Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. The Area of Study
2.2. Method
2.3. Data Collection and Preparation
2.4. Land Use Map Preparation
2.5. InVEST Urban Cooling Model
2.5.1. Cooling Capacity Index (CCI)
2.5.2. The Urban Cooling Index (Impact of Large Green Spaces)
2.5.3. Estimation of Air Temperature
2.6. Urban Cooling Capacity
2.6.1. Model Validation and Sensitivity Analysis
2.6.2. Model Limitations
3. Results
3.1. Land Use/Land Cover (LULC)
Evapotranspiration (ET0) and Vegetation Coefficient (Kc)
3.2. Heat Mitigation Index
4. Discussion
4.1. Policy and Practice Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CESs | Cooling Ecosystem Services |
| GBI | Green and Blue Infrastructures |
| CC | Cooling Capacity |
| ETI | Evapotranspiration Index |
| HMI | Heat Mitigation Index |
| GSCC | The Green Space Cooling Capacity |
| LCT | Land Surface Temperature |
| LU | Land Use |
| LULC | Land Use/Land Cover |
| UHI | Urban Heat Island |
References
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Hamel, P.; Bosch, M.; Tardieu, L.; Lemonsu, A.; De Munck, C.; Nootenboom, C.; Viguié, V.; Lonsdorf, E.; Douglass, J.A.; Sharp, R.P. Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: Case studies in France and the United States. Geosci. Model Dev. 2024, 17, 4755–4771. [Google Scholar] [CrossRef]
- Park, C.Y.; Park, Y.S.; Kim, H.G.; Yun, S.H.; Kim, C.K. Quantifying and mapping cooling services of multiple ecosystems. Sustain. Cities Soc. 2021, 73, 103123. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Ecosystem services and valuation of urban forests in China. Cities 2009, 26, 187–194. [Google Scholar] [CrossRef]
- Alavipanah, S.; Wegmann, M.; Qureshi, S.; Weng, Q.; Koellner, T. The role of vegetation in mitigating urban land surface temperatures: A case study of Munich, Germany during the warm season. Sustainability 2015, 7, 4689–4706. [Google Scholar] [CrossRef]
- Duncan, J.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Jandaghian, Z.; Colombo, A. The Role of Water Bodies in Climate Regulation: Insights from Recent Studies on Urban Heat Island Mitigation. Buildings 2024, 14, 2945. [Google Scholar] [CrossRef]
- Liu, Q. Interlinking climate change with water-energy-food nexus and related ecosystem processes in California case studies. Ecol. Process. 2016, 5, 14. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, Z.; Xu, K.; Wu, K.; Gao, H.; Liu, P. Ecosystem Service Flow Perspective of Urban Green Land: Spatial Simulation and Driving Factors of Cooling Service Flow. Land 2023, 12, 1527. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Hati, J.P.; Acharyya, R.; Pal, I.; Tuladhar, N.; Habel, M. Global trends in using the InVEST model suite and related research: A systematic review. Ecohydrol. Hydrobiol. 2025, 25, 389–405. [Google Scholar] [CrossRef]
- Ramsay, E.E.; Wang, Y.; Masoudi, M.; Chai, M.W.; Yin, T.; Hamel, P. Assessing a decision-support tool to estimate the cooling potential and economic savings from urban vegetation in Singapore. Sustain. Cities Soc. 2025, 125, 106337. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, W.; Ou, X.; Chai, H.; Khodabakhshi, Z.; Fu, J.; Yuan, P.F.; Horimbere, E.d.l.J. Urban heat mitigation towards climate change adaptation: An eco-sustainable design strategy to improve environmental performance under rapid urbanization. Atmosphere 2023, 14, 638. [Google Scholar] [CrossRef]
- Masson, V.; Marchadier, C.; Adolphe, L.; Aguejdad, R.; Avner, P.; Bonhomme, M.; Bretagne, G.; Briottet, X.; Bueno, B.; De Munck, C. Adapting cities to climate change: A systemic modelling approach. Urban Clim. 2014, 10, 407–429. [Google Scholar] [CrossRef]
- Cheshmehzangi, A.; He, B.-J.; Sharifi, A.; Matzarakis, A. Climate change, cities, and the importance of cooling strategies, practices, and policies. In Climate Change and Cooling Cities; Cheshmehzangi, A., Sharifi, A., Matzarakis, A., Eds.; Springer: Singapore, 2023; pp. 2–19. [Google Scholar]
- Reis, C.; Lopes, A. Evaluating the cooling potential of urban green spaces to tackle urban climate change in Lisbon. Sustainability 2019, 11, 2480. [Google Scholar] [CrossRef]
- Han, Y.; Lee, S.; Jun, C. Analysis of Carbon Storage by Land Cover Changes Based on FLUS Model. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2025, 43, 233–243. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Gurav, C.; Rai, A.; Sharma, A.; Matli, C.; Biniwale, R. Quantification of heat mitigation by urban green spaces using InVEST model—A scenario analysis of Nagpur City, India. Arab. J. Geosci. 2021, 14, 82. [Google Scholar] [CrossRef]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable urban greening and cooling strategies for thermal comfort at pedestrian level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, H. Cooling strategies for thermal comfort in cities: A review of key methods in landscape design. Environ. Sci. Pollut. Res. 2021, 28, 62640–62650. [Google Scholar] [CrossRef]
- Dobryakova, V.A.; Sulkarnaeva, L.D. Modelling of ecosystem services «cooling effect» supply in the City of Tyumen. InterCarto InterGIS 2021, 27, 196–209. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- Battista, G.; de Lieto Vollaro, R.; Zinzi, M. Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Sol. Energy 2019, 180, 608–621. [Google Scholar] [CrossRef]
- Pohanková, T.; Pechanec, V. Assessing the Cooling Potential of Vegetation in a Central European Rural Landscape: A Local Study. Land 2024, 13, 1685. [Google Scholar] [CrossRef]
- Malekzadeh, S.; Jafari, H.; Nazari, R.; Blaschke, T.; Hof, A.; Karimi, M. Modeling the cooling effect of urban green infrastructures with an ecosystem services approach (case study: Tehran metropolis). Int. J. Hum. Cap. Urban Manag. 2025, 10, 199–214. [Google Scholar]
- Wang, C.; Wang, Z.-H.; Wang, C.; Myint, S.W. Environmental cooling provided by urban trees under extreme heat and cold waves in US cities. Remote Sens. Environ. 2019, 227, 28–43. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, F.; Yin, H.; Middel, A.; Yang, S.; Liu, H.; Huang, J. Green roof cooling and carbon mitigation benefits in a subtropical city. Urban For. Urban Greening. 2023, 86, 128018. [Google Scholar] [CrossRef]
- Brandt, L.; Lewis, A.D.; Fahey, R.; Scott, L.; Darling, L. Swanston, C. A framework for adapting urban forests to climate change. Environ. Sci. Policy 2016, 66, 393–402. [Google Scholar] [CrossRef]
- Moss, J.L.; Doick, K.J.; Smith, S.; Shahrestani, M. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 2019, 37, 65–73. [Google Scholar] [CrossRef]
- Helletsgruber, C.; Gillner, S.; Gulyás, Á.; Junker, R.R.; Tanács, E.; Hof, A. Identifying tree traits for cooling urban heat islands—A cross-city empirical analysis. Forests 2020, 11, 1064. [Google Scholar] [CrossRef]
- Rötzer, T.; Moser-Reischl, A.; Rahman, M.; Hartmann, C.; Paeth, H.; Pauleit, S.; Pretzsch, H. Urban tree growth and ecosystem services under extreme drought. Agric. For. Meteorol. 2021, 308, 108532. [Google Scholar] [CrossRef]
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; Van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Ahvaz Municipality. Urban Land Use Data for Ahvaz City; Deputy of Urbanism & Architecture: Ahvaz, Iran, 2025. [Google Scholar]
- Khuzestan Meteorology Organization. Climatological Data of Ahvaz; Khuzestan Meteorology Organization: Ahvaz, Iran, 2025. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST 3.8.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund. 2020. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html (accessed on 2 July 2025).
- Kunapo, J.; Fletcher, T.D.; Ladson, A.R.; Cunningham, L.; Burns, M.J. A spatially explicit framework for climate adaptation. Urban Water J. 2018, 15, 159–166. [Google Scholar] [CrossRef]
- Phelan, P.E.; Kaloush, K.; Miner, M.; Golden, J.; Phelan, B.; Silva, H.; Taylor, R.A. Urban Heat Island: Mechanisms, Implications, and Possible Remedies. Annu. Rev. Environ. Resour. 2015, 40, 285–307. [Google Scholar] [CrossRef]
- Bahrawi, J.A. Spatial distribution maps of evapotranspiration rate over Saudi Arabia. J. King Abdulaziz Univ. 2014, 25, 69–82. [Google Scholar] [CrossRef]
- Chibuike, E.M.; Ibukun, A.O.; Abbas, A.; Kunda, J.J. Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sens. Appl. Soc. Environ. 2018, 11, 11–21. [Google Scholar] [CrossRef]
- Darabi, H.; Moarrab, Y.; Balist, J.; Naroei, B. Resilient plant species selection for urban green infrastructure development in arid regions: A case of Qom, Iran. Urban Ecosyst. 2023, 26, 1753–1768. [Google Scholar] [CrossRef]
- Zawadzka, J.E.; Harris, J.A.; Corstanje, R. Assessment of heat mitigation capacity of urban greenspaces with the use of InVEST urban cooling model, verified with day-time land surface temperature data. Landsc. Urban Plan. 2021, 214, 104163. [Google Scholar] [CrossRef]
- Su, Y.; Wu, J.; Zhang, C.; Wu, X.; Li, Q.; Liu, L.; Bi, C.; Zhang, H.; Lafortezza, R.; Chen, X. Estimating the cooling effect magnitude of urban vegetation in different climate zones using multi-source remote sensing. Urban Clim. 2022, 43, 101155. [Google Scholar] [CrossRef]






| Input Variable | Format | Type | Unit/Range | Temporal Scope | Spatial Resolution | Source/Notes |
|---|---|---|---|---|---|---|
| Land Use/Land Cover | Raster (GeoTIFF) | Spatial map | Integer LULC codes | Static | 30 m | Ahvaz Municipality [33] |
| Reference Evapotranspiration (ET0) | mm/day | Daily | Iran Meteorological Organization [34] | |||
| Area of Interest (AOI) | Vector (Shapefile) | Polygon | N/A | Static | Urban district | Ahvaz Municipality shapefile [33] |
| Biophysical Parameters | Table (CSV) | Tabular | Includes: LU code, kc, shade, etc. | Static | N/A | User-defined based on LULC codes |
| Reference Air Temperature | Numeric (°C) | Scalar value | 18–35 °C | avg | Local | Iran Meteorology Organization [34] |
| UHI Effect | 1–6 °C | Day/night | Urban–rural difference | Empirical studies | ||
| Air Blending Distance | Numeric (meters) | 50–600 m | Static | N/A | Sharp et al. [35] | |
| Maximum Cooling Distance | 250–450 m | Static | N/A | Sharp et al. [35] |
| Lucode | Lulc_Desc | Shade (0–1) | Albedo (0–1) | Crop Coefficient | Building Intensity (0–1) | Green Area (Binary) |
|---|---|---|---|---|---|---|
| 1 | bare land | 0 | 0.28 | 0.2 | 0 | 0 |
| 2 | built-up | 0.1 | 0.22 | 0.1 | 0.7 | 0 |
| 3 | farming (irrigated) | 0.2 | 0.18 | 0.9 | 0 | 1 |
| 4 | palm garden | 0.7 | 0.15 | 0.95 | 0 | 1 |
| 5 | urban green space | 0.75 | 0.18 | 0.95 | 0 | 1 |
| 6 | water (Karun) | 0 | 0.06 | 1 | 0 | 0 |
| Parameter | Value | Justification |
|---|---|---|
| Reference Air Temperature | 37.8 °C | Rural baseline on a representative hot summer day [34] |
| Urban Heat Island Effect(UHI) | 2 °C | Based on regional microclimate studies in Khuzestan [24] |
| Air Blending Distance | 100 m | Appropriate for low-rise, dispersed urban form |
| Maximum Cooling Distance | 300 m | Empirically observed effective radius for sparse green patches in arid zones |
| Land Use Class | Area (%) |
|---|---|
| Built-up | 39.04 |
| Farming (irrigated) | 35.29 |
| Bare land | 17.26 |
| Water | 4.75 |
| Urban green space | 2.58 |
| Palm garden | 1.05 |
| Total | 100.00 |
| Statistic | Value |
|---|---|
| Minimum | 0.12 |
| Mean | 0.31 |
| Maximum | 0.75 |
| Standard Deviation | 0.21 |
| Statistic | Value |
|---|---|
| Minimum | 0.0207 |
| Mean | 0.4504 |
| Maximum | 0.99 |
| Standard Deviation | 0.3364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balist, J.; Darabi, H.; Hoveyzavi, A. Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach. Buildings 2025, 15, 3975. https://doi.org/10.3390/buildings15213975
Balist J, Darabi H, Hoveyzavi A. Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach. Buildings. 2025; 15(21):3975. https://doi.org/10.3390/buildings15213975
Chicago/Turabian StyleBalist, Jahanbakhsh, Hassan Darabi, and Abdolhossein Hoveyzavi. 2025. "Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach" Buildings 15, no. 21: 3975. https://doi.org/10.3390/buildings15213975
APA StyleBalist, J., Darabi, H., & Hoveyzavi, A. (2025). Quantifying the Cooling Nexus of Green-Blue Infrastructure in Hyper-Arid Cities: A Spatial Ecosystem Services Approach. Buildings, 15(21), 3975. https://doi.org/10.3390/buildings15213975

