Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = hydrophilic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2082 KB  
Article
Bark Beetle-Attacked and Wind-Damaged Norway Spruce (Picea abies (L.) Karst.) Trees as a Potential Raw Material for Extractives Recovery
by Vanja Štolcer, Ida Poljanšek, Viljem Vek and Primož Oven
Forests 2026, 17(2), 183; https://doi.org/10.3390/f17020183 - 29 Jan 2026
Abstract
Bark beetle infestations and other natural disturbances have increasingly affected Norway spruce (Picea abies (L.) Karst.) forests across Europe resulting in devaluation and decreased applicability of woody biomass of such trees. The aim of this research was to investigate the extractive content [...] Read more.
Bark beetle infestations and other natural disturbances have increasingly affected Norway spruce (Picea abies (L.) Karst.) forests across Europe resulting in devaluation and decreased applicability of woody biomass of such trees. The aim of this research was to investigate the extractive content of bark beetle-attacked and dead wind-damaged Norway spruce trees relative to healthy trees, in order to assess their potential for extractives recovery. After harvesting, three discs were dissected along the stem height of each tree, and samples of sapwood, heartwood, knots, and bark were collected. Sequential extraction of the samples was performed using cyclohexane and acetone–water mixture in an accelerated solvent extractor. Lipophilic and hydrophilic extractives were determined gravimetrically, while total phenols and proanthocyanidins were measured by UV–Vis spectrophotometry. Results showed that knotwood contained the highest amounts of hydrophilic extractives and total phenols among investigated tissues. Knots of healthy trees contained the highest amount of hydrophilic extractives (52.4% w w−1), while knots of dead wind-damaged trees contained significantly higher content of total phenols (8.8% w w−1). The total phenols in bark beetle-attacked and healthy trees were 7.1% w w−1 and 7.2% w w−1, respectively. The sapwood and heartwood of dead wind-damaged trees had higher content of hydrophilic extractives (3.4% and 2.3% w w−1) than healthy and bark beetle-attacked trees. Bark from healthy trees contained more total phenols (2.7% w w−1) than bark of bark beetle-attacked trees, while proanthocyanidin contents in bark were comparable among three groups of trees. Our findings revealed that woody biomass from bark beetle-attacked and dead wind-damaged Norway spruce trees contains significant levels of phenolics, indicating high potential for extracting valuable compounds in biorefineries. Full article
(This article belongs to the Special Issue Integrated Forest Products Biorefinery Perspectives)
25 pages, 1193 KB  
Review
Gas Chromatography–Mass Spectrometry (GC-MS) in the Plant Metabolomics Toolbox: GC-MS in Multi-Platform Metabolomics and Integrated Multi-Omics Research
by Nadezhda Frolova, Tatiana Bilova, Svetlana Silinskaia, Anastasia Orlova, Anastasia Gurina and Andrej Frolov
Int. J. Mol. Sci. 2026, 27(3), 1343; https://doi.org/10.3390/ijms27031343 - 29 Jan 2026
Abstract
Innovative developments of GC-MS over the last two decades made this methodology a powerful tool for profiling a broad range of volatile metabolites and non-volatile ones of non-polar, semi-polar and even polar nature after appropriate derivatization. Indeed, the high potential of GC-MS in [...] Read more.
Innovative developments of GC-MS over the last two decades made this methodology a powerful tool for profiling a broad range of volatile metabolites and non-volatile ones of non-polar, semi-polar and even polar nature after appropriate derivatization. Indeed, the high potential of GC-MS in the analysis of low molecular weight metabolites involved in essential cellular functions (energy production, metabolic adjustment, signaling) made it the method of choice for the life and plant scientists. However, despite these advances, due to their intrinsic thermal lability, multiple classes of hydrophilic low-molecule weight metabolites (like nucleotides, sugar phosphates, cofactors, CoA esters) are unsuitable under the high-temperature conditions of the split–splitless (SSL) injection and GC separation, which makes the analysis of such compounds by GC-MS challenging. Therefore, to ensure comprehensive coverage of the plant metabolome, the GC-MS-based metabolomics platform needs to be efficiently combined with other metabolomics techniques and instrumental strategies. Moreover, to get a deeper insight into dynamics of plant cell metabolism in response to endogenic and exogenic clues, integration of the metabolomics data with the output obtained from other post-genomics techniques is desired. Therefore, here, we overview different strategies for the integration of the GC-MS-based metabolite profiling output with the data, acquired by other metabolomics techniques in terms of the multi-platform metabolomics approach. Further, we comprehensively discuss the implementation of the GC-MS-based metabolomics in multi-omics strategies and the data integration strategies behind this. This approach is the promising strategy, as it gives deep and multi-level insight into physiological processes in plants in the systems biology context, with consideration of all levels of gene expression. However, multiple challenges may arise in the way of integrating data from different omics technologies, which are comprehensively discussed in this review. Full article
Show Figures

Figure 1

14 pages, 1779 KB  
Article
Electro-Reforming of Biomass Gasification Tar with Simultaneous Hydrogen Evolution
by Umberto Calice, Francesco Zimbardi, Nadia Cerone and Vito Valerio
Processes 2026, 14(3), 444; https://doi.org/10.3390/pr14030444 - 27 Jan 2026
Viewed by 26
Abstract
In this study, an electrochemical valorization strategy on liquid byproducts from hazelnut shell gasification was developed to couple waste remediation with energy-efficient hydrogen production. The aqueous phase, rich in organic compounds, is processed in an anion exchange membrane (AEM) cell, where pure hydrogen [...] Read more.
In this study, an electrochemical valorization strategy on liquid byproducts from hazelnut shell gasification was developed to couple waste remediation with energy-efficient hydrogen production. The aqueous phase, rich in organic compounds, is processed in an anion exchange membrane (AEM) cell, where pure hydrogen evolved at the cathode while organic pollutants are oxidized at the anode. First, the feedstock is thoroughly characterized using gas chromatography–mass spectrometry (GC-MS), identifying a complex matrix of water-soluble aromatic compounds such as phenols, catechols, and other aromatics compounds, with concentrations reaching up to 2.9 g/kg for catechols. Then, the electro-reforming process is optimized using Nickel oxide–hydroxide (Ni(O)OH) electrodes with a loading of 0.75 mg/cm2. This methodology relies on the favorable thermodynamics of organic oxidation, which requires a lower onset potential (0.4 V) compared to the oxygen evolution reaction (OER) observed in the alkaline control (0.52 V), and the low overpotential of the Nickel oxide–hydroxide electrode towards the oxidized species. Consequently, the organic load undergoes progressive oxidation into hydrophilic and less bioaccumulating species and carbon dioxide, allowing for the simultaneous generation of pure hydrogen at the cathode at a reduced cell voltage. Elevated stability was observed, with a substantial abatement—78% of the initial organic load—of organic compounds achieved over 80 h at a fixed cell voltage of 0.5 V, and a specific energy consumption for hydrogen production of 38.5 MJkgH21. This represents a step forward in the development of technologies that reduce the energy intensity of hydrogen generation while valorizing biomass gasification residues. Full article
(This article belongs to the Topic Advances in Hydrogen Energy)
Show Figures

Figure 1

17 pages, 979 KB  
Article
Holistic Estuarine Monitoring: Data-Driven and Process-Based Coupling of Biogeochemical Cycles of Per- and Polyfluoroalkyl Substances
by Fatih Evrendilek, Macy Hannan and Gulsun Akdemir Evrendilek
Processes 2026, 14(2), 391; https://doi.org/10.3390/pr14020391 - 22 Jan 2026
Viewed by 72
Abstract
Better understanding the fate and transport of estuarine per- and polyfluoroalkyl substances (PFASs) requires coupling multiple matrix-specific biogeochemical roles, rather than relying on a single-matrix approach. We therefore evaluated sediment and biological matrices (blue mussels (BMs), Mytilus edulis; and hardshell clams (HSCs), [...] Read more.
Better understanding the fate and transport of estuarine per- and polyfluoroalkyl substances (PFASs) requires coupling multiple matrix-specific biogeochemical roles, rather than relying on a single-matrix approach. We therefore evaluated sediment and biological matrices (blue mussels (BMs), Mytilus edulis; and hardshell clams (HSCs), Mercenaria mercenaria) as complementary indicators of PFAS contamination across three locations over a 240-day period following a spill event. A three-tiered analytical approach was applied: Tier 1 used non-parametric statistics to assess the broad-spectrum detection patterns for a total of 40 PFASs (n = 47 samples); Tier 2 employed generalized regression (adaptive Elastic Net), random forest, and artificial neural networks to model the concentrations of the most frequently detected PFASs (PFOS, PFOA, PFHxA, and PFOSA) (n = 188 observations); and Tier 3 implemented a system dynamics model to mechanistically couple the PFOS and 5:3 FTCA fate. The results suggest that the sediment acted as a long-term sink for legacy long-chain compounds (99.3%, primarily PFOS), while the biota, particularly BMs, acted as sensitive recorders of acute pulses and hydrophilic precursors, uniquely accumulating 5:3 FTCA during spring pulses (p < 0.001). All the models identified the matrix type as the dominant driver of the most prevalent PFAS concentrations. A reliance on sediment monitoring alone may fail to capture the majority of the active contamination burden sequestered in the biota, suggesting that effective risk assessment necessitates an integrated view. Full article
(This article belongs to the Special Issue Advances in Water Resource Pollution Mitigation Processes)
Show Figures

Figure 1

34 pages, 7481 KB  
Review
Recent Advances in Thermoplastic Starch (TPS) and Biodegradable Polyester Blends: A Review of Compatibilization Strategies and Bioactive Functionalities
by Elizabeth Moreno-Bohorquez, Mary Judith Arias-Tapia and Andrés F. Jaramillo
Polymers 2026, 18(2), 289; https://doi.org/10.3390/polym18020289 - 21 Jan 2026
Viewed by 212
Abstract
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide [...] Read more.
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide improved mechanical strength, thermal stability, and barrier performance. However, the intrinsic incompatibility between hydrophilic TPS and hydrophobic polyesters typically leads to immiscible systems with poor interfacial adhesion and limited performance. This review critically examines recent advances in the development of TPS/polyester blends, with emphasis on compatibilization strategies based on chemical modification, natural and synthetic compatibilizers, bio-based additives, and reinforcing agents. Particular attention is given to the role of organic acids, essential oils, phenolic compounds, nanofillers, and natural reinforcements in controlling morphology, crystallinity, interfacial interactions, and thermal–mechanical behavior. In addition, the contribution of bioactive additives to antimicrobial and antioxidant functionality is discussed as an emerging multifunctional feature of some TPS/polyester systems. Finally, current limitations related to long-term stability, scalability, and life cycle assessment are highlighted, identifying key challenges and future research directions for the development of advanced biodegradable materials with tailored properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 314
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

20 pages, 4718 KB  
Article
Forward Osmosis for Produced Water Treatment: Comparative Performance Evaluation of Fabricated and Commercial Membranes
by Sunith B. Madduri and Raghava R. Kommalapati
Polymers 2026, 18(2), 197; https://doi.org/10.3390/polym18020197 - 10 Jan 2026
Viewed by 350
Abstract
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) [...] Read more.
Produced water (PW) generated from oil and gas operations poses a significant environmental challenge due to its high salinity and complex organic–inorganic composition. This study evaluates forward osmosis (FO) as an energy-efficient approach for PW treatment by comparing a commercial cellulose triacetate (CTA) membrane and a fabricated electrospun nanofibrous membrane, both modified with a zwitterionic sulfobetaine methacrylate/polydopamine (SBMA/PDA) coating. Fourier Transform Infrared Spectroscopy (FTIR) spectra verified the successful incorporation of SBMA and PDA through the appearance of characteristic sulfonate, quaternary ammonium, and catechol/amine-related vibrations. Scanning electron microscopy (SEM) imaging revealed the intrinsic dense surface of the CTA membrane and the highly porous nanofibrous architecture of the electrospun membrane, with both materials showing uniform coating coverage after modification. Complementary analyses supported these observations: X-ray Photoelectron Spectroscopy (XPS) confirmed the presence of nitrogen, sulfur, and chlorine containing functionalities associated with the zwitterionic layer; Thermogravimetric Analysis (TGA) demonstrated that surface modification did not compromise the thermal stability of either membrane; and contact-angle measurements showed substantial increases in surface hydrophilicity following modification. Gas chromatography–mass spectrometry (GC–MS) analysis of the Permian Basin PW revealed a chemically complex mixture dominated by light hydrocarbons, alkylated aromatics, and heavy semi-volatile organic compounds. FO experiments using hypersaline PW demonstrated that the fabricated membrane consistently outperformed the commercial membrane under both MgCl2 and Na3PO4 draw conditions, achieving up to ~40% higher initial water flux and total solids rejection as high as ~62% when operated with 2.5 M Na3PO4. The improved performance is attributed to the nanofibrous architecture and zwitterionic surface chemistry, which together reduced fouling and reverse solute transport. These findings highlight the potential of engineered zwitterionic nanofibrous membranes as robust alternatives to commercial FO membranes for sustainable produced water treatment. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

23 pages, 2945 KB  
Article
Application of 1H NMR and HPLC-DAD in Metabolic Profiling of Extracts of Lavandula angustifolia and Lavandula × intermedia Cultivars
by Natalia Dobros, Katarzyna Zawada, Łukasz Woźniak and Katarzyna Paradowska
Plants 2026, 15(2), 217; https://doi.org/10.3390/plants15020217 - 10 Jan 2026
Viewed by 210
Abstract
NMR spectroscopy enables the study of complex mixtures, including plant extracts. The interpretation of specific ranges of 1H NMR spectra allows for the determination of polyphenolic compound, sugar, amino acid, and fatty acid profiles. The main goal of 1H NMR analyses [...] Read more.
NMR spectroscopy enables the study of complex mixtures, including plant extracts. The interpretation of specific ranges of 1H NMR spectra allows for the determination of polyphenolic compound, sugar, amino acid, and fatty acid profiles. The main goal of 1H NMR analyses of plant extracts is to identify the unique “fingerprint” of the material being studied. The aim of this study was to determine the metabolomic profile and antioxidant activity of various Lavandula angustifolia (Betty’s Blue, Elizabeth, Hidcote, and Blue Mountain White) and Lavandula × intermedia cultivars (Alba, Grosso, and Gros Bleu) grown in Poland. Modern green chemistry extraction methods (supercritical fluid extraction (SFE) and ultrasound-assisted extraction (UAE)) were used to prepare the lipophilic and hydrophilic extracts, respectively. The secondary metabolite profiles were determined using the diagnostic signals from 1H NMR and HPLC-DAD analyses. These metabolomic profiles were used to illustrate the differences between the different lavender and lavandin cultivars. The HPLC-DAD analysis revealed that both lavender species have similar polyphenolic profiles but different levels of individual compounds. The extracts from L. angustifolia were characterized by higher phenolic acid and flavonoid contents, while the extracts from L. × intermedia had a higher coumarin content. Diagnostic 1H NMR signals can be used to verify the authenticity and origin of plant extracts, and identify directions for further research, providing a basis for applications such as in cosmetics. Full article
(This article belongs to the Special Issue Phytochemical Compounds and Antioxidant Properties of Plants)
Show Figures

Figure 1

25 pages, 2139 KB  
Article
Sea Buckthorn, Aronia, and Black Currant Pruning Waste Biomass as a Source of Multifunctional Skin-Protecting Cosmetic and Pharmaceutical Cream Ingredients
by Anna Andersone, Anna Ramata-Stunda, Natalija Zaharova, Liga Petersone, Gints Rieksts, Uldis Spulle, Galina Telysheva and Sarmite Janceva
Int. J. Mol. Sci. 2026, 27(2), 701; https://doi.org/10.3390/ijms27020701 - 9 Jan 2026
Viewed by 256
Abstract
Fruit shrubs’ lignocellulosic biomass remaining as waste after harvesting and/or after pruning is an underutilized, little-explored bioresource. Sea buckthorn (Hippophae rhamnoides L.), aronia (Aronia melanocarpa) and blackcurrant (Ribes nigrum) berries are rich in biologically active compounds, so these [...] Read more.
Fruit shrubs’ lignocellulosic biomass remaining as waste after harvesting and/or after pruning is an underutilized, little-explored bioresource. Sea buckthorn (Hippophae rhamnoides L.), aronia (Aronia melanocarpa) and blackcurrant (Ribes nigrum) berries are rich in biologically active compounds, so these shrubs’ woody biomass derivatives are prospective investigation objects. The influence of pre-treated biomass, extracts, and purified proanthocyanidins on the oxidative stability of lipid-based systems was studied by accelerated oxidation method. Emulsion stability, antimicrobial activity against bacteria that causes acne—Cutibacterium acnes; contaminating wounds; skin care products—Streptococcus pyogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus; cytotoxicity and phototoxicity of extracts and proanthocyanidins on HaCaT human keratinocytes were tested. The study established that biomass, lipophilic extracts obtained using liquefied hydrofluorocarbon, and hydrophilic extracts obtained by aqueous ethanol increased oxidative stability of lipid-based formulations. Compounds with skin-protecting properties were detected. Sea buckthorn and aronia hydrophilic extracts and proanthocyanidins had the highest antimicrobial activity. Low phototoxicity was revealed, emphasizing safety and applicability in topical formulations; human HaCaT keratinocyte viability was the best with aronia extracts, but none of the other samples decreased cell viability by more than 50%. It was proven that agro-waste biomass is a prospective source of multifunctional ingredients for cosmetic and pharmaceutical topical formulations. Full article
Show Figures

Graphical abstract

21 pages, 1320 KB  
Article
Microencapsulation of Black Carrot Pomace Bioactive Compounds: Artificial Neural Network Modeling of Cytotoxicity on L929 Fibroblast Cells
by Rumeyse Önal, Derya Dursun Saydam, Merve Terzi and Mehmet Fatih Seyhan
Gels 2026, 12(1), 53; https://doi.org/10.3390/gels12010053 - 5 Jan 2026
Viewed by 408
Abstract
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a [...] Read more.
Valorization of black carrot pomace (BCP), an industrial by-product rich in bioactive compounds, was performed using sustainable extraction and formulation approaches. Bioactive compounds were extracted, using water as a solvent, via ultrasonic processing. The resulting liquid extract (BCP-E) was then freeze-dried with a gum Arabic gel system to obtain a powder formulation (FD-BCP). The technological, physicochemical, and bioactive characteristics of both formulations are described. Total monomeric anthocyanin and antioxidant activities (DPPH and ABTS) did not differ substantially (p > 0.05), but the liquid extract’s total phenolic content was significantly higher (4.95 mg GAE/g db) than the powder formulation’s (4.46 mg GAE/g db). While FD-BCP had three main hydrophilic phenolic compounds, suggesting partial encapsulation, high-resolution LC-MS analysis identified 21 phenolic compounds in BCP-E, dominated by chlorogenic, quinic, and protocatechuic acids. The development of a stable gum Arabic matrix that maintains the phenolics’ structural integrity was confirmed by SEM and FTIR observations. According to cytotoxicity tests conducted on L929 fibroblast cells, both formulations were biocompatible (>70% viability) and even stimulated cell growth at moderate dosages. Dose- and time-dependent viability patterns were successfully described by Principal Component Analysis and Artificial Neural Network models, highlighting the fact that formulation type is the main factor influencing biological response. Overall, ultrasonic extraction and freeze-drying offer efficient and sustainable strategies for producing stable and bioactive-rich components from black carrot pomace that may be used in functional foods and biomedical products. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Figure 1

15 pages, 752 KB  
Article
Comparative Evaluation of Wild Plum (Prunus spinosa L.) Stone Fruits and Leaves: Insights into Nutritional Composition, Antioxidant Properties, and Polyphenol Profile
by Petru Alexandru Vlaicu, Iulia Varzaru, Raluca Paula Turcu, Alexandra Gabriela Oancea and Arabela Elena Untea
Foods 2026, 15(1), 142; https://doi.org/10.3390/foods15010142 - 2 Jan 2026
Viewed by 317
Abstract
Prunus spinosa L. is a shrub with nutritional potential, yet limited information is available on the composition of its stone fruit and leaves. This study aimed to investigate and compare the macro and micronutrients, fatty acid profile, and lipophilic and hydrophilic antioxidant compounds [...] Read more.
Prunus spinosa L. is a shrub with nutritional potential, yet limited information is available on the composition of its stone fruit and leaves. This study aimed to investigate and compare the macro and micronutrients, fatty acid profile, and lipophilic and hydrophilic antioxidant compounds in fruits and leaves, as well as their potential functional properties. The results revealed that leaves contain higher crude protein (10.94%) than fruits (6.46%) but lower crude fiber (13.86% compared to 22.16%). The iron (370.37 mg/kg) and manganese (43.57 mg/kg) were significantly higher (p < 0.05) in leaves than in fruits (44.87 versus 7.02 mg/kg). The fruits’ lipid profile was rich in monounsaturated fatty acids (56.8%), whereas the leaves showed higher saturated fatty acids (38.3%) and polyunsaturated fatty acids (43.7%). The leaves also presented significantly higher n-3 content (25.2%) compared with fruits (1.80%). The antioxidant compounds were higher in the leaves, with total vitamin E exceeding 1268 mg/kg, primarily α-tocopherol (1214.98 mg/kg) isoform, lutein (409.38 mg/kg), and astaxanthin (3.74 mg/kg), compared with only 74.75 mg/kg total vitamin E in the fruits. The total hydroxycinnamic polyphenols in leaves were 92.63% higher in leaves than in fruits, with anthocyanins at 63.23% and flavonols at 95.82%. Although the leaves demonstrated superior antioxidant potential and mineral content compared to the fruits, making it a promising candidate for nutraceutical and functional food applications, the fruits maintained a healthier lipid profile suitable for dietary fat intake. This comparative analysis highlights the distinct nutritional and bioactive composition of Prunus spinosa co-products. Full article
Show Figures

Figure 1

20 pages, 978 KB  
Article
Development and Characterization of Pinhão Extract Powders Using Inulin and Polydextrose as Prebiotic Carriers
by Karine Marafon, Ana Caroline Ferreira Carvalho, Amanda Alves Prestes, Carolina Krebs de Souza, Dayanne Regina Mendes Andrade, Cristiane Vieira Helm, Fernanda Nunes Pereira, Paola Tedeschi, Jefferson Santos de Gois and Elane Schwinden Prudencio
Processes 2026, 14(1), 119; https://doi.org/10.3390/pr14010119 - 29 Dec 2025
Viewed by 333
Abstract
Araucaria angustifolia produces seeds known as Pinhão, which are valued for their nutritional composition and potential use in functional foods. This study investigated the production and characterization of spray-dried Pinhão extracts using inulin (E1) and polydextrose (E2) as carrier agents. The formulations [...] Read more.
Araucaria angustifolia produces seeds known as Pinhão, which are valued for their nutritional composition and potential use in functional foods. This study investigated the production and characterization of spray-dried Pinhão extracts using inulin (E1) and polydextrose (E2) as carrier agents. The formulations were assessed for physicochemical composition, physical properties, rehydration behavior, morphology, phenolic profile, and mineral content. Spray drying resulted in yields of 67.7% (E1) and 60.6% (E2). E1 exhibited higher carbohydrate (37.02 g/100 g) and fiber contents (34.11 g/100 g), as well as lower moisture (1.35 g/100 g) and water activity (0.16), yielding powders with greater stability and lighter color. E2 demonstrated a superior rehydration performance, with higher wettability and dispersibility, attributed to the amorphous and hydrophilic nature of polydextrose. The matrix formed by inulin and polydextrose during spray drying was equally effective in preserving the low contents of phenolic compounds, demonstrating the suitability of the technique for stabilizing these heat-sensitive bioactive compounds. Only very low levels of phenolic compounds were detected in both samples, which is consistent with the naturally low phenolic content of the Pinhão almond. Mineral analysis showed greater calcium and magnesium retention in E1, whereas E2 contained higher levels of potassium, phosphorus, iron, and zinc. Overall, inulin enhanced powder stability and compactness, while polydextrose improved rehydration behavior and mineral preservation, supporting the potential application of Pinhão extract powders in functional and health-oriented food products. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

21 pages, 2597 KB  
Article
Dietary Starch–Extract Complexes from Cerrado Fruits Modulate Oxidative Stress in Mononuclear Cells from Normoglycemic and Diabetic Individuals
by Paula Becker Pertuzatti, Karielly Pereira Montel, Priscila Delalibera, Yasmin Aparecida Konda-Barros, Viviane Francelina Luz, Adenilda Cristina Honório-França, Eduardo Luzia França, Ricardo Stefani and Danilo Hiroshi Konda
Antioxidants 2026, 15(1), 44; https://doi.org/10.3390/antiox15010044 - 29 Dec 2025
Viewed by 326
Abstract
Cerrado fruits are rich sources of bioactive compounds with antioxidant and immunomodulatory properties. However, it remains unclear whether the complexes of non-conventional starch with extracts from these fruits can modulate oxidative stress in human cells, under diabetic conditions. This study evaluated the effects [...] Read more.
Cerrado fruits are rich sources of bioactive compounds with antioxidant and immunomodulatory properties. However, it remains unclear whether the complexes of non-conventional starch with extracts from these fruits can modulate oxidative stress in human cells, under diabetic conditions. This study evaluated the effects of lobeira (Solanum lycocarpum) starch complexed with hydrophilic and lipophilic extracts of mirindiba (Buchenavia tomentosa) on redox parameters in mononuclear cells from normoglycemic and diabetic individuals. The extracts showed high phenolic (1362.70 mg gallic acid equivalent (GAE)/100 g) and carotenoid content (7.07 mg β-carotene/100 g) and strong antioxidant capacity (58.42–140.19 μmol Trolox/g by FRAP and DPPH). Structural analyses (Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM)) confirmed complexation via hydrogen bonding and inclusion-type interactions, which partially modified the crystalline order of starch. The complexes exhibited high biocompatibility (>97% cell viability) and adaptively modulated oxidative and antioxidant responses under different metabolic and infectious conditions. Normoglycemic cells showed enhanced redox balance, with moderate superoxide generation and higher SOD activity, while cells from diabetic individuals displayed elevated oxidative stress and reduced SOD induction upon treatment. Under the E. coli challenge, the complexes modulated redox equilibrium through compensatory antioxidant responses. These findings position lobeira starch–mirindiba extract complexes as promising dietary immunomodulators against oxidative stress in metabolic and infectious contexts. Full article
(This article belongs to the Special Issue Natural Antioxidants and Metabolic Diseases, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 1556 KB  
Article
From Waste to Resource: Extraction and Characterization of Polyphenols from Dalmatian Olive Mill Wastewater
by Nina Knezovic, Ajka Pribisalic, Katarina Jurcic, Ivica Ljubenkov, Barbara Soldo, Danijela Skroza, Mladenka Sarolic, Sanja Luetic, Davorka Sutlovic and Zlatka Knezovic
Antioxidants 2026, 15(1), 12; https://doi.org/10.3390/antiox15010012 - 21 Dec 2025
Viewed by 446
Abstract
Background: Olive cultivation and olive oil production are key agricultural sectors in the Dalmatia region, where numerous oil mills operate. Analyses have shown that extra virgin olive oils (EVOO) produced in this area contain respectable amounts of polyphenols, which contribute to superior oil [...] Read more.
Background: Olive cultivation and olive oil production are key agricultural sectors in the Dalmatia region, where numerous oil mills operate. Analyses have shown that extra virgin olive oils (EVOO) produced in this area contain respectable amounts of polyphenols, which contribute to superior oil quality due to their antioxidant properties. During processing, hydrophilic phenolic compounds predominantly transfer into olive mill wastewater (OMW), making it a concentrated source of valuable bioactive molecules. The antioxidant, anti-inflammatory, and photoprotective effects of these polyphenols are highly relevant for cosmetic and pharmaceutical use. Methods: A total of 186 OMW samples were collected from oil mills in the Split-Dalmatia County across three production seasons (2023–2025). Total polyphenol content (TPC) was measured spectrophotometrically, while polyphenol composition was determined by High Performance Liquid Chromatography (HPLC). Antioxidant activity was evaluated using hydrogen atom transfer (HAT; 2,2-diphenyl-1-picrylhydrazyl) (DPPH), electron transfer (ET; ferric reducing antioxidant power) (FRAP), and oxygen radical absorbance capacity assay (ORAC). Results: The obtained results indicated high total polyphenols concentrations, with values ranging from 111.8 to 6717.2 mg of gallic acid equivalents per L of OMW (mg GAe L−1). In the vast majority of analyzed samples, hydroxytyrosol was the predominant phenol compound. The antioxidant activity of the samples was high. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 517 KB  
Article
Nutritional and Antioxidant Comparison of Oil Press Cakes and Wheat Flours
by Olina Dudasova Petrovicova, Nevena Dabetic, Milica Zrnic Ciric, Brizita Djordjevic and Vanja Todorovic
Molecules 2025, 30(24), 4781; https://doi.org/10.3390/molecules30244781 - 15 Dec 2025
Viewed by 420
Abstract
Plants are sources of compounds with important effects on health, but plant-based food industry generates substantial waste amounts, especially in oil production. This study aimed to characterize flours derived from oilseed by-products, pumpkin, sunflower, and apricot seed residues, and compare them with conventional [...] Read more.
Plants are sources of compounds with important effects on health, but plant-based food industry generates substantial waste amounts, especially in oil production. This study aimed to characterize flours derived from oilseed by-products, pumpkin, sunflower, and apricot seed residues, and compare them with conventional grain flours (white and whole wheat). Nutritional composition was analyzed with emphasis on amino acid profiles performed by ion chromatography. Mineral profiles were determined by ICP-MS. Total phenolics and antioxidant activity were assessed using in vitro colorimetric microassays. Oil press cake flours showed significantly higher levels of protein and fiber compared to wheat flours (p < 0.05), while the latter contained more carbohydrates. Among the examined flours, pumpkin and apricot seed flours stood out with the highest potassium, while sunflower seed flour led in calcium content. Despite higher polyphenol content in wheat flours, apricot seed flour exhibited the greatest antioxidant activity, likely due to its diverse profile of hydrophilic and lipophilic bioactive compounds. These findings highlight oil press cakes as nutritionally valuable ingredients for protein-enriched and other innovative food products, aligning with circular economy principles and promoting resource efficiency in the agri-food sector. Full article
(This article belongs to the Special Issue Natural Antioxidants in Functional Food)
Show Figures

Graphical abstract

Back to TopTop