Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of PCN
2.3. Synthesis of HCN
2.4. Synthesis of the Edge-Grafted Picolinamide HCN Sample (HCN-Pic-x)
2.5. Characterization
2.6. Photocatalytic HER Experiments
2.7. Characterization of Photo-Generated Charge Behavior
3. Results and Discussion
3.1. Structure and Morphologies
3.2. Photocatalytic HER Performance
3.3. Mechanism of Photocatalytic Activity Enhancement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CN | carbon nitride |
HCN | hydrothermal method to synthesize carbon nitride |
Pic | picolinamide |
BCN | bulk carbon nitride |
HCN | hydrothermal carbon nitride |
XRD | X-ray diffraction |
SEM | scanning electron microscopy |
TEM | transmission electron microscopy |
FTIR | Fourier-transform infrared |
XPS | X-ray photoelectron spectroscopy |
PL | photoluminescence emission |
HER | photocatalytic hydrogen production rate |
SPV | surface photovoltage |
TPV | transient surface photovoltage |
References
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y.H.; Amal, R.; Kudo, A. Water Splitting and CO2 Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO4, and a Reduced Graphene Oxide Electron Mediator. J. Am. Chem. Soc. 2016, 138, 10260–10264. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tian, W.; Zhang, H.; Sun, H.; Wang, S. Electronic Structure and Functions of Carbon Nitride in Frontier Green Catalysis. Acc. Chem. Res. 2024, 57, 2303–2315. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Kee, R.; Zhu, H.; Sullivan, N.; Zhu, L.; Bian, L.; Jennings, D.; O’Hayre, R. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 2019, 4, 230–240. [Google Scholar] [CrossRef]
- Yi, J.; Fei, T.; Li, L.; Yu, Q.; Zhang, S.; Song, Y.; Lian, J.; Zhu, X.; Deng, J.; Xu, H.; et al. Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. Appl. Catal. B Environ. 2021, 281, 119475. [Google Scholar] [CrossRef]
- Boettcher, S.W. Introduction to Green Hydrogen. Chem. Rev. 2024, 124, 13095–13098. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Z.; Edvinsson, T.; Gascon, J. Hole utilization in solar hydrogen production. Nat. Rev. Chem. 2022, 6, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, K.; Li, F.; Ho, S.-H. Structure-mechanism relationship for enhancing photocatalytic H2 production. Int. J. Hydrogen Energy 2022, 47, 37517–37530. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Y.; Zhou, T.; Xie, M.; Ma, Y.; Liu, Q.; Jing, L.; Xu, H.; Li, H. Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. Appl. Catal. B Environ. 2018, 225, 40–50. [Google Scholar] [CrossRef]
- Ge, F.; Huang, S.; Yan, J.; Jing, L.; Chen, F.; Xie, M.; Xu, Y.; Xu, H.; Li, H. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity. Chin. J. Catal. 2021, 42, 450–459. [Google Scholar] [CrossRef]
- Wang, S.; Lin, S.; Zhang, D.; Li, G.; Leung, M.K.H. Controlling charge transfer in quantum-size titania for photocatalytic applications. Appl. Catal. B Environ. 2017, 215, 85–92. [Google Scholar] [CrossRef]
- Dong, P.; Gao, K.; Zhang, L.; Huan, H.; Xie, M.-H.; Yang, X.-L.; Zhang, J. Hydrogen bond-assisted construction of MOF/semiconductor heterojunction photocatalysts for highly efficient electron transfer. Appl. Catal. B Environ. Energy 2024, 357, 124297. [Google Scholar] [CrossRef]
- Li, N.; Wu, J.; Lu, Y.; Zhao, Z.; Zhang, H.; Li, X.; Zheng, Y.-Z.; Tao, X. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 238, 27–37. [Google Scholar] [CrossRef]
- Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, H. Self-introduction of carbon nitride quantum dots into carbon nitride planar structure for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2023, 339, 123101. [Google Scholar] [CrossRef]
- Li, K.; Lin, Y.-Z.; Wang, K.; Wang, Y.; Zhang, Y.; Zhang, Y.; Liu, F.-T. Rational design of cocatalyst system for improving the photocatalytic hydrogen evolution activity of graphite carbon nitride. Appl. Catal. B Environ. 2020, 268, 118402. [Google Scholar] [CrossRef]
- Li, W.; Guo, Z.; Jiang, L.; Zhong, L.; Li, G.; Zhang, J.; Fan, K.; Gonzalez-Cortes, S.; Jin, K.; Xu, C.; et al. Facile in situ reductive synthesis of both nitrogen deficient and protonated g-C3N4 nanosheets for the synergistic enhancement of visible-light H2 evolution. Chem. Sci. 2020, 11, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Adv. 2015, 5, 101552–101562. [Google Scholar] [CrossRef]
- Dong, H.; Zuo, Y.; Song, N.; Hong, S.; Xiao, M.; Zhu, D.; Sun, J.; Chen, G.; Li, C. Bimetallic synergetic regulating effect on electronic structure in cobalt/vanadium co-doped carbon nitride for boosting photocatalytic performance. Appl. Catal. B Environ. 2021, 287, 119954. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, G.; Guan, X.; Lee, J.; Bahadur, R.; Ramadass, K.; Kumar, P.; Kibria, M.G.; Vidyasagar, D.; Yi, J.; et al. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem. Soc. Rev. 2023, 52, 7602–7664. [Google Scholar] [CrossRef]
- Lan, H.; Li, L.; An, X.; Liu, F.; Chen, C.; Liu, H.; Qu, J. Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds vs. structural defects. Appl. Catal. B Environ. 2017, 204, 49–57. [Google Scholar] [CrossRef]
- Lu, H.; Guo, Y.; Martin, J.W.; Kraft, M.; Robertson, J. Atomic structure and electronic structure of disordered graphitic carbon nitride. Carbon 2019, 147, 483–489. [Google Scholar] [CrossRef]
- Sadanandan, A.M.; Yang, J.-H.; Devtade, V.; Singh, G.; Panangattu Dharmarajan, N.; Fawaz, M.; Mee Lee, J.; Tavakkoli, E.; Jeon, C.-H.; Kumar, P.; et al. Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction. Prog. Mater. Sci. 2024, 142, 101242. [Google Scholar] [CrossRef]
- Wang, W.; Cui, J.; Sun, Z.; Xie, L.; Mu, X.; Huang, L.; He, J. Direct Atomic-Scale Structure and Electric Field Imaging of Triazine-Based Crystalline Carbon Nitride. Adv. Mater. 2021, 33, 2106359. [Google Scholar] [CrossRef]
- Tong, H.; Odutola, J.; Song, J.; Peng, L.; Tkachenko, N.; Antonietti, M.; Pelicano, C.M. Boosting the Quantum Efficiency of Ionic Carbon Nitrides in Photocatalytic H2O2 Evolution via Controllable n → π* Electronic Transition Activation. Adv. Mater. 2024, 36, 2412753. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Ruan, Q.; Qiao, J.; Chen, P.; Yan, B.; He, W.; Zhang, W.; Jiang, C.; Lu, C.; Sun, Z. Realizing Unassisted Photo-Charging of Zinc–Air Batteries by Anisotropic Charge Separation in Photoelectrodes. Adv. Mater. 2023, 35, 2304669. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhu, X.; Liu, Y.; Yang, L.; Jiao, M.; Kang, S.; Luo, J.; Fu, X.; Lu, W. Enhanced Light Absorption and Photo-Generated Charge Separation Efficiency for Boosting Photocatalytic H2 Evolution through TiO2 Quantum Dots with N-Doping and Concomitant Oxygen Vacancy. Small 2024, 20, 2311861. [Google Scholar] [CrossRef]
- Che, H.; Liu, C.; Che, G.; Liao, G.; Dong, H.; Li, C.; Song, N.; Li, C. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273. [Google Scholar] [CrossRef]
- Bellamkonda, S.; Shanmugam, R.; Gangavarapu, R.R. Extending the π-electron conjugation in 2D planar graphitic carbon nitride: Efficient charge separation for overall water splitting. J. Mater. Chem. A 2019, 7, 3757–3771. [Google Scholar] [CrossRef]
- Tan, H.; Gu, X.; Kong, P.; Lian, Z.; Li, B.; Zheng, Z. Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine. Appl. Catal. B Environ. 2019, 242, 67–75. [Google Scholar] [CrossRef]
- Zander, J.; Timm, J.; Weiss, M.; Marschall, R. Light-Induced Ammonia Generation over Defective Carbon Nitride Modified with Pyrite. Adv. Energy Mater. 2022, 12, 2202403. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Song, Y.; Liu, X.; Xie, H.; Cui, Y. Single-site cobalt complexes embedded into thiophene-ring doped carbon nitride aiming to promote photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2025, 99, 256–268. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, P.; Lai, C.; Zhang, C.; Zeng, G.; Huang, D.; Cheng, M.; Hu, L.; Xiong, W.; Wen, X.; et al. Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution. Chem. Eng. J. 2019, 359, 186–196. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.; Zhang, Q.; Yu, Y.; Wang, Y. Efficient synthesis of porous graphitic carbon nitride nanosheets with different precursors via thermal condensation. Mater. Test. 2020, 62, 378–382. [Google Scholar] [CrossRef]
- Lan, Y.; Li, Z.; Li, D.; Yan, G.; Yang, Z.; Guo, S. Graphitic carbon nitride synthesized at different temperatures for enhanced visible-light photodegradation of 2-naphthol. Appl. Surf. Sci. 2019, 467–468, 411–422. [Google Scholar] [CrossRef]
- Liu, X.; Cui, K.; Chen, X.; Li, C.-x.; Hu, Z.; Cui, M. Efficient photocatalytic water decontamination over a wide pH range by C and O co-doped carbon nitride with tunable band structure. Sep. Purif. Technol. 2025, 354, 129276. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Hu, Y.; Li, J.; Liu, X.; Li, K.; Cao, W.; Xu, X.; Yang, Y.; Lin, K. New Insights into Co-pyrolysis among Graphitic Carbon Nitride and Organic Compounds: Carbonaceous Gas Fragments Induced Synthesis of Ultrathin Mesoporous Nitrogen-Doped Carbon Nanosheets for Heterogeneous Catalysis. ACS Appl. Mater. Interfaces 2020, 12, 52624–52634. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wu, H.; Zhu, D.; Zhou, T.; Yan, M.; Chen, G.; Sun, J.; Dai, G.; Ge, F.; Dong, H. High-efficient charge separation driven directionally by pyridine rings grafted on carbon nitride edge for boosting photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2021, 297, 120433. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Wang, X.; Zi, G.; Zhou, C.; Liu, B.; Liu, G.; Wang, L.; Huang, W. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. J. Mater. Sci. Technol. 2022, 104, 155–162. [Google Scholar] [CrossRef]
- Lan, Z.-A.; Wu, M.; Fang, Z.; Zhang, Y.; Chen, X.; Zhang, G.; Wang, X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202201482. [Google Scholar] [CrossRef]
- Yi, J.; Liao, J.; Xia, K.; Song, Y.; Lian, J.; She, X.; Liu, Y.; Yuan, S.; Dong, F.; Xu, H.; et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chem. Eng. J. 2019, 370, 944–951. [Google Scholar] [CrossRef]
- Ren, M.; Zhang, X.; Liu, Y.; Yang, G.; Qin, L.; Meng, J.; Guo, Y.; Yang, Y. Interlayer Palladium-Single-Atom-Coordinated Cyano-Group-Rich Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Production Performance. ACS Catal. 2022, 12, 5077–5093. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, H.; Li, Y.; Wang, D.; Lin, Y.; Li, Z.; Xie, T. Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CuInS2/NCN-CNx Composite Photocatalysts. ACS Sustain. Chem. Eng. 2021, 9, 7286–7297. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. ACS Catal. 2014, 4, 774–780. [Google Scholar] [CrossRef]
- Tiwari, M.; Singh, A.; Thakur, D.; Pattanayek, S.K. Graphitic carbon nitride-based concoction for detection of melamine and R6G using surface-enhanced Raman scattering. Carbon 2022, 197, 311–323. [Google Scholar] [CrossRef]
- Li, K.; Sun, M.; Zhang, W.-D. Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon 2018, 134, 134–144. [Google Scholar] [CrossRef]
- Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; et al. Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction. ACS Sustain. Chem. Eng. 2017, 5, 7260–7268. [Google Scholar] [CrossRef]
- Jiang, E.; Song, N.; Zhang, X.; Yang, L.; Liu, C.; Dong, H. In-situ fabrication of Z-scheme Bi3O4Cl/Bi12O17Cl2 heterostructure by facile pH control strategy to boost removal of various pollutants in water. Chem. Eng. J. 2020, 388, 123483. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, X.; Li, J.; Zhou, P.; Yu, S.; Song, N.; Liu, C.; Che, G.; Li, C. Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activity and mechanism insight. Appl. Catal. B Environ. 2020, 263, 118270. [Google Scholar] [CrossRef]
- Li, C.; Wu, H.; Hong, S.; Wang, Y.; Song, N.; Han, Z.; Dong, H. 0D/2D heterojunction constructed by high-dispersity Mo-doped Ni2P nanodots supported on g-C3N4 nanosheets towards enhanced photocatalytic H2 evolution activity. Int. J. Hydrogen Energy 2020, 45, 22556–22566. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, L.; Liu, E.; Chen, J.; Wang, Z.; Zhang, S.; Lin, X.; Duan, X.; Shi, J. A curly architectured graphitic carbon nitride (g-C3N4) towards efficient visible-light photocatalytic H2 evolution. Inorg. Chem. Front. 2020, 7, 347–355. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, Q.; Zhu, X.; Zhuang, X.; Pan, A. Photoluminescence and surface photovoltage properties of ZnSe nanoribbons. Sci. Bull. 2015, 60, 1674–1679. [Google Scholar] [CrossRef]
- Fengler, S.; Kriegel, H.; Schieda, M.; Gutzmann, H.; Klassen, T.; Wollgarten, M.; Dittrich, T. Charge Transfer in c-Si(n++)/TiO2(ALD) at the Amorphous/Anatase Transition: A Transient Surface Photovoltage Spectroscopy Study. ACS Appl. Mater. Interfaces 2020, 12, 3140–3149. [Google Scholar] [CrossRef]
Sample | C% | N% | O% |
---|---|---|---|
HCN | 42.58 | 54.34 | 3.08 |
HCN-Pic-1:1 | 47.43 | 47.98 | 4.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Guo, S.; Liu, Y.; Lin, Y.; Xie, T. Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution. Nanomaterials 2025, 15, 361. https://doi.org/10.3390/nano15050361
Li P, Guo S, Liu Y, Lin Y, Xie T. Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution. Nanomaterials. 2025; 15(5):361. https://doi.org/10.3390/nano15050361
Chicago/Turabian StyleLi, Peiru, Siyuan Guo, Yunan Liu, Yanhong Lin, and Tengfeng Xie. 2025. "Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution" Nanomaterials 15, no. 5: 361. https://doi.org/10.3390/nano15050361
APA StyleLi, P., Guo, S., Liu, Y., Lin, Y., & Xie, T. (2025). Picolinamide Functionalization on Carbon Nitride Edges for Enhanced Charge Separation and Photocatalytic Hydrogen Evolution. Nanomaterials, 15(5), 361. https://doi.org/10.3390/nano15050361