Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = hydrogen sulphide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1088 KiB  
Review
Biological and Analytical Perspectives on D-Amino Acids in Cancer Diagnosis and Therapy
by Alina Uifălean, Maria Iacobescu, Liana Claudia Salanță, Simona Codruța Hegheş, Radu-Cristian Moldovan and Cristina-Adela Iuga
Pharmaceuticals 2025, 18(5), 705; https://doi.org/10.3390/ph18050705 - 9 May 2025
Cited by 1 | Viewed by 964
Abstract
For a long time, D-amino acids remained unexplored in mammalian physiology. The technological advances in enantioseparation over the past 50 years have revealed that D-amino acids not only exist in human tissues and fluids but also play important roles in neurotransmission, immune regulation, [...] Read more.
For a long time, D-amino acids remained unexplored in mammalian physiology. The technological advances in enantioseparation over the past 50 years have revealed that D-amino acids not only exist in human tissues and fluids but also play important roles in neurotransmission, immune regulation, and cellular proliferation. The present review provides a comprehensive assessment of the role of D-amino acids in cancer, including their endogenous and exogenous production pathways, along with the analytical methodologies used for detection and quantification, from liquid chromatography to biosensors. These methods have underlined how altered levels of D-amino acids can be helpful in early detection, progression, or response to treatment in several malignancies, including gastric, hepatic, colorectal, or breast cancer. The present review also explores how manipulation of D-amino acids can regulate cell proliferation, their mechanisms in cancer regulation, including the modulation of N-methyl-D-aspartate (NMDA) receptors and the production of hydrogen sulphide (H2S), and the role of specific D-amino acids in cancer onset, immune defence, and protection against chemotherapy-induced toxicity. Finally, several underexplored research directions are outlined, such as potential correlations with gut microbiota composition, the impact of processed food consumption, and the integration of multiomics strategies. Full article
(This article belongs to the Special Issue Recent Advances in Cancer Diagnosis and Therapy)
Show Figures

Graphical abstract

27 pages, 3186 KiB  
Review
Anaerobic Bioremediation of Acid Mine Drainage Using Sulphate-Reducing Bacteria: Current Status, Challenges, and Future Directions
by Ditiro Mafane, Tholiso Ngulube and Mamasegare Mabel Mphahlele-Makgwane
Sustainability 2025, 17(8), 3567; https://doi.org/10.3390/su17083567 - 15 Apr 2025
Cited by 2 | Viewed by 2049
Abstract
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of [...] Read more.
Biological reduction of sulphates has gradually replaced unit chemical processes for the treatment of acid mine drainage (AMD), which exerts a significant environmental impact due to its elevated acidity and high concentrations of heavy metals. Bioremediation is optimally suited for the treatment of AMD because it is cost-effective and efficient. Anaerobic bioremediation employing sulphate-reducing bacteria (SRB) presents a promising solution by facilitating the reduction of sulphate to sulphide. The formed can precipitate and immobilise heavy metals, assisting them in their removal from contaminated wastewater. This paper examines the current status of SRB-based bioremediation, with an emphasis on recent advances in microbial processes, reactor design, and AMD treatment efficiencies. Reviewed studies showed that SRB-based bioreactors can achieve up to 93.97% of sulphate reduction, with metal recovery rates of 95% for nickel, 98% for iron and copper, and 99% for zinc under optimised conditions. Furthermore, bioreactors that used glycerol and ethanol as a carbon source improved the efficiency of sulphate reduction, achieving a pH neutralisation from 2.8 to 7.5 within 14 days of hydraulic retention time. Despite the promising results achieved so far, several challenges remain. These include the need for optimal environmental conditions, the management of toxic hydrogen sulphide production, and the economic feasibility of large-scale applications. Future directions are proposed to address these challenges, focusing on the genetic engineering of SRB, integration with other treatment technologies, and the development of cost-effective and sustainable bioremediation strategies. Ultimately, this review provides valuable information to improve the efficiency and scalability of SRB-based remediation methods, contributing to more sustainable mining practices and environmental conservation. To ensure relevance and credibility, relevance and regency were used as criteria for the literature search. The literature sourced is directly related to the subject of the review, and the latest research, typically from the last 5 to 10 years, was prioritised. Full article
Show Figures

Figure 1

12 pages, 2298 KiB  
Article
PTR-ToF-MS VOC Profiling of Raw and Cooked Gilthead Sea Bream Fillet (Sparus aurata): Effect of Rearing System, Season, and Geographical Origin
by Iuliia Khomenko, Valentina Ting, Fabio Brambilla, Mirco Perbellini, Luca Cappellin and Franco Biasioli
Molecules 2025, 30(2), 402; https://doi.org/10.3390/molecules30020402 - 18 Jan 2025
Viewed by 771
Abstract
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with [...] Read more.
This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified. Principal component analysis (PCA) showed a clear separation between cooked and raw samples, with cooking causing a significant increase in 64% of VOCs, especially hydrogen sulphide, methanethiol, and butanal. A two-way ANOVA revealed significant effects of origin, time, and their interaction on VOC concentration, with 102 mass peaks varying significantly based on all three factors. Seasonal effects were also notable, particularly in reared fish from the Adriatic Sea, where compounds like monoterpenes and aromatics were higher during non-breeding months, likely due to environmental factors unique to that area. Differences between wild and reared fish were influenced by lipid content and seasonal changes, impacting the VOC profile of seabream. These findings provide valuable insights into how cooking, geographical origin, and seasonality interact to define the flavour profile of seabream, with potential applications in improving quality control and product differentiation in seafood production. Full article
(This article belongs to the Special Issue Innovative Analytical Techniques in Food Chemistry)
Show Figures

Figure 1

22 pages, 17290 KiB  
Article
Testing Concrete Sewer Maintenance Holes Using an Angular Modulated Penetrometer
by Sampath Thamel, Robert Ross, Alex Stumpf, Fernando Galetto and Jason Cotton
Materials 2024, 17(24), 6187; https://doi.org/10.3390/ma17246187 - 18 Dec 2024
Viewed by 749
Abstract
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be [...] Read more.
Around the world, a significant proportion of sewers and sewer maintenance holes are constructed from concrete. Unfortunately, one major problem with concrete sewer infrastructure is corrosion caused by biogenic hydrogen sulphide, which causes major issues for concrete structural integrity. Furthermore, concrete may be significantly corroded and softened but still pass a visual inspection. The novel system presented in this paper uses a penetrometer mounted on a robotic platform to measure the depth of penetration through a corroded concrete surface. An angular mechanism is used to rotate the penetrometer to new positions as striking aggregate may result in false readings. Based on laboratory analysis, this design is capable of providing consistent and precise multiple observations for both smooth and rough surfaces, as well as for flat and curved surfaces, with 0.1 mm accuracy. The use of a remote robotic platform eliminates the hazards of confined space entry whilst providing a repeatable analysis platform. Full article
Show Figures

Figure 1

13 pages, 1880 KiB  
Article
Investigating the Influence of Organic Loading Rate, Temperature and Stirring Speed on Biogas Production Using Agricultural Waste in South Africa
by Ephodia Sihlangu, Primrose Magama, Idan Chiyanzu, Thierry Regnier, Dibungi Luseba and Khathutshelo Agree Nephawe
Agriculture 2024, 14(11), 2091; https://doi.org/10.3390/agriculture14112091 - 20 Nov 2024
Cited by 2 | Viewed by 1516
Abstract
Biogas production offers an alternate method for managing agricultural waste and contributes to sustainable renewable energy generation. Anaerobic digestion (AD) enables the transformation of organic waste, including agricultural substrates, into biogas, mostly consisting of methane, carbon dioxide, and trace gases such as ammonia [...] Read more.
Biogas production offers an alternate method for managing agricultural waste and contributes to sustainable renewable energy generation. Anaerobic digestion (AD) enables the transformation of organic waste, including agricultural substrates, into biogas, mostly consisting of methane, carbon dioxide, and trace gases such as ammonia and hydrogen sulphide. The objective of this study was to employ a 30 L semi-continuous stirred tank reactor to evaluate the effects of organic loading rate, temperature, and speed of stirring on biogas production. The reactor was inoculated with 8.6 L and filled with 11.4 L of a mixed substrate including cattle manure, potato waste, potato starch waste, fruit waste, and expired dry dog food. The reactor was evaluated with organic loading rates (OLRs) of 11.2, 12.2, and 13.2 g VS/L d, and stirring speeds of 25.5, 35.5, and 45.5 rpm. The results indicated that the maximum yield was 12.2 g VS/L d at 45.5 rpm, and in thermophilic conditions, the biogas yield surpassed that of mesophilic conditions, measuring 105,860 NmL/g VS compared to 69,800 NmL/g VS. This study emphasises the significance of optimising operational parameters to improve biogas output, thereby contributing to sustainable energy resources and advancing the Sustainable Development Goals (SDGs). Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 653 KiB  
Article
Investigation of Carriers of Salmonella and Other Hydrogen Sulphide-Positive Bacteria in the Digestive Content of Fish from the Atlantic Area of Macaronesia: A Comparative Study of Identification by API Gallery and MALDI-TOF MS
by Inmaculada Rosario Medina, Marco Antonio Suárez Benítez, María del Mar Ojeda-Vargas, Kiara Gallo, Daniel Padilla Castillo, Miguel Batista-Arteaga, Soraya Déniz Suárez, Esther Licia Díaz Rodríguez and Begoña Acosta-Hernández
Animals 2024, 14(22), 3247; https://doi.org/10.3390/ani14223247 - 12 Nov 2024
Viewed by 1648
Abstract
Salmonella spp. are known pathogens in fish, with their presence potentially resulting from the contamination of the aquatic environment or improper handling. Accurate bacterial identification is crucial across various fields, including medicine, microbiology, and the food industry, and thus a range of techniques [...] Read more.
Salmonella spp. are known pathogens in fish, with their presence potentially resulting from the contamination of the aquatic environment or improper handling. Accurate bacterial identification is crucial across various fields, including medicine, microbiology, and the food industry, and thus a range of techniques are available for this purpose. In this study, Salmonella spp. and other hydrogen sulphide-positive bacteria were investigated in the digestive contents of fish destined for consumption from the Atlantic area of Macaronesia. Two identification techniques were compared: the traditional API method and the MALDI-TOF MS technique. For the identification of Salmonella spp. carriers, 59 samples were processed following ISO 6579–1:2017. A total of 47 strains of Gram-negative bacilli were obtained. No Salmonella spp. isolates were detected. The most frequent genus was Enterobacter (76.50%), followed by Shewanella (10.63%). The MALDI-TOF MS technique showed a high concordance with the API technique, with 72.34% concordance at the species level. Both techniques demonstrated a high degree of concordance in the identification of Enterobacter cloacae, with 87.23% genus-level concordance and 12.76% non-concordant identifications. This study highlights the limitations of the API technique and the speed and precision of MALDI-TOF MS. The identified bacteria could pose a health risk to humans. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 4297 KiB  
Article
Application of a Multi-Gas Detector for Monitoring Gas Composition in Minced Beef During Storage
by Aleksandar Veličković, Lorenzo Cocola, Massimo Fedel, Bojana Danilović, Massimo De Marchi, Luca Poletto and Dragiša Savić
Foods 2024, 13(22), 3553; https://doi.org/10.3390/foods13223553 - 7 Nov 2024
Viewed by 1517
Abstract
This study aims to assess the capability of using a specially designed device to monitor changes in gas concentration (CO2, NH3, H2S, and O2) in the atmosphere above the minced beef meat, during storage at [...] Read more.
This study aims to assess the capability of using a specially designed device to monitor changes in gas concentration (CO2, NH3, H2S, and O2) in the atmosphere above the minced beef meat, during storage at refrigerated temperature. With its array of sensing channels, the multi-gas detector device facilitates the detection of precise gas concentrations in sensitive environments, enabling the monitoring of various processes occurring within stored meat. To delve into the connection between microbial activity and gas emissions during storage, fluctuations in microbial populations in the meat were observed, focusing on prevalent meat microbiota such as lactic acid bacteria (LAB) and Enterobacteriaceae. A significant reduction of O2 content in the stored samples was observed after seven days (p < 0.05), while a significant release of CO2 was detected on the fourth day of storage. Significant changes (p < 0.05) in the gas content were tracked until the 11th day of storage followed by intensive microbial growth. NH3 and H2S levels remained undetectable throughout the experiment. The results showed a correlation between an increase in gas content in the headspace and an increase in the number of LAB and Enterobacteriaceae in meat. Modern multi-gas detector devices can indirectly determine microbial contamination in closed meat packaging. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

17 pages, 4580 KiB  
Article
Mechanisms of Water Pollutant Degradation under Electric Discharge Generated in a Cavitating Flow
by Anna Kamler, Vadim Bayazitov, Madina Sozarukova, Roman Nikonov, Igor Fedulov, Giancarlo Cravotto and Irina Abramova
Clean Technol. 2024, 6(4), 1340-1356; https://doi.org/10.3390/cleantechnol6040064 - 10 Oct 2024
Viewed by 1337
Abstract
With the aim of developing an innovative water treatment approach for developing countries in the Global South, we have applied the method of treating a cavitating water stream with a plasma discharge under real conditions. To this end, we have optimised the approach [...] Read more.
With the aim of developing an innovative water treatment approach for developing countries in the Global South, we have applied the method of treating a cavitating water stream with a plasma discharge under real conditions. To this end, we have optimised the approach after investigating the effects that occur in the treated medium during such a treatment. Based on the obtained light absorption curves of treated model solutions of titanium oxysulphate and potassium bichromate, it was found that inside the reactor the main role in the destruction of chemical contaminants is played by hydroxide ions, while outside the reactor the main chemical interaction takes place with hydrogen peroxide. The plasma treatment unit was tested in the biological wastewater treatment plant of a health resort in the territory of the Russian Federation (Almetyevsk, Republic of Tatarstan). Water samples taken directly from the tertiary decantation tank were used as real wastewater samples instead of adding chemical reagents for disinfection. It was found that with different modes of operation of the plasma treatment plant, the concentration levels of coliform bacteria, coliphages and Escherichia coli decreased significantly and fell below the limit of permissible concentrations for wastewater discharge. At the same time, the possible effect of the plasma on persistent inorganic compounds was investigated. It was shown that the plasma discharge in the flow of the incoming liquid can almost completely destroy compounds that are difficult to remove, such as hydrogen sulphide and chlorides. In the course of the study, the optimum frequency of electrical pulses of 68 kHz was selected, which ensures the lowest consumption of electrical energy while maintaining the required efficiency. Full article
Show Figures

Figure 1

26 pages, 2416 KiB  
Review
Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction
by Fergus M. Payne, Alisha R. Dabb, Joanne C. Harrison and Ivan A. Sammut
Int. J. Mol. Sci. 2024, 25(17), 9247; https://doi.org/10.3390/ijms25179247 - 26 Aug 2024
Cited by 2 | Viewed by 2408
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a [...] Read more.
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial “stunning”, arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation. Full article
Show Figures

Figure 1

16 pages, 5328 KiB  
Article
Model-Based Analysis of the Oxygen Budget in the Black Sea Water Column
by Matvey Novikov, Svetlana Pakhomova, Anfisa Berezina and Evgeniy Yakushev
Water 2024, 16(17), 2380; https://doi.org/10.3390/w16172380 - 24 Aug 2024
Cited by 2 | Viewed by 1353
Abstract
Climate change and anthropogenic impacts drastically affect the biogeochemical regime of the Black Sea, which contains the largest volume of sulphidic water in the world. The Sea’s oxygen inventory depends on vertical mixing that transports dissolved oxygen (DO) from the upper euphotic layer [...] Read more.
Climate change and anthropogenic impacts drastically affect the biogeochemical regime of the Black Sea, which contains the largest volume of sulphidic water in the world. The Sea’s oxygen inventory depends on vertical mixing that transports dissolved oxygen (DO) from the upper euphotic layer to deeper layers and on dissolved oxygen consumption for the oxidation of organic matter (OM) and reduced species of S, Fe, and Mn. Here we use a vertical one-dimensional transport model, 2DBP, forced by Copernicus data, that was coupled with the FABM-family N-P-Si-C-O-S-Mn-Fe Bottom RedOx Model BROM. The research objective of this study was to analyze the oxygen budget in the upper 350 m of the Sea and demonstrate the role of the parameterization of the acceleration of the sinking of particles covered by precipitated Mn(IV). The analysis of the oxygen budget revealed distinct patterns in oxygen consumption within different depths. In the oxic zone, the primary sink for DO is the mineralization of organic matter, whereas in the suboxic zone, dissolved Mn(II) oxidation becomes the predominant sink. The produced Mn(IV) sinks down and reacts with hydrogen sulphide several meters below, making possible the existence of the suboxic layer without detectable concentrations of DO and H2S. Full article
Show Figures

Figure 1

23 pages, 11373 KiB  
Article
The Origins of the Hydrogen Sulphide (H2S) Gas in the Triassic Montney Formation, British Columbia, Canada
by Gareth Chalmers, Pablo Lacerda Silva, Amanda Bustin, Andrea Sanlorenzo and Marc Bustin
Geosciences 2024, 14(8), 224; https://doi.org/10.3390/geosciences14080224 - 21 Aug 2024
Cited by 1 | Viewed by 1888
Abstract
The inexplicable distribution of souring wells (presence of H2S gas) of the unconventional Montney Formation hydrocarbon resource (British Columbia; BC) is investigated by analysing sulphur and oxygen isotopes, coupled with XRD mineralogy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). [...] Read more.
The inexplicable distribution of souring wells (presence of H2S gas) of the unconventional Montney Formation hydrocarbon resource (British Columbia; BC) is investigated by analysing sulphur and oxygen isotopes, coupled with XRD mineralogy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX). The sulphur isotopic analysis indicates that the sulphur isotopic range for Triassic anhydrite (δ34S 8.9 to 20.98‰ VCDT) is the same as the H2S sulphur that is produced from the Montney Formation (δ34S 9.3 to 20.9‰ VCDT). The anhydrite in the Triassic rocks is the likely source of the sulphur in the H2S produced in the Montney Formation. The deeper Devonian sources are enriched in 34S and are not the likely source for sulphur (δ34S 17.1 and 34‰ VCDT). This is contradictory to studies on Montney Formation producers in Alberta, with heavier (34S-enriched) sulphur isotopic signatures in H2S gas of all souring Montney Formation producers. These studies conclude that deep-seated faults and fractures have provided conduits for sulphate and/or H2S gas to migrate from deeper sulphur sources in the Devonian strata. There are several wells that show a slightly heavier (34S-enriched) isotopic signature (δ34S 18 to 20‰ VCDT) within the Montney Formation H2S gas producing within close proximity to the deformation front. This variation may be due to such deep-seated faults that acted as a conduit for Devonian sulphur to migrate into the Montney Formation. Our geological model suggests the sulphate-rich fluids have migrated from the Charlie Lake Formation prior to hydrocarbon generation in the Montney Formation (BC). Sulphate has concentrated in discrete zones due to precipitation in conduits like fracture and fault systems. The model fits the observation of multi-well pads containing both sour- and sweet-producing wells indicating that the souring is occurring in very narrow and discrete zones with the Montney Formation (BC). Government agencies and operators in British Columbia should map the anhydrite-rich portions of the Charlie Lake Formation, together with the structural elements from three-dimensional seismic to reduce the risk of encountering unexpected souring. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

10 pages, 917 KiB  
Article
Odours in Asphalt: Analysis of the Release of H2S from Bitumen by a Mass Spectrometric Residual Gas Analyser
by Marcello Monteleone, Giuseppe Di Luca, Marcello Filomia, Alessio Fuoco, Alberto Figoli and Johannes Carolus Jansen
Methods Protoc. 2024, 7(4), 55; https://doi.org/10.3390/mps7040055 - 15 Jul 2024
Cited by 1 | Viewed by 2570
Abstract
During the production and laying phases of hot-mixing asphalt (HMA), various volatile organic compounds (VOCs) and noxious gases such as H2S are released into the atmosphere. These emissions are a serious environmental problem, a risk to human health, and expose workers [...] Read more.
During the production and laying phases of hot-mixing asphalt (HMA), various volatile organic compounds (VOCs) and noxious gases such as H2S are released into the atmosphere. These emissions are a serious environmental problem, a risk to human health, and expose workers and residents to unfriendly odours. The aim of this study was the development of a fast and sensitive analytical method to detect the H2S emitted from hot bituminous binder that is generally used in the various stages of asphalt production, processing, handling and during road construction. The method consisted in the analysis of evolved H2S from a flask with molten bitumen, using nitrogen as a carrier gas to lead the volatile compounds into a residual gas analyser equipped with a quadrupole mass spectrometer. The analysis was performed following the H2S-specific signals at m/z 33 (HS+) and at m/z 34 (H2S+) in real time, directly on the sample without laborious and expensive pre-treatments and with short response times (<6 s). Calibration with a standard mixture of 1000 ppm of H2S in nitrogen allows semi-quantitative H2S detection. The sensitivity and rapidity of the method were evaluated by quenching the release of sulphur compounds with commercial odour-suppressing agents. Upon addition of 0.1% of additive in two minutes, the H2S signal drops about 80% in two minutes, confirming the good response of the method, even with a very complex matrix. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2024)
Show Figures

Graphical abstract

27 pages, 4004 KiB  
Review
Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review
by Nur-Sultan Mussa, Kainaubek Toshtay and Mickael Capron
Catalysts 2024, 14(7), 452; https://doi.org/10.3390/catal14070452 - 14 Jul 2024
Cited by 9 | Viewed by 4348
Abstract
The significance and challenges of hydrotreatment processes for vegetable oils have recently become apparent, encompassing various reactions like decarbonylation, decarboxylation, and hydrogenation. Heterogeneous noble or transition metal catalysts play a crucial role in these reactions, offering high selectivity in removing oxygen and yielding [...] Read more.
The significance and challenges of hydrotreatment processes for vegetable oils have recently become apparent, encompassing various reactions like decarbonylation, decarboxylation, and hydrogenation. Heterogeneous noble or transition metal catalysts play a crucial role in these reactions, offering high selectivity in removing oxygen and yielding desired hydrocarbons. Notably, both sulphided and non-sulphided catalysts exhibit effectiveness, with the latter gaining attention due to health and toxicity concerns associated with sulphiding agents. Nickel-based catalysts, such as NiP and NiC, demonstrate specific properties and tendencies in deoxygenation reactions, while palladium supported on activated carbon catalysts shows superior activity in hydrodeoxygenation. Comparisons between the performances of different catalysts in various hydrotreatment processes underscore the need for tailored approaches. Transition metal phosphides (TMP) emerge as promising catalysts due to their cost-effectiveness and environmental friendliness. Ultimately, there is an ongoing pursuit of efficient catalysts and the importance of further advancements in catalysis for the future of vegetable oil hydrotreatment. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Figure 1

15 pages, 938 KiB  
Article
Remediation of Sulfides in Produced Waters of the Oil and Gas Industry Using Hydrogen Peroxide
by Samantha Schovan, Grant McEachern, Alexandria Seeger, Victor V. Nguyen, Bobby Burkes, Amitava Adhikary and Linda E. Schweitzer
Water 2024, 16(14), 1987; https://doi.org/10.3390/w16141987 - 13 Jul 2024
Cited by 1 | Viewed by 1858
Abstract
Produced waters are often treated in open lagoons where hydrogen sulfide (H2S) can off gas, posing a risk to human health and the environment. The aim of this study was to optimize a treatment process using hydrogen peroxide (H2O [...] Read more.
Produced waters are often treated in open lagoons where hydrogen sulfide (H2S) can off gas, posing a risk to human health and the environment. The aim of this study was to optimize a treatment process using hydrogen peroxide (H2O2) to oxidize H2S while minimizing off gassing. Samples of produced water from West Texas and laboratory-prepared waters utilizing sodium sulfide (Na2S) or biogenic polysulfides were oxidized with H2O2 alone or in combination with copper or iron catalysts, sodium hydroxide (NaOH), or a commercial sulfide oxidizer, HydroPower Green™. Sulfur speciation was measured using Hach test kits for sulfide/sulfate/sulfite and Dräger tubes for headspace H2S. HydroPower Green™ (HPG) helped to reduce H2S in the headspace of water samples; some of this was pH related as NaOH also worked, but not as well as HPG. The dose of peroxide necessary to oxidize sulfides to sulfate is a function of the oxidation-reduction potential (Eh) of the water and total sulfide concentration as well as pH; approximately a 1–4:1 ratio of peroxide to sulfide concentration was needed to oxidize sulfidic waters of pH 7–10 with half-lives under 30 min. Both copper and iron catalysts reduce H2O2 demand and the half-life of H2S. Peracetic acid (PAA) and copper (II) sulfate pentahydrate (CuSO4, 5H2O) were explored as biocides for controlling sulfate-reducing bacteria (SRBs) that produce H2S. An AquaSnap (Hygenia) test kit was employed to monitor relative microbial activity in a wetland porewater containing H2S. Microbial regrowth occurred after a few days using the highest dose of PAA; these results showed that PAA was being used by bacteria as a carbon source even after the initial substantial reduction in the microbial activity. CuSO4, 5H2O at a dose of 1 ppm prevented microbial regrowth. The recommended treatment process from this research is determined by jar testing with H2O2, a base for pH control, a biocide, and possibly a metal catalyst or other co-oxidants in order to achieve oxidation of sulfides without H2S release or the precipitation of metal carbonates or oxides. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

29 pages, 1415 KiB  
Article
Investigating Methane, Carbon Dioxide, Ammonia, and Hydrogen Sulphide Content in Agricultural Waste during Biogas Production
by Ephodia Sihlangu, Dibungi Luseba, Thierry Regnier, Primrose Magama, Idan Chiyanzu and Khathutshelo Agree Nephawe
Sustainability 2024, 16(12), 5145; https://doi.org/10.3390/su16125145 - 17 Jun 2024
Cited by 12 | Viewed by 4937
Abstract
The agricultural industry produces a substantial quantity of organic waste, and finding a suitable method for disposing of this highly biodegradable solid waste is a difficult task. The utilisation of anaerobic digestion for agricultural waste is a viable technological solution for both renewable [...] Read more.
The agricultural industry produces a substantial quantity of organic waste, and finding a suitable method for disposing of this highly biodegradable solid waste is a difficult task. The utilisation of anaerobic digestion for agricultural waste is a viable technological solution for both renewable energy production (biogas) and waste treatment. The primary objective of the study was to assess the composition of biogas, namely the percentages of methane, carbon dioxide, ammonia, and hydrogen sulphide. Additionally, the study aimed to quantify the amount of biogas produced and determine the methane yield (measured in NmL/g VS) from different agricultural substrates. The biochemical methane potential (BMP) measurements were conducted in triplicate using the BPC Instruments AMPTS II instrument. The substrates utilised in the investigation were chosen based on their accessibility. The substrates used in this study comprise cattle manure, chicken manure, pig manure, tomato plants, tomatoes, cabbage, mixed fruits, mixed vegetables, dog food, and a co-digestion of mixed vegetables, fruits, and dog food (MVMFDF). Prior to the cleaning process, the makeup of the biogas was assessed using the BIOGAS 5000, a Geotech Analyser. The AMPTS II flow cell automatically monitored and recorded the volume of bio-methane produced after the cleaning stage. The data were examined using the Minitab-17 software. The co-digestion of mixed vegetables, mixed fruits, and dog food (MVMFDF) resulted in the highest methane level of 77.4%, followed by mixed fruits at 76.6%, pig manure at 72.57%, and mixed vegetables at 70.1%. The chicken manure exhibited the greatest levels of ammonia (98.0 ppm) and hydrogen sulphide (589 ppm). Chicken manure had the highest hydrogen sulphide level, followed by pig manure (540 ppm), tomato plants (485 ppm), mixed fruits (250 ppm), and MVMFDF (208 ppm). Ultimately, the makeup of biogas is greatly affected by the unique qualities of each substrate. Substrates containing elevated quantities of hydrogen sulphide, such as chicken manure, require the process of biogas scrubbing. This is because they contain substantial amounts of ammonia and hydrogen sulphide, which can cause corrosion to the equipment in biogas plants. This emphasises the crucial need to meticulously choose substrates, with a specific focus on their organic composition and their capacity to generate elevated methane levels while minimising contaminants. Substrates with a high organic content, such as agricultural waste, are optimal for maximising the production of methane. Furthermore, the implementation of biogas scrubbing procedures is essential for efficiently decreasing carbon dioxide and hydrogen sulphide levels in biogas. By considering and tackling these problems, the effectiveness of biogas generation can be enhanced and its ecological consequences alleviated. This strategy facilitates the advancement of biogas as a sustainable energy source, hence contributing to the attainment of sustainable development goals (SDGs). Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop