Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin
Highlights
- Our newly developed indices, ARSEI and CoRSEI, enhance ecological monitoring in arid regions, with CoRSEI integrating desert and non-desert systems.
- ARSEI is sensitive to vegetation and precipitation in deserts, while CoRSEI captures spatial heterogeneity, long-term trends, and desert–non-desert transitions.
- These indices support spatially differentiated, driver-sensitive assessments, aiding targeted ecosystem management and restoration in arid landscapes.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. MODIS Product Data
- (1)
- MOD09A1 (Version 6.1, NASA EOSDIS Land Processes DAAC): This product provides 500 m-resolution surface reflectance data (Bands B1–B7), including red (620–670 nm), near-infrared (841–876 nm), and shortwave infrared ranges. Cloud masking was performed using the State QA band, with bit 10 (cloud flag) and bit 11 (cloud shadow flag) applied for pixel-level filtering. To minimize transient noise, October data from each year were composited using the median to generate annual representative values, which were then clipped to the study area boundary. This dataset was primarily used to calculate the Normalized Difference Vegetation Index (NDVI), Wetness Component (WET), Normalized Difference Built-up and Soil Index (NDBSI), and Albedo.
- (2)
- MOD11A2 (Version 6.1, NASA LP DAAC): This product provides 1 km-resolution daytime land surface temperature data. The original 16-bit unsigned integer digital numbers (DN values) were converted to Celsius using the formula LST = 0.02 × DN − 273.15. Quality control was performed using bit 0 of the QC Day band to exclude cloud-contaminated pixels. To match the spatial resolution of other indices, September composite temperature data were resampled to 500 m using bilinear interpolation.
2.2.2. Environmental Drivers
2.3. Methods
2.3.1. CoRSEI—An Improved Method for Calculating Remote Sensing Ecological Index
- (1)
- Albedo
- (2)
- Normalized Difference Built-up and Soil Index (NDBSI)
- (3)
- Normalized Difference Vegetation Index (NDVI)
- (4)
- Tasseled Cap Transformation—Wetness (Wet)
- (5)
- Land Surface Temperature (LST)
2.3.2. Calculation Methods for Environmental Drivers
- (1)
- SPEI6
- (2)
- Fire Density (FD)
- (3)
- Extreme Rainfall (ER)
2.3.3. Analysis of the Response Relationship Between Remote Sensing Ecological Indices and Environmental Drivers
- (1)
- Two-Dimensional Kernel Density Estimation (2D-KDE)
- (2)
- Trend Analysis Methods (Theil–Sen Median, Mann–Kendall and Hurst exponent)
- (3)
- Coupling and Synchronization Analysis
- (4)
- Multiscale Correlation Analysis
- (5)
- Partial Least Squares Regression and Variable Importance in Projection Methodology
- (6)
- Partial Dependence Plot (PDP)
3. Results
3.1. Structural Comparison and Driver Association Analysis of RSEIs
3.1.1. Comparative Analysis of Principal Component Contributions Between RSEI and ARSEI
3.1.2. Correlation Structure and Joint Distribution Patterns of RSEIs and Environmental Drivers
3.2. Spatiotemporal Dynamics and Evolutionary Trends of CoRSEI (2000–2023)
3.2.1. Spatial Distribution Patterns of CoRSEI
3.2.2. Spatiotemporal Patterns of CoRSEI Change
3.2.3. Long-Term Trend Detection and Persistence Analysis of CoRSEI
3.3. Comparative Analysis of Environmental Drivers Influencing ARSEI in Desert Areas and RSEI in Non-Desert Areas
3.3.1. System Coordination Between Environmental Drivers and RSEIs
3.3.2. Temporal Sensitivity of Ecological Responses to Environmental Drivers
3.3.3. Key Environmental Drivers Determined by Variable Importance Ranking
3.3.4. Marginal Effects of Environmental Drivers on RSEIs
4. Discussion
4.1. Adaptability Assessment and Zonal Application Strategy of Multi-Model Remote Sensing Ecological Indices
4.2. Differential Environmental Drivers Response and Spatially Adaptive Remote Sensing Monitoring in Desert and Non-Desert Areas
4.3. Differentiated Governance Strategies in the Tarim Basin
5. Conclusions
- (1)
- Performance and Structural Characteristics of the Indices: ARSEI significantly improves sensitivity to vegetation (NDVI) and albedo in hyper-arid environments, making it more effective for characterizing desert ecosystems. CoRSEI, through explicit regional segmentation, effectively captures spatial structural differences and long-term ecological evolution trends between desert and non-desert zones, demonstrating strong temporal stability. While RSEI retains the highest internal consistency and is suitable for detecting abrupt ecological disturbances, ARSEI shows stronger correlations with vegetation and precipitation dynamics, offering advantages in water-limited systems.
- (2)
- Regional Differences in Environmental Drivers: In desert areas, evapotranspiration, precipitation, and soil moisture were identified as the primary positive drivers of ecological conditions. In contrast, in non-desert areas, although soil moisture and precipitation remained important, ecological dynamics were also influenced by vegetation indices (NDVI, NPP) and disturbance-related variables such as fire density and land surface temperature. Some of these factors exhibited negative correlations, indicating more complex ecological response mechanisms.
- (3)
- Long-Term Trends and Monitoring Implications: Analysis of CoRSEI revealed a modest overall improvement in ecological quality across the study area since 2000, accompanied by a gradual reduction in desert areas by approximately 1.41%. However, trend persistence analysis based on the Hurst exponent indicated that most ecological changes lacked sustained directional continuity, highlighting significant uncertainty in future trajectories. Overall, the dual-index framework of ARSEI and CoRSEI provides a spatially differentiated and driver-sensitive methodology for ecological monitoring, offering a robust scientific basis for ecosystem management and restoration in arid regions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSEI | Remote Sensing Ecological Index |
ARSEI | Arid-region Remote Sensing Ecological Index |
CoRSEI | Composite Remote Sensing Ecological Index |
PCA | Principal Component Analysis |
TRB | Tarim River Basin |
LST | Land Surface Temperature |
NDVI | Normalized Difference Vegetation Index |
WET | Wetness |
NDBSI | Normalized Difference Built-up and Soil Index |
ED | Environmental Drivers |
NPP | Net Primary Productivity |
Precip | Precipitation |
SPEI6 | Standardized Precipitation Evapotranspiration Index |
ET | Evapotranspiration |
SM | Soil Moisture |
FD | Fire Density |
ER | Extreme Rainfall |
Appendix A. Validation of the Resampling Method
- (1)
- Low-resolution data: 11 km (simulated ERA5-Land soil moisture data);
- (2)
- Medium-low-resolution data: 5.6 km (simulated CHIRPS precipitation data);
- (3)
- Comparative data: 1 km (simulated high-resolution dataset).
Data Type | Original Resolution | RMSE | R2 | Correlation Coefficient | Bias | MAE |
---|---|---|---|---|---|---|
ERA5-Land soil moisture (sim.) | 11.0 km | 6.05 | 0.950 | 0.975 | −0.00053 | 4.82 |
CHIRPS precipitation(sim.) | 5.6 km | 6.04 | 0.950 | 0.975 | 0.0003 | 4.82 |
Comparative dataset (sim.) | 1.0 km | 6.01 | 0.950 | 0.975 | −0.00001 | 4.79 |
Appendix B. Field Quadrat Validation
Figure Panel | Vegetation Coverage | RSEI | ARSEI | CoRSEI |
---|---|---|---|---|
a | 35% | 0.028 | 0.137 | 0.137 |
b | 47% | 0.083 | 0.156 | 0.156 |
c | 6% | 0.003 | 0.076 | 0.076 |
d | 0% | 0.022 | 0.031 | 0.031 |
e | 7% | 0.091 | 0.112 | 0.112 |
f | 4% | 0.082 | 0.107 | 0.107 |
g | 8% | 0.107 | 0.169 | 0.169 |
h | 87% | 0.353 | 0.286 | 1.353 |
i | 85% | 0.376 | 0.300 | 1.376 |
j | 92% | 0.395 | 0.310 | 1.395 |
k | 98% | 0.544 | 0.485 | 1.544 |
l | 99% | 0.723 | 0.638 | 1.723 |
References
- Zhao, W.; Cheng, G. Review of several problems on the study of eco-hydrological processes in arid zones. Chin. Sci. Bull. 2002, 47, 353–360. [Google Scholar] [CrossRef]
- Wang, Z.; Xiong, H.; Zhang, F.; Qiu, Y.; Ma, C. Sustainable development assessment of ecological vulnerability in arid areas under the influence of multiple indicators. J. Clean. Prod. 2024, 436, 140629. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.; Gao, G.; Gulzar, Q.; Hussain, A. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Wei, L.; Zhong, L.; Yue, Y.; Feng, X.; Li, T.; Song, D.; Zhao, W. Divergent drivers of temporal stability for gravel and sandy desert ecosystems around mobile deserts: Implications for ecosystem conservation and desertification management. Catena 2025, 256, 109088. [Google Scholar] [CrossRef]
- Ajaj, Q.M.; Pradhan, B.; Noori, A.M.; Jebur, M.N. Spatial Monitoring of Desertification Extent in Western Iraq using Landsat Images and GIS. Land Degrad. Dev. 2017, 28, 2418–2431. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef]
- Kiani, P.; Shabani, A.A.; Ahmadi, M. Landscape sustainability indicators for monitoring habitat vulnerability under climate and land use Change: Case studies from four mammal species. Environ. Sustain. Indic. 2025, 26, 100716. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar] [CrossRef]
- Maimaitituersun, A.; Yang, H.; Aobuliaisan, N.; Maimaitiaili, K.; Ouyang, C. Assessing subtle changes in arid land river basin ecological quality: A study utilizing the PIE engine platform and RSEI. Ecol. Indic. 2025, 170, 113035. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Wang, J.; Wu, T.; Li, M. Constructing ecological security patterns using remote sensing ecological index and circuit theory: A case study of the Changchun-Jilin-Tumen region. J. Environ. Manag. 2025, 373, 123693. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Yang, J.; Yu, H.; Ren, J.; Yu, W.; Cong, N.; Xiao, X.; Xia, J.; Li, X.; Qiao, Z. Towards ecological civilization: Spatiotemporal heterogeneity and drivers of ecological quality transitions in China (2001–2020). Appl. Geogr. 2024, 173, 103439. [Google Scholar] [CrossRef]
- Shi, S.; Qiu, H.; Ji, S.; Luo, Z. The Combined Effects of Topography and Climate Factors Dominate the Spatiotemporal Evolution of the Ecological Environment in the Yangtze River Economic Belt. Land Degrad. Dev. 2025, 36, 2022–2038. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Zhu, D.; Jia, K.; Plaza, A. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Yang, L.; Shan, Z. Seasonal variations in ecological environment quality across different geomorphological regions and their response mechanisms to climate change. Sci. Rep. 2025, 15, 26385. [Google Scholar] [CrossRef]
- Lei, X.; Liu, H.; Li, S.; Luo, Q.; Cheng, S.; Hu, G.; Wang, X.; Bai, W. Coupling coordination analysis of urbanization and ecological environment in Chengdu-Chongqing urban agglomeration. Ecol. Indic. 2024, 161, 111969. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Xie, F.; Xu, X. Improvement of remote sensing ecological index in arid regions: Taking Ulan Buh Desert as an example. Ying Yong Sheng Tai Xue Bao (J. Appl. Ecol. China) 2020, 31, 3795–3804. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2011, 117, 34–49. [Google Scholar] [CrossRef]
- Tsvetsinskaya, E.A.; Schaaf, C.B.; Gao, F.; Strahler, A.H.; Dickinson, R.E. Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer–derived surface albedo over global arid regions. J. Geophys. Res. Atmos. 2006, 111, D20106. [Google Scholar] [CrossRef]
- Salomon, J.G.; Schaaf, C.; Strahler, A.H.; Gao, F.; Jin, Y. Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1555–1565. [Google Scholar] [CrossRef]
- Jin, Y.; Schaaf, C.B.; Woodcock, C.E.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W.; Liang, S. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 2. Validation. J. Geophys. Res. Atmos. 2003, 108, 4159. [Google Scholar] [CrossRef]
- Normand, J.C.L.; Heggy, E. Measuring soil moisture change and surface erosion from sparse rainstorms in hyper-arid terrains. Int. J. Appl. Earth Obs. Geoinf. 2025, 142, 104642. [Google Scholar] [CrossRef]
- Brunelli, B.; Mancini, F. Comparative analysis of SAOCOM and Sentinel-1 data for surface soil moisture retrieval using a change detection method in a semiarid region (Douro River’s basin, Spain). Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103874. [Google Scholar] [CrossRef]
- Alsafadi, K.; Bashir, B.; Mohammed, S.; Abdo, H.G.; Mokhtar, A.; Alsalman, A.; Cao, W. Response of Ecosystem Carbon–Water Fluxes to Extreme Drought in West Asia. Remote Sens. 2024, 16, 1179. [Google Scholar] [CrossRef]
- Wu, L.; Li, C.; Xie, X.; He, Z.; Wang, W.; Zhang, Y.; Wei, J.; Lv, J. The impact of increasing land productivity on groundwater dynamics: A case study of an oasis located at the edge of the Gobi Desert. Carbon Balance Manag. 2020, 15, 7. [Google Scholar] [CrossRef]
- Johnson, S.; Ivanovich, C.; Horton, R.M.; Ting, M.; Kornhuber, K.; Lesk, C. Temporal connections between extreme precipitation and humid heat. Environ. Res. Lett. 2024, 19, 114076. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Deng, W.; Yuan, Q. Assessment of Habitat Quality in Arid Regions Incorporating Remote Sensing Data and Field Experiments. Remote Sens. 2024, 16, 3648. [Google Scholar] [CrossRef]
- Liu, S.a.; Sun, T.; Ciais, P.; Zhang, H.; Fang, J.; Fang, J.; Gemechu, T.M.; Chen, B. Assessing Habitat Quality on Synergetic Land-Cover Dataset Across the Greater Mekong Subregion over the Last Four Decades. Remote Sens. 2025, 17, 1467. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, Q.; Zhang, S.; Zhao, X.; Cheng, H. Spatial and temporal evolutions of vegetation coverage in the Tarim River Basin and their responses to phenology. Catena 2022, 217, 106489. [Google Scholar] [CrossRef]
- Tang, C.; Li, Q.; Tao, H.; Aihemaiti, M.; Mu, Z.; Jiang, Y. Evaluation and driving factors of ecological environment quality in the Tarim River basin based on remote sensing ecological index. PeerJ 2024, 12, e18368. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Guo, B.; Zhang, G.; Xu, H.; Deng, X. Evaluation of the ecological protective effect of the “large basin” comprehensive management system in the Tarim River basin, China. Sci. Total Environ. 2019, 650, 1696–1706. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Ann, H.F.; Maosheng, Z.; Matt, R.; Hirofumi, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data Discuss. 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to Broadband Conversions of Land Surface Albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Lobser, S.E.; Cohen, W.B. MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens. 2007, 28, 5079–5101. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation (WMO-TD No. 1500); Expert Team on Climate Change Detection and Indices (ETCCDI): Geneva, Switzerland, 2009. [Google Scholar]
- Silverman, B.W. Series Density Estimation for Statistics and Data Analysis; Chapman and Hall: New York, NY, USA, 1986. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Ikhumhen, H.O.; Sá, R.M. Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmos. Pollut. Res. 2022, 13, 101274. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric test against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. SeriesRank Correlation Methodsrank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 16, 770–799. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Mateusz, T. Evaluation of coupling coordination degree and convergence behaviour of local development: A spatiotemporal analysis of all Polish municipalities over the period 2003–2019. Sustain. Cities Soc. 2021, 71, 102992. [Google Scholar] [CrossRef]
- Kou, L.; Wang, X.; Wang, H.; Wang, X.; Hou, Y. Spatiotemporal analysis of ecological benefits coupling remote sensing ecological index and ecosystem services index. Ecol. Indic. 2024, 166, 112420. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Cao, M.; Liu, H. Spatiotemporal Change of Eco-Environmental Quality in the Oasis City and Its Correlation with Urbanization Based on RSEI: A Case Study of Urumqi, China. Sustainability 2022, 14, 9227. [Google Scholar] [CrossRef]
- Jia, J.; Deng, H.; Duan, J.; Zhao, J. Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method—A case study in Henan Province, China. Ecol. Econ. 2009, 68, 2818–2824. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Benjamin, M.; Mostafa, Q.E.; Benoît, J. Extension and significance testing of Variable Importance in Projection (VIP) indices in Partial Least Squares regression and Principal Components Analysis. Chemom. Intell. Lab. Syst. 2023, 242, 104986. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Ding, J.; Zhang, Z.; Liu, Z.; Zhang, Z.; Zhang, J.; Shi, L. Dynamic Monitoring of Ecological Environmental Quality in Arid and Semi-Arid Regions: Disparities Among Central Asian Countries and Analysis of Key Driving Factors. Remote Sens. 2025, 17, 17111825. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.; Wang, S.; Ren, Z.; Stringer, L.C. Effects of vegetation restoration on soil properties and vegetation attributes in the arid and semi-arid regions of China. J. Environ. Manag. 2023, 343, 118186. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Yan, L.; Deng, W.; Zhai, J.; Chen, M.; Zhou, F. Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas. Agric. Water Manag. 2022, 271, 107758. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Yan, L.; Yang, G.; Ma, J.; Deng, W. Quantifying Threshold Water Tables for Ecological Restoration in Arid Northwestern China. Ground Water 2020, 58, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Jiang, Y.; Gao, J.; Cao, Q.; Wang, L.; Zhang, Y.; Huang, F. Spatial-temporal evolution and driving factors of ecosystem services trade-offs and synergies in karst areas from a geospatial perspective. Dev. Degrad. Dev. 2024, 35, 3448–3460. [Google Scholar] [CrossRef]
- Martinez, A.d.l.I.; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2023, 220, 115155. [Google Scholar] [CrossRef]
- McHugh, T.A.; Compson, Z.; van Gestel, N.; Hayer, M.; Ballard, L.; Haverty, M.; Hines, J.; Irvine, N.; Krassner, D.; Lyons, T.; et al. Climate controls prokaryotic community composition in desert soils of the southwestern United States. FEMS Microbiol. Ecol. 2017, 93, fix116. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, Y.; Yan, Z.; Chen, J.; Eziz, A.; Li, K.; Han, W. Resorptions of 10 mineral elements in leaves of desert shrubs and their contrasting responses to aridity. J. Plant Ecol. 2018, 12, 358–366. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Chen, Y.; Liu, Y.; Li, W. Progress, Challenges and Prospects of Eco-Hydrological Studies in the Tarim River Basin of Xinjiang, China. Environ. Manag. 2013, 51, 138–153. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.; Kung, H.T.; Johnson, V.; Ding, J.; Tashpolat, N.; Sawut, M.; Gui, D. Spatio-temporal patterns of land use/cover changes over the past 20 years in the middle reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Yu, X.; Lei, J.; Gao, X. An over review of desertification in Xinjiang, Northwest China. J. Arid Land 2022, 14, 1181–1195. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, S. Desert Ecology and Functional Aspects of Desert Ecosystems. In Textbook of Forest Science; Springer Nature Singapore: Singapore, 2025; pp. 227–251. [Google Scholar]
- Wang, T.; Chen, G.; Zhao, H.; Xiao, H. Aeolian Desertification Status and Its Control in China. In Global Degradation of Soil and Water Resources: Regional Assessment and Strategies; Springer Nature Singapore: Singapore, 2022; pp. 199–220. [Google Scholar]
- Gao, J.; Wang, Y.; Zou, C.; Xu, D.; Lin, N.; Wang, L.; Zhang, K. China’s ecological conservation redline: A solution for future nature conservation. Ambio 2020, 49, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fang, G.; Li, Z.; Zhang, X.; Gao, L.; Elbeltagi, A.; Shaer, H.E.; Duan, W.; Wassif, O.M.A.; Li, Y.; et al. The Crisis in Oases: Research on Ecological Security and Sustainable Development in Arid Regions. Annu. Rev. Environ. Resour. 2024, 49, 1–20. [Google Scholar] [CrossRef]
ED | Unit | Date Time | Data Source | Temporal/Spatial Resolution |
---|---|---|---|---|
Net Primary Productivity (NPP) | gC/m2/year | Full year (Accumulated data) | MODIS Terra MOD17A3HGF version 6 product [33] | Annual composite/500 m |
Precipitation | mm | 1 May–31 October (Accumulated data) | Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) daily dataset (version 2.0) | Daily/~5.6 km |
Monthly precipitation and potential evaporation for calculating SPEI6 | mm | In the growing season (1 May–31 October) (Accumulated data) | Terra Climate [34] | Monthly/~4 km |
Evapotranspiration (ET) | mm | In the growing season (1 May–31 October) (Accumulated data) | ERA5-Land hourly reanalysis dataset [35] | Hourly/~9 km |
Monthly surface soil moisture data (0–7 cm depth) (SM) | m3/m3 | September–October monthly averages | ERA5-Land reanalysis dataset [35] | Monthly aggregates/~11 km |
Fire data | / | Full year | MODIS/Terra Thermal Anomalies/Fire Daily L3 Global 1 km SIN Grid V006 (MOD14A1) product (Collection 6) [36] | Daily/1 km |
China Land Cover Dataset (CLCD) | / | Yearly data | China Land Cover Dataset (CLCD) developed by Huang et al. [37]. | Yearly/30 m |
Time | Index | LST | WET | NDVI | NDBSI (RSEI) Albedo (ARSEI) | PCA1 Contribution Rate |
---|---|---|---|---|---|---|
2000 | RSEI | 0.8717 | 0.4900 | 0.0047 | 0.0003 | 88.15% |
ARSEI | 0.8606 | 0.4938 | 0.0079 | 0.1246 | 78.63% | |
2005 | RSEI | 0.8713 | 0.4908 | 0.0023 | 0.0006 | 87.76% |
ARSEI | 0.8593 | 0.4943 | 0.0020 | 0.1315 | 78.82% | |
2010 | RSEI | 0.8623 | 0.5064 | 0.0045 | 0.0002 | 86.19% |
ARSEI | 0.8426 | 0.5105 | 0.0109 | 0.1710 | 76.87% | |
2015 | RSEI | 0.8922 | 0.4515 | 0.0100 | 0.0003 | 86.87% |
ARSEI | 0.8889 | 0.4538 | 0.0081 | 0.0619 | 78.93% | |
2020 | RSEI | 0.8952 | 0.4455 | 0.0135 | 0.0015 | 87.42% |
ARSEI | 0.8946 | 0.4462 | 0.0128 | 0.0207 | 79.20% | |
Mean of 2000–2023 | RSEI | 0.8775 | 0.4773 | 0.0097 | 0.0008 | 87.49% |
ARSEI | 0.8654 | 0.4801 | 0.0113 | 0.1199 | 78.62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, Y.; He, L.; He, Z.; Luo, F.; Zhao, Y.; Gan, J.; Bai, W.; Chen, X. Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin. Remote Sens. 2025, 17, 3511. https://doi.org/10.3390/rs17213511
Cen Y, He L, He Z, Luo F, Zhao Y, Gan J, Bai W, Chen X. Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin. Remote Sensing. 2025; 17(21):3511. https://doi.org/10.3390/rs17213511
Chicago/Turabian StyleCen, Yuxin, Li He, Zhengwei He, Fang Luo, Yang Zhao, Jie Gan, Wenqian Bai, and Xin Chen. 2025. "Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin" Remote Sensing 17, no. 21: 3511. https://doi.org/10.3390/rs17213511
APA StyleCen, Y., He, L., He, Z., Luo, F., Zhao, Y., Gan, J., Bai, W., & Chen, X. (2025). Improving Remote Sensing Ecological Assessment in Arid Regions: Dual-Index Framework for Capturing Heterogeneous Environmental Dynamics in the Tarim Basin. Remote Sensing, 17(21), 3511. https://doi.org/10.3390/rs17213511