Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = hydrothermal center

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 17908 KiB  
Article
Chemical and Textural Variability of Zircon from Slightly Peralkaline Madeira Albite Granite, Pitinga Magmatic Province, Brazil
by Karel Breiter, Hilton Tulio Costi, Zuzana Korbelová and Marek Dosbaba
Minerals 2025, 15(8), 863; https://doi.org/10.3390/min15080863 - 15 Aug 2025
Viewed by 175
Abstract
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions [...] Read more.
Zircon is one of the most common accessory minerals in all types of granitoids. Due to its resistance to secondary processes, it preserves information about the composition of magma and conditions at the time of crystallization. Madeira albite granite, Brazil, offers optimum conditions for the study of chemistry and shape of zircon and the relation between the contents of particular trace elements in magma vs. in crystallizing zircon. Textural and chemical zircon data obtained using scanning electron microscopy (BSE) and cathodoluminescence (CL) imaging, automated mineralogy by TESCAN Integrated Mineral Analyzer (TIMA), and electron probe microanalyses (EPMA) enabled us to define four albite granite facies containing zircons of specific structures and chemistry. Zircon in the Madeira albite granite was formed during several, largely temporally and spatially independent episodes. During the crystallization of the common facies, occupying most of the intrusion volume, Zr/Hf value in zircon decreased from 40 to 20. This zircon, in some episodes, incorporated a higher amount of Th, which was later unmixed in the form of thorite inclusions. The pegmatoidal facies, representing crystallization of residual magma, contains zircon without thorite inclusions with a Zr/Hf value from 35 to 5. The Th/U and Y/Yb values during this evolution scattered but generally evolved to Th, Yb-enriched compositions (Th/U up to >10, Y/Yb down to 0.1). The Li-poor facies, located in the center of the stock near the cryolite deposit, contains zircon with comparatively high Zr/Hf = 45–70 and higher U and Y contents. Later, part of the common facies was hydrothermally altered to border facies, but zircon did not change noticeably during this process. The contents of minor elements in all zircon varieties are generally low (U + Th + Y + REE ˂ 0.05 apfu); Y and REE are incorporated exclusively in the xenotime component. Many crystals have low analytical totals, down to 95 wt%, and are enriched in Al, Fe, Mn, Ca, and F but this process does not influence the primary Zr/Hf, Th/U, and Y/Yb ratios. Zircons from other Madeira granite facies, including the neighboring Europa pluton, differ mainly in much higher Y/Yb values and in having (Y + REE) >> P, indicating a different than xenotime substitution mechanism. Zircon from the Madeira albite granite differs from zircons from many metaluminous rare-metal granites in low contents of minor elements and a common assemblage with thorite, instead of forming Zrn–Thr–Xnt solid solutions. Full article
Show Figures

Figure 1

24 pages, 6356 KiB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Viewed by 436
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Graphical abstract

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 220
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

18 pages, 4713 KiB  
Article
Analysis of Embankment Temperature Regulation Efficiency of V-Shaped Bidirectional Heat Conduction Thermosyphon in Permafrost Regions
by Feike Duan, Bo Tian, Sen Hu and Lei Quan
Sustainability 2025, 17(13), 6048; https://doi.org/10.3390/su17136048 - 2 Jul 2025
Viewed by 395
Abstract
The complex climate in permafrost regions poses severe challenges to infrastructure, and freeze-thaw cycles accelerate the deformation and damage of road embankments. Conventional thermosyphon technology, though effective in lowering permafrost temperatures, has a limited range of effect, making it hard to meet the [...] Read more.
The complex climate in permafrost regions poses severe challenges to infrastructure, and freeze-thaw cycles accelerate the deformation and damage of road embankments. Conventional thermosyphon technology, though effective in lowering permafrost temperatures, has a limited range of effect, making it hard to meet the demand for large-scale temperature regulation. This paper proposes a V-shaped transverse thermosyphon design with bidirectional heat conduction. It connects at the embankment centerline and transversely penetrates the entire cross-section to expand the temperature regulation range. Using a hydro-thermal coupling model, the temperature regulation effects of vertical, inclined, and V-shaped thermosyphons were calculated. Results show that the V-shaped design outperforms the other two in temperature control across different embankment areas. Transverse temperature analysis indicates uniform cooling around the embankment center, while depth temperature analysis reveals more stable temperature control with lower and less fluctuating temperatures at greater depths. Long-term temperature analysis demonstrates superior annual temperature regulation, providing consistent cooling. This research offers a scientific basis for embankment temperature regulation design in permafrost regions and is crucial for ensuring long-term embankment stability and safety. Full article
Show Figures

Figure 1

12 pages, 2889 KiB  
Article
A Coordination Polymer of Dy(III) with Polycarboxylic Acid Ligand: Synthesis, Characterization and Magnetic Properties
by Mingli Liu, Zhiyu Meng, Xinfang Wang and Yanan Cui
Crystals 2025, 15(6), 550; https://doi.org/10.3390/cryst15060550 - 9 Jun 2025
Viewed by 954
Abstract
A dysprosium-based metal–organic framework (MOF), namely [DyLH2O]n (1) (H3L = 4-((bis(carboxymethyl) amino)methyl)benzoic acid), was successfully synthesized via the hydrothermal method. According to the structural characterization, metal centers in this complex are linked by four bridges (two [...] Read more.
A dysprosium-based metal–organic framework (MOF), namely [DyLH2O]n (1) (H3L = 4-((bis(carboxymethyl) amino)methyl)benzoic acid), was successfully synthesized via the hydrothermal method. According to the structural characterization, metal centers in this complex are linked by four bridges (two oxygens and two carboxylic groups), leading to Dy2 units. On further connection by single carboxylic groups, the dimeric units extend to form a two-dimensional layer with a 44 topological structure. Finally, the 2D layers were assembled into a 3D framework by the L−3 anions. A thermogravimetric test shows that [DyLH2O]n can maintain high thermal stability after losing water, until the temperature reaches 426 °C. Magnetic studies on 1 reveal antiferromagnetic exchange interactions of Dy3+…Dy3+ at low temperatures. Additionally, frequency-dependent out-of-phase signals were observed in alternating current (ac) magnetic susceptibility measurements for 1, indicating that it has slow magnetic relaxation features. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

11 pages, 1775 KiB  
Article
ZIF-8 as Potential Pesticide Adsorbent Medium for Wastewater Treatment: The Case Study of Model Linuron Extraction Conditions Optimization via Design of Experiment
by Nicola di Nicola, Mariacristina Di Pelino, Martina Foschi, Rosalba Passalacqua, Andrea Lazzarini and Fabrizio Ruggieri
Molecules 2025, 30(12), 2480; https://doi.org/10.3390/molecules30122480 - 6 Jun 2025
Viewed by 604
Abstract
The increasing presence of pesticide residues in aquatic environments poses a significant threat to ecosystems and human health, necessitating the development of effective removal technologies. In this study, Zeolitic Imidazolate Framework-8 (ZIF-8) was investigated as adsorbent for Linuron, a widely used herbicide. The [...] Read more.
The increasing presence of pesticide residues in aquatic environments poses a significant threat to ecosystems and human health, necessitating the development of effective removal technologies. In this study, Zeolitic Imidazolate Framework-8 (ZIF-8) was investigated as adsorbent for Linuron, a widely used herbicide. The material was synthesized via a hydrothermal method and underwent thorough physico-chemical characterization, confirming its intrinsic properties. Adsorption experiments were conducted under systematically varied conditions using a Central Composite Face-Centered (CFC) experimental design, evaluating the effects of temperature, Linuron concentration, ionic strength on adsorption efficiency. The Response Surface Methodology (RSM) revealed that temperature and Linuron concentration were the most influential variables. A quadratic effect of ionic strength and a significant interaction between Linuron concentration and ionic strength were also observed. The fitted quadratic regression model exhibited excellent predictive performance (R2 = 0.909; Q2 = 0.755), and analysis of variance (ANOVA) confirmed its significance (p < 0.001) with a non-significant lack of fit. Maximum Linuron removal (>95%) was achieved at elevated temperature, moderate concentration, and intermediate ionic strength. These findings highlight the potential of ZIF-8 as a tunable and high-efficiency adsorbent for the remediation of pesticide-contaminated water, demonstrating the value of RSM-based optimization in designing adsorption processes. Full article
Show Figures

Graphical abstract

26 pages, 7101 KiB  
Article
Enhancement of Electron Transfer Between Fe/Mn Promotes Efficient Activation of Peroxomonosulfate by FeMn-NBC
by Xiaoni Lin, Qiang Ge, Xianbo Zhou, Yan Wang, Congyun Zhu, Kuanyong Liu and Jinquan Wan
Water 2025, 17(11), 1700; https://doi.org/10.3390/w17111700 - 4 Jun 2025
Cited by 2 | Viewed by 829
Abstract
Bimetallic catalysts can effectively enhance the catalytic degradation efficiency of peroxymonosulfate (PMS), which is usually attributed to the enhancement of electron transfer, but currently, there is no clear explanation of the mechanism of how the electron transfer is enhanced. A nitrogen-doped Fe/Mn composite [...] Read more.
Bimetallic catalysts can effectively enhance the catalytic degradation efficiency of peroxymonosulfate (PMS), which is usually attributed to the enhancement of electron transfer, but currently, there is no clear explanation of the mechanism of how the electron transfer is enhanced. A nitrogen-doped Fe/Mn composite biochar (FeMn-NBC) was co-constructed by hydrothermal synthesis and high-temperature calcination. The FeMn-NBC activated PMS more efficiently than the monometallic one due to the enhanced electron transfer between Fe and Mn. The FeMn-NBC/PMS system activated PMS with Mn as the active center, and the high oxidation state of Mn4+ promoted the acceleration of the PMS adsorption of the generation of Mn2+/Mn3+. This gaining effect accelerated the electron cycling between Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+, which enhanced the PMS catalysis to generate free radicals (•OH, SO4•− and •O2) and non-radicals (1O2) for the efficient degradation of diisobutyl phthalate (DIBP). Benefiting from this gaining effect, the degradation rate of DIBP by the FeMn-NBC/PMS system was increased by 2.43 and 3.38 times compared to Fe-NBC and Mn-NBC. The bimetallic-enhanced electron transfer mechanism proposed in this study facilitated the development of efficient catalysts for more efficient and selective removal of organic pollutants. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 916 KiB  
Article
Environment Friendly Biodegradable Sprayable Shrimp Waste Fertilizer and Low-Cost Crab Waste Carbon Fixer
by Viral Sagar and Joan G. Lynam
Environments 2025, 12(6), 181; https://doi.org/10.3390/environments12060181 - 29 May 2025
Viewed by 1404
Abstract
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize [...] Read more.
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize seafood waste were investigated. Hydrothermal carbonization-enriched shrimp shell waste was converted into higher-value products, such as sprayable fertilizer and dry biochar fertilizer pellets. Environment friendly sprayable fertilizer from shrimp and crab shell waste as an inexpensive carbon fixer is a potential solution. An average spray coverage area of 0.12 m2 from only 300 mL of 1:10 shrimp shell waste to water mixture is reported. Characterization using N:P:K ratios from elemental analysis showed crustacean shell waste to comprise long-term organic carbon fixers in the soil with minor mineral enrichment, demonstrating potential for long-term soil care. Additionally, hydrothermally carbonized mineral rich shrimp shell and untreated crab shell waste were pelletized to test their friability and feasibility in transportation. Such a bio-investigation to promote economic goals for sustainability can improve biomass waste handling locally. Full article
(This article belongs to the Special Issue Preparation and Application of Biochar (Second Edition))
Show Figures

Graphical abstract

18 pages, 3933 KiB  
Article
Ru Nanoparticle Assemblies Modified with Single Mo Atoms for Hydrogen Evolution Reactions in Seawater Electrocatalysis
by Shuhan Wang, Jiani Qin, Yong Zhang, Shuai Chen, Wenjun Yan, Haiqing Zhou and Xiujun Fan
Catalysts 2025, 15(5), 475; https://doi.org/10.3390/catal15050475 - 12 May 2025
Viewed by 570
Abstract
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred [...] Read more.
Ru-based catalysts manifest unparalleled hydrogen evolution reaction (HER) performance, but the hydrolysis of Ru species and the accumulation of corresponding reaction intermediates greatly limit HER activity and stability. Herein, Ru nanoparticle assemblies modified with single Mo atoms and supported on N-incorporated graphene (referred to as MoRu-NG) are compounded via hydrothermal and chemical vapor deposition (CVD) methods. The incorporation of single Mo atoms into Ru lattices modifies the local atomic milieu around Ru centers, significantly improving HER catalytic behavior and stability. More specifically, MoRu-NG achieves overpotentials of 53 mV and 28 mV at 10 mA cm−2, with exceptional stability in acidic and alkaline seawater solutions, respectively. In MoRu-NG, Ru atoms have a special electronic structure and thus possess optimal hydrogen adsorption energy, which indicates that excellent HER activity mainly hinges upon Ru centers. To be specific, the d-electron orbitals of Ru atoms are close to half full, giving Ru atoms moderate bond energy for the assimilation and release of hydrogen, which is beneficial for the conversion of reaction intermediates. Moreover, the incorporation of single Mo atoms facilitates the formation of O and O’-bidentate ligands, significantly enhancing the structural stability of MoRu-NG in universal-pH seawater electrolysis. This work advances a feasible construction method of hexagonal octahedral configuration (Ru-O-Mo-N-C) and provides a route to synthesize an efficient and stable catalyst for electrocatalytic HER in universal-pH seawater. Full article
Show Figures

Graphical abstract

16 pages, 3513 KiB  
Article
Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution
by Peiru Li, Siyuan Guo, Yunan Liu, Yanhong Lin and Tengfeng Xie
Nanomaterials 2025, 15(5), 361; https://doi.org/10.3390/nano15050361 - 26 Feb 2025
Viewed by 467
Abstract
The periodical distribution of N and C atoms in carbon nitride (CN) not only results in localized electrons in each tri-s-triazine unit, but oxidation and reduction sites are in close contact spatially, resulting in severe carrier recombination. Herein, the hydrothermal method was first [...] Read more.
The periodical distribution of N and C atoms in carbon nitride (CN) not only results in localized electrons in each tri-s-triazine unit, but oxidation and reduction sites are in close contact spatially, resulting in severe carrier recombination. Herein, the hydrothermal method was first employed to synthesize carbon nitride (HCN), and then picolinamide (Pic) molecules were introduced at the edge of the carbon nitride so that the photo-generated electrons of the whole structure of the carbon nitride system were transferred from the center to the edge, which effectively promoted the separation of photo-generated carriers and inhibited the recombination of carriers in the structure. The introduced picolinamide not only changed the π-conjugated structure of the entire system but also acted as an electron-withdrawing group to promote charge transfer. The photocatalytic hydrogen evolution rate (HER) of the optimized HCN-Pic-1:1 sample could reach 918.03 μmolg−1 h−1, which was 11.8 times higher than that of the HCN, and the performance also improved. Full article
Show Figures

Figure 1

14 pages, 6651 KiB  
Article
Sensitivity Enhancement of Thermometry in Tb3+-Doped KY(CO3)2:Sm3+ by Energy Transfer
by Shijian Sun, Jian Qian, Zheng Li, Lei Huang and Dechuan Li
Molecules 2025, 30(4), 767; https://doi.org/10.3390/molecules30040767 - 7 Feb 2025
Cited by 3 | Viewed by 767
Abstract
Sm3+ and Tb3+ co-doped KY(CO3)2 temperature sensing materials were prepared via the hydrothermal method. X-ray diffraction results confirmed the monoclinic phase in KY(CO3)2:Sm3+,Tb3+ samples. In this KY(CO3)2 host, [...] Read more.
Sm3+ and Tb3+ co-doped KY(CO3)2 temperature sensing materials were prepared via the hydrothermal method. X-ray diffraction results confirmed the monoclinic phase in KY(CO3)2:Sm3+,Tb3+ samples. In this KY(CO3)2 host, Tb3+ transfers energy to Sm3+ through cross-relaxation. Notably, a 20 mol% concentration of Tb3+ increases the emission intensity of Sm3+ by 7.1 times. The fluorescence emission intensities of 5D4 (Tb3+) and 4G5/2 (Sm3+) vary significantly with temperature. Both Sm3+-Sm3+ and Tb3+-Sm3+ pairs act as effective emission centers in KY(CO3)2:Sm3+,Tb3+ for optical temperature measurement. The relationship between fluorescence intensity ratio (I542/I567) and temperature reveals that the maximum absolute sensitivity and relative sensitivity of KY(CO3)2:Sm3+,Tb3+ are 0.031 K−1 and 0.46%K−1 at room temperature of 298 K, respectively. In contrast, KY(CO3)2:Sm3+ has a maximum absolute sensitivity of only 0.00051 K−1 and a relative sensitivity of 0.11%K−1 at 498 K. These results highlight the significant role of Tb3+ in enhancing Sm3+ emission intensities, making Tb3+ doped KY(CO3)2:Sm3+ a promising candidate for thermometry. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Figure 1

21 pages, 39906 KiB  
Article
Geological and 3D Image Analysis Toward Protecting a Geosite: The Case Study of Falakra, Limnos, Greece
by Ioannis K. Koukouvelas, Aggeliki Kyriou, Konstantinos G. Nikolakopoulos, Georgios Dimaris, Ioannis Pantelidis and Harilaos Tsikos
Minerals 2025, 15(2), 148; https://doi.org/10.3390/min15020148 - 31 Jan 2025
Cited by 1 | Viewed by 1095
Abstract
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and [...] Read more.
The Falakra geosite is located at the northern shoreline of the island of Limnos, Greece, and exhibits an array of unusual geomorphological features developed in late Cenozoic sandstones. Deposition of the primary clastic sediments was overprinted by later, low-temperature hydrothermal fluid flow and interstitial secondary calcite formation associated with nearby volcanic activity. Associated sandstone cannonballs take center stage in a landscape built by joints, Liesengang rings and iron (hydr)oxide precipitates, constituting an intriguing site of high aesthetic value. The Falakra geosite is situated in an area with dynamic erosion processes occurring under humid weather conditions. These have evidently sculpted and shaped the sandstone landscape through a complex interaction of wave- and wind-induced erosional processes aided by salt spray wetting. This type of geosite captivates scientists and nature enthusiasts due to its unique geological and landscape features, making its sustainable conservation a significant concern and topic of debate. Here, we provide detailed geological and remote sensing mapping of the area to improve the understanding of geological processes and their overall impact. Given the significance of the Falakra geosite as a unique tourist destination, we emphasize the importance of developing it under sustainable management. We propose the segmentation of the geosite into four sectors based on the corresponding geological features observed on site. Sector A, located to the west, is occupied by a lander-like landscape; to the southeast, sector B contains clusters of cannonballs and concretions; sector C is characterized by intense jointing and complex iron (hydr)oxide precipitation patterns, dominated by Liesengang rings, while sector D displays cannonball or concretion casts. Finally, we propose a network of routes and platforms to highlight the geological heritage of the site while reducing the impact of direct human interaction with the outcrops. For constructing the routes and platforms, we propose the use of serrated steel grating. Full article
(This article belongs to the Special Issue Application of UAV and GIS for Geosciences, 2nd Edition)
Show Figures

Figure 1

24 pages, 22130 KiB  
Article
Interpreting the Complexity of Sulfur, Carbon, and Oxygen Isotopes from Sulfides and Carbonates in a Precious Metal Epithermal Field: Insights from the Permian Drake Epithermal Au-Ag Field of Northern New South Wales, Australia
by Hongyan Quan, Ian Graham, Rohan Worland, Lewis Adler, Christian Dietz, Emmanuel Madayag, Huixin Wang and David French
Minerals 2025, 15(2), 134; https://doi.org/10.3390/min15020134 - 29 Jan 2025
Cited by 1 | Viewed by 1004
Abstract
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. [...] Read more.
The Drake Goldfield, also known as Mount Carrington, is located in north-eastern New South Wales, Australia. It contains a number of low–intermediate-sulfidation epithermal precious metal deposits with a current total resource of 724.51 metric tons of Ag and 10.95 metric tons of Au. These deposits occur exclusively within the Drake Volcanics, a 60 × 20 km NW-SE trending sequence of Late Permian volcanics and related epiclastics. Drilling of the Copper Deeps geochemical anomaly suggests that the volcanics are over 600 m thick. The Drake Volcanics are centered upon a geophysical anomaly called “the Drake Quiet Zone” (DQZ), interpreted to be a collapsed volcanic caldera structure. A total of 105 fresh carbonate samples were micro-drilled from diamond drillcores from across the field and at various depths. A pXRD analysis of these carbonates identified five types as follows: ankerite, calcite, dolomite, magnesite, and siderite. Except for three outlier values (i.e., −21.32, −19.48, and 1.42‰), the δ13CVPDB generally ranges from−15.06 to −5.00‰, which is less variable compared to the δ18OVSMOW, which varies from −0.92 to 17.94‰. μ-XRF was used to analyze the elemental distribution, which indicated both syngenetic/epigenetic relationships between calcite and magnesite. In addition, a total of 53 sulfide samples (primarily sphalerite and pyrite) from diamond drillcores from across the Drake Goldfield were micro-drilled for S isotope analysis. Overall, these have a wide range in δ34SCDT values from −16.54 to 2.10‰. The carbon and oxygen isotope results indicate that the fluids responsible for the precipitation of carbonates from across the Drake Goldfield had complex origins, involving extensive mixing of hydrothermal fluids from several sources including those of magmatic origin, meteoric fluids and fluids associated with low-temperature alteration processes. Sulfur isotope ratios of sulfide minerals indicate that although the sulfur was most likely derived from at least two different sources; magmatic sulfur was the dominant source while sedimentary-derived sulfur was more significant for the deposits distal from the DQZ, with the relative importance of each varying from one deposit to another. Our findings contribute to a greater understanding of Au-Ag formation in epithermal environments, particularly in collapsed calderas, enhancing exploration strategies and models for ore deposition. Full article
Show Figures

Figure 1

18 pages, 9742 KiB  
Article
Physical and Chemical Approaches of Photovoltaic Parameters in Dye-Sensitized Solar Cells to ZnO/ZnS:rGO-Based Photoelectrodes
by Thiago Kurz Pedra, Ramon Dadalto Carvalho, Cristian Dias Fernandes, Luciano Timm Gularte, Carolina Ferreira de Matos Jauris, Eduardo Ceretta Moreira, Mateus Meneghetti Ferrer, Cristiane Wienke Raubach, Sérgio da Silva Cava, Pedro Lovato Gomes Jardim, Elson Longo and Mario Lucio Moreira
Appl. Sci. 2025, 15(1), 291; https://doi.org/10.3390/app15010291 - 31 Dec 2024
Cited by 1 | Viewed by 1212
Abstract
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves [...] Read more.
This study proposes an alternative process for obtaining ZnO/ZnS:rGO heterostructures for use in DSSCs and as promising materials for potential applications in other photonic process, such as photocatalysis and photodetection. The compound was obtained through a microwave-assisted hydrothermal method, where the electromagnetic waves and temperature were crucial points for forming ZnO, ZnO/ZnS and reducing graphene oxide (GO). The XRD, Raman, FT-IR, and FESEM results presented the structural, morphological, and chemical structures, which suggest the conversion of ZnO to ZnS for samples with higher concentrations of reduced graphene oxide (rGO). Additionally, the optical properties were analyzed through photoluminescence and UV-Vis measurements. The electrical behavior of the photoelectrodes was investigated through J-V measurements in light and dark conditions. In addition, electrochemical impedance spectroscopy (EIS) was performed and Bode phase plots were created, analyzing the recombination processes and electron lifetime. The J-V results showed that for smaller amounts of rGO, the dye-sensitized solar cells (DSSC) efficiency improved compared to the ZnO/ZnS single structure. However, it was observed that with more significant amounts of rGO, the photocurrent value decreased due to the presence of charge-trapping centers. On the other hand, the best results were obtained for the ZnO/ZnS:1% rGO sample, which showed an increase of 14.2% in the DSSC efficiency compared to the pure ZnO/ZnS photoelectrode. Full article
Show Figures

Figure 1

21 pages, 7532 KiB  
Article
Stand Density Management of Cypress Plantations Based on the Influence of Soil Hydrothermal Conditions on Fine Root Dynamics in Southwestern China
by Guirong Hou, Jinfeng Zhang, Chuan Fan, Xianwei Li, Gang Chen, Kuangji Zhao, Yunqi Zhang, Jiangkun Zheng and Yong Wang
Forests 2025, 16(1), 46; https://doi.org/10.3390/f16010046 - 30 Dec 2024
Cited by 5 | Viewed by 994
Abstract
The mechanisms by which the soil physical structure, nutrient conditions, understory vegetation diversity and forest meteorological factors influence fine root (<2 mm diameter) characteristics mediated by soil moisture content (SMC) and soil heat flux (SHF) remain uncertain under climate change. Therefore, in this [...] Read more.
The mechanisms by which the soil physical structure, nutrient conditions, understory vegetation diversity and forest meteorological factors influence fine root (<2 mm diameter) characteristics mediated by soil moisture content (SMC) and soil heat flux (SHF) remain uncertain under climate change. Therefore, in this research, continuous observations were made of the fine root growth, death and turnover of cypress plantations, as well as the SMC and SHF under the management of four thinning intensities in hilly areas in central Sichuan from 2021 to 2023. The fine root data were obtained using the microroot canals (minirhizotron) in the study, and the soil hydrothermal data were obtained using the ECH2O soil parameter sensor and the PC-2R SHF data logger. In the time series, the fine root growth, death and turnover of the cypress plantations with different thinning intensities first increased and then decreased throughout the year; the vertical center of the gravity of the fine roots of cypress was concentrated in the 30–50 cm range. This research also revealed that the variability in the SMC decreased with increasing soil depth. Additionally, the SHF was transmitted from greater soil depths to the surface in unthinned cypress plantation at a rate of 0.036 per year, which decreased the heat in the fine root region. However, SHF was transmitted from the soil surface to greater depths at rates of 0.012 per year, 0.08 per year and 0.002 per year, which increased the heat in the fine root area. The redundancy analysis (RDA) and structural equation model (SEM) results indicated that the SMC and soil heat energy distribution pattern obviously affected fine root growth, death and turnover in the cypress plantation. However, the climate conditions in the forest, the characteristics of vegetation in the understory and the physical and chemical characteristics of the soil directly or indirectly affect the characteristics of the fine roots of cypress plantations with changes in thinning intensity. This research provides a basis for understanding ecosystem structure, nutrient cycling and carbon balance and may guide artificial plantation development and management. Full article
Show Figures

Figure 1

Back to TopTop