
Show Figures

Figure 1

15 pages, 1588 KB  
Article
Bacterial Community Dynamics in Oil-Contaminated Soils in the Hyper-Arid Arava Valley
by Varsik Martirosyan, Ilan Stavi, Tirza Doniger, Itaii Applebaum, Chen Sherman, May Levi and Yosef Steinberger
Agronomy 2025, 15(5), 1198; https://doi.org/10.3390/agronomy15051198 - 15 May 2025
Cited by 2 | Viewed by 1532
Abstract
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. [...] Read more.
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. The Illumina MiSeq high-throughput sequencing technique was used to study the bacterial diversity and structural change in hyper-arid oil-contaminated soil in the Arava Valley of Israel. The diversity and abundance of soil bacteria declined significantly following oil pollution. The dominant phyla in the petroleum-contaminated soils were Proteobacteria (~33% higher vs. control soil) and Patescibacteria (~2.5% higher vs. control soil), which are oil-associated and hydrocarbon-degrading bacteria. An opposite trend was found for the Actinobacteria (~8%), Chloroflexi (12%), Gemmatimonadetes (3%), and Planctomycetes (2%) phyla, with the lower abundances in contaminated soil vs. control soil. Investigation of long-term contaminated sites revealed significant genus-level taxonomic restructuring in soil bacterial communities. The most evident changes were observed in Mycobacterium, Alkanindiges, and uncultured bacterium-145, which showed marked abundance shifts between spill and control soils across decades. Particularly, hydrocarbon-degrading genera such as Pseudoxanthomonas demonstrated persistent dominance in contaminated sites. While some genera (e.g., Frigoribacterium, Leifsonia) declined over time, others—particularly Nocardioides and Streptomyces—exhibited substantial increases by 2014, suggesting potential ecological succession or adaptive selection. Minor but consistent changes were also detected in stress-tolerant genera like Blastococcus and Quadrisphaera. The effect of oil contamination on species diversity was greater at the 1975 site compared to the 2014 site. These patterns highlight the dynamic response of bacterial communities to chronic contamination, with implications for bioremediation and ecosystem recovery. The study results provide new insights into oil contamination-induced changes in soil bacterial community and may assist in designing appropriate biodegradation strategies to alleviate the impacts of oil contamination in drylands. Full article
Show Figures

Figure 1

Back to TopTop