Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = hydrogen purging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7120 KiB  
Article
Operational Analysis of a Pilot-Scale Plant for Hydrogen Production via an Electrolyser Powered by a Photovoltaic System
by Lucio Bonaccorsi, Rosario Carbone, Fabio La Foresta, Concettina Marino, Antonino Nucara, Matilde Pietrafesa and Mario Versaci
Energies 2025, 18(15), 3949; https://doi.org/10.3390/en18153949 - 24 Jul 2025
Viewed by 250
Abstract
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site [...] Read more.
This study presents preliminary findings from an experimental campaign conducted on a pilot-scale green hydrogen production plant powered by a photovoltaic (PV) system. The integrated setup, implemented at the University “Mediterranea” of Reggio Calabria, includes renewable energy generation, hydrogen production via electrolysis, on-site storage, and reconversion through fuel cells. The investigation assessed system performance under different configurations (on-grid and selective stand-alone modes), focusing on key operational phases such as inerting, purging, pressurization, hydrogen generation, and depressurization. Results indicate a strong linear correlation between the electrolyser’s power setpoint and the pressure rise rate, with a maximum gradient of 0.236 bar/min observed at 75% power input. The system demonstrated robust and stable operation, efficient control of shutdown sequences, and effective integration with PV input. These outcomes support the technical feasibility of small-scale hydrogen systems driven by renewables and offer valuable reference data for calibration models and future optimization strategies. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

14 pages, 4373 KiB  
Article
Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank
by Trung-Huong Tran, Karthik Kannan, Amornchai Arpornwichanop and Yong-Song Chen
Energies 2025, 18(13), 3342; https://doi.org/10.3390/en18133342 - 25 Jun 2025
Viewed by 366
Abstract
Enhancing energy efficiency is essential for proton exchange membrane fuel cells (PEMFCs) operating in a dead-ended anode (DEA) mode. This study proposes the integration of a buffer tank, positioned between the mass flow meter and the fuel cell, to reduce hydrogen loss during [...] Read more.
Enhancing energy efficiency is essential for proton exchange membrane fuel cells (PEMFCs) operating in a dead-ended anode (DEA) mode. This study proposes the integration of a buffer tank, positioned between the mass flow meter and the fuel cell, to reduce hydrogen loss during purge events. The buffer tank stores hydrogen when the purge valve is closed and releases it when the valve opens, thereby stabilizing anode pressure, minimizing hydrogen waste, and improving overall system efficiency. The effectiveness of the buffer tank is experimentally evaluated under varying load currents, hydrogen supply pressures, purge intervals, and purge durations. The objective is to determine the optimal purge duration that maximizes energy efficiency, both with and without the buffer tank. The results show that the buffer tank consistently improves energy efficiency. Under optimal conditions (0.1 bar, 8 A, 0.1 s purge duration, and 20 s purge interval), efficiency increases by 3.3%. Under non-optimal conditions (0.1 bar, 1 A, 0.1 s purge duration, and 20 s interval), the improvement reaches 71.9%, demonstrating the buffer tank’s effectiveness in stabilizing performance across a wide range of operating conditions. Full article
Show Figures

Figure 1

25 pages, 6825 KiB  
Article
Embedded System for Monitoring Fuel Cell Power Supply System in Mobile Applications
by Miroslav Matejček, Mikuláš Šostronek, Eva Popardovská, Vladimír Popardovský and Marián Babjak
Electronics 2025, 14(9), 1803; https://doi.org/10.3390/electronics14091803 - 28 Apr 2025
Cited by 1 | Viewed by 552
Abstract
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air [...] Read more.
This study deals with a fuel-cell-based power supply system created from a fuel cell stack with a proton exchange membrane fuel cell (PEMFC) and controller monitoring system (Horizon Fuell Cell Technologies (HFCT)). In the fuel cell (FC) stack H60, the reactants are air and hydrogen. Reactants are used for the generation of electricity. The reactants supply fuel cell stacks with hydrogen through the hydrogen supply valve, and redundant reactants are extruded from the region of the 20 fuel cells of the H60 stack through the purge valve, both controlled by an FC controller. The main contribution of this study is the proposal, practical design and integration of an embedded monitoring system into the function of a fuel-cell-based power supply system for monitoring its operation parameters in mobile applications (such as in UGVs—Unmanned Ground Vehicles). The next contribution is the usage of INA226 power monitors for the measurement of input/output parameters in selected parts of the fuel-cell-based power supply system for the evaluation of electrical efficiency or power loss in the system. The third contribution is the integration of Bluetooth technology for the transfer of data from a fuel-cell-based power supply system in a mobile platform to a smartphone or PC for monitoring and data processing. At the end of this study, the computed efficiency values of the fuel cell stack, controller and switching power supply outputs are analysed, and the advantages, disadvantages and practical experience are summarized. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

16 pages, 8471 KiB  
Article
Study on Purge Strategy of Hydrogen Supply System with Dual Ejectors for Fuel Cells
by Yueming Liang and Changqing Du
Energies 2025, 18(9), 2168; https://doi.org/10.3390/en18092168 - 23 Apr 2025
Viewed by 573
Abstract
The exhaust purge on the anode side is a critical step in the operation of fuel cell systems, and optimizing the exhaust interval time is essential for enhancing stack efficiency and hydrogen utilization. This paper proposed a method to determine the purge strategy [...] Read more.
The exhaust purge on the anode side is a critical step in the operation of fuel cell systems, and optimizing the exhaust interval time is essential for enhancing stack efficiency and hydrogen utilization. This paper proposed a method to determine the purge strategy of hydrogen supply system based on theoretical and simulation analysis. To investigate the impact of anode purge strategy on the performance of automotive fuel cells, a model of a 100 kW fuel cell stack and a dual-ejector hydrogen supply system was developed in MATLAB/Simulink(R2022b) using principles of fluid dynamics, simulation, and experimental data. This model effectively captures the accumulation and exhaust of hydrogen, nitrogen, and vapor within the anode. Simulations were conducted under seven different exhaust interval times at varying current densities to study the effect of exhaust interval on the performance of the fuel cell. The results indicate that for a 100 kW fuel cell, the exhaust interval time should be controlled within 25 s and should decrease as the current density increases. At low current density, increasing the exhaust interval has a more significant effect on improving hydrogen utilization. At high current density, reducing the exhaust interval helps maintain a stable hydrogen excess ratio and shortens the time required for the output voltage to reach a stable state. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy and Fuel Cell Technologies)
Show Figures

Figure 1

18 pages, 4292 KiB  
Article
The Purge Characteristics and Strategy in a Proton Exchange Membrane Fuel Cell with a Linear Segmentation-Based Anode Recirculation System
by Weihao Guo, Xiaoxuan Mu, Weida Shen, Chaoqi Ma, Jie Yu, Fu Wang and Jinliang Yuan
Energies 2025, 18(9), 2156; https://doi.org/10.3390/en18092156 - 23 Apr 2025
Cited by 1 | Viewed by 519
Abstract
This study introduces a novel linear segmentation method to optimize the nitrogen purge strategy for proton exchange membrane fuel cells (PEMFCs) operating in an anode recirculation mode. The method simplifies the design of purge cycles by eliminating the need for complex mathematical modeling [...] Read more.
This study introduces a novel linear segmentation method to optimize the nitrogen purge strategy for proton exchange membrane fuel cells (PEMFCs) operating in an anode recirculation mode. The method simplifies the design of purge cycles by eliminating the need for complex mathematical modeling and multivariable optimization, making it more suitable for industrial applications while avoiding the need for lengthy orthogonal experiments. By experimentally determining the maximum tolerable nitrogen accumulation time and leveraging the linear relationship between nitrogen accumulation and purge duration, the traditional long-cycle purge process is divided into multiple short cycles, establishing an optimal nitrogen discharge strategy. Experimental results demonstrate that the segmented purge cycles significantly reduce voltage fluctuations and improve voltage uniformity across cells. Notably, using a purge threshold with a 30 s closing time and a 2 s opening time resulted in a 19.8% improvement in voltage uniformity. In addition, a detailed analysis of the hydrogen consumption during the purge cycle reveals that an excessive purge frequency leads to significant hydrogen losses, whereas prolonged purge cycles may allow nitrogen accumulation to adversely affect voltage stability. By balancing these effects, the proposed strategy maintains the operational efficiency within the ideal range of 50–60%. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 6177 KiB  
Article
Influence of Engine Oils on Pre-Ignition Tendency in a Hydrogen–Kerosene Dual-Fuel Engine
by Christian Reitmayr, Peter Hofmann and Paul Howarth
Lubricants 2025, 13(3), 126; https://doi.org/10.3390/lubricants13030126 - 16 Mar 2025
Viewed by 828
Abstract
Reducing CO2 emissions is an increasingly important goal in general aviation. The dual-fuel hydrogen–kerosene combustion process has proven to be a suitable technology for use in small aircraft. This robust and reliable technology significantly reduces CO2 emissions due to the carbon-free [...] Read more.
Reducing CO2 emissions is an increasingly important goal in general aviation. The dual-fuel hydrogen–kerosene combustion process has proven to be a suitable technology for use in small aircraft. This robust and reliable technology significantly reduces CO2 emissions due to the carbon-free combustion of hydrogen during operation, while pure kerosene or sustainable aviation fuel (SAF) can be used in safety-critical situations or in the event of fuel supply issues. Previous studies have demonstrated the potential of this technology in terms of emissions, performance, and efficiency, while also highlighting challenges related to abnormal combustion phenomena, such as knocking and pre-ignition, which limit the maximum achievable hydrogen energy share. However, the causes of such phenomena—especially regarding the role of lubricating oils—have not yet been sufficiently investigated in hydrogen engines, making this a crucial area for further development. In this paper, investigations at the TU Wien, Institute of Powertrain and Automotive Technology, concerning the role of different engine oils in influencing pre-ignition tendencies in a hydrogen–kerosene dual-fuel engine are described. A specialized test procedure was developed to account for the unique combustion characteristics of the dual-fuel process, along with a detailed purge procedure to minimize oil carryover. Multiple engine oils with varying compositions were tested to evaluate their influence on pre-ignition tendencies, with a particular focus on additives containing calcium, magnesium, and molybdenum, known for their roles in detergent and anti-wear properties. Additionally, the study addressed the contribution of particles to pre-ignition occurrences. The results indicate that calcium and magnesium exhibit no notable impact on pre-ignition behavior; however, the addition of molybdenum results in a pronounced reduction in pre-ignition events, which could enable a higher hydrogen energy share and thus decrease CO2 emissions in the context of hydrogen dual-fuel aviation applications. Full article
Show Figures

Figure 1

24 pages, 2469 KiB  
Article
Catalytic Methane Decomposition for the Simultaneous Production of Hydrogen and Low-Reactivity Biocarbon for the Metallurgic Industry
by Roger A. Khalil, Sethulakshmy Jayakumari, Halvor Dalaker, Liang Wang, Pål Tetlie and Øyvind Skreiberg
Energies 2025, 18(3), 558; https://doi.org/10.3390/en18030558 - 24 Jan 2025
Viewed by 1005
Abstract
To reach agreed-on climate goals, it is necessary to develop new energy carriers and industrial materials that are carbon-neutral. To combat global warming and keep Earth’s temperature from increasing by 1.5 °C, some of these solutions need to be carbon-negative. This study fulfills [...] Read more.
To reach agreed-on climate goals, it is necessary to develop new energy carriers and industrial materials that are carbon-neutral. To combat global warming and keep Earth’s temperature from increasing by 1.5 °C, some of these solutions need to be carbon-negative. This study fulfills this criterion by producing clean hydrogen and biocarbon suitable for the metallurgic industry through the thermal decomposition of methane using biocarbon as a catalyst. Five different biomass samples were used to prepare biocarbons at a pyrolysis temperature of 1000 °C with a holding time of 90 min. When methane was cracked at 1100 °C with a holding time of 90 min, the highest hydrogen production was 105 mol/kg biocarbon, achieved using birch bark. The lowest hydrogen yield, of 68 mol/kg biocarbon, was achieved with steam-explosion pellets. All the biocarbons showed substantial carbon deposition from cracked methane on their surfaces, with the highest deposition on birch bark and spruce wood biocarbons of 42% relative to the biocarbon start weight. The carbon deposition increased with the decomposition temperature, the methane share in the purge gas and the holding time. The steam-explosion pellets, after deactivation, had a CO2 reactivity that was comparable to coke, a reducing agent that is commonly used in manganese-producing industries. About 90% of the potassium and sodium were removed from the biocarbon during catalytic decomposition of methane performed at 1100 °C. The alkali removal was calculated relative to the biocarbon produced under the same conditions, but with 100% N2 purge instead of CH4. After catalytic decomposition, the surface area of the biocarbon was reduced by 11–34%, depending on the biocarbon type. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

17 pages, 14063 KiB  
Article
ATEX-Certified, FPGA-Based Three-Channel Quantum Cascade Laser Sensor for Sulfur Species Detection in Petrochemical Process Streams
by Harald Moser, Johannes Paul Waclawek, Walter Pölz and Bernhard Lendl
Sensors 2025, 25(3), 635; https://doi.org/10.3390/s25030635 - 22 Jan 2025
Cited by 1 | Viewed by 1175
Abstract
In this work, a highly sensitive, selective, and industrially compatible gas sensor prototype is presented. The sensor utilizes three distributed-feedback quantum cascade lasers (DFB-QCLs), employing wavelength modulation spectroscopy (WMS) for the detection of hydrogen sulfide (H2S), methane (CH4), methyl [...] Read more.
In this work, a highly sensitive, selective, and industrially compatible gas sensor prototype is presented. The sensor utilizes three distributed-feedback quantum cascade lasers (DFB-QCLs), employing wavelength modulation spectroscopy (WMS) for the detection of hydrogen sulfide (H2S), methane (CH4), methyl mercaptan (CH3SH), and carbonyl sulfide (COS) in the spectral regions of 8.0 µm, 7.5 µm, and 4.9 µm, respectively. In addition, field-programmable gate array (FPGA) hardware is used for real-time signal generation, laser driving, signal processing, and handling industrial communication protocols. To comply with on-site safety standards, the QCL sensor prototype is housed in an industrial-grade enclosure and equipped with the necessary safety features to ensure certified operation under ATEX/IECEx regulations for hazardous and explosive environments. The system integrates an automated gas sampling and conditioning module, alongside a purge and pressurization system, with intrinsic safety electronic components, thereby enabling reliable explosion prevention and malfunction protection. Detection limits of approximately 0.3 ppmv for H2S, 60 ppbv for CH3SH, and 5 ppbv for COS are demonstrated. Noise-equivalent absorption sensitivity (NEAS) levels for H2S, CH3SH, and COS were determined to be 5.93 × 10−9, 4.65 × 10−9, and 5.24 × 10−10 cm−1 Hz−1/2. The suitability of the sensor prototype for simultaneous sulfur species monitoring is demonstrated in process streams of a hydrodesulphurization (HDS) and fluid catalytic cracking (FCC) unit at the project’s industrial partner, OMV AG. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

17 pages, 1894 KiB  
Article
Kinetic Aspects of Ethylene Glycol Degradation Using UV-C Activated Hydrogen Peroxide (H2O2/UV-C)
by Timur Fazliev, Mikhail Lyulyukin, Denis Kozlov and Dmitry Selishchev
Molecules 2025, 30(1), 49; https://doi.org/10.3390/molecules30010049 - 26 Dec 2024
Viewed by 1696
Abstract
Ethylene glycol (EG) is a contaminant in the wastewater of airports because it is commonly used in aircraft deicing fluids during the cold season in northern regions. Ethylene glycol by itself has relatively low toxicity to mammals and aquatic organisms, but it can [...] Read more.
Ethylene glycol (EG) is a contaminant in the wastewater of airports because it is commonly used in aircraft deicing fluids during the cold season in northern regions. Ethylene glycol by itself has relatively low toxicity to mammals and aquatic organisms, but it can lead to a substantial increase in chemical and biological oxygen demands. The contamination of water with EG facilitates the rapid growth of microbial biofilms, which decreases the concentration of dissolved oxygen in water and negatively affects overall biodiversity. The development of a simple method to decompose EG with high efficiency and low operating costs is important. This study revealed that ethylene glycol can be completely oxidized using UV-C activated hydrogen peroxide (H2O2/UV-C) at a high rate (up to 56 mg L−1 h−1) at an optimum EG:H2O2 molar ratio of 1:10–1:15. Air purging the reaction mixture at 1000 cm3 min−1 increases the EG mineralization rate up to two times because the simultaneous action of UV-activated H2O2 and O2 (H2O2 + O2/UV-C) leads to a synergistic effect, especially at low EG:H2O2 ratios. The kinetics and mechanism of EG degradation are discussed on the basis of the concentration profiles of ethylene glycol and intermediate products. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes (AOPs) in Treating Organic Pollutants)
Show Figures

Graphical abstract

18 pages, 8772 KiB  
Perspective
Perspective on the Development and Integration of Hydrogen Sensors for Fuel Cell Control
by Michael Hauck, Christopher Bickmann, Annika Morgenstern, Nicolas Nagel, Christoph R. Meinecke, Alexander Schade, Rania Tafat, Lucas Viriato, Harald Kuhn, Georgeta Salvan, Daniel Schondelmaier, Tino Ullrich, Thomas von Unwerth and Stefan Streif
Energies 2024, 17(20), 5158; https://doi.org/10.3390/en17205158 - 16 Oct 2024
Cited by 1 | Viewed by 1720
Abstract
The measurement of hydrogen concentration in fuel cell systems is an important prerequisite for the development of a control strategy to enhance system performance, reduce purge losses and minimize fuel cell aging effects. In this perspective paper, the working principles of hydrogen sensors [...] Read more.
The measurement of hydrogen concentration in fuel cell systems is an important prerequisite for the development of a control strategy to enhance system performance, reduce purge losses and minimize fuel cell aging effects. In this perspective paper, the working principles of hydrogen sensors are analyzed and their requirements for hydrogen control in fuel cell systems are critically discussed. The wide measurement range, absence of oxygen, high humidity and limited space turn out to be most limiting. A perspective on the development of hydrogen sensors based on palladium as a gas-sensitive metal and based on the organic magnetic field effect in organic light-emitting devices is presented. The design of a test chamber, where the sensor response can easily be analyzed under fuel cell-like conditions is proposed. This allows the generation of practical knowledge for further sensor development. The presented sensors could be integrated into the end plate to measure the hydrogen concentration at the anode in- and outlet. Further miniaturization is necessary to integrate them into the flow field of the fuel cell to avoid fuel starvation in each single cell. Compressed sensing methods are used for more efficient data analysis. By using a dynamical sensor model, control algorithms are applied with high frequency to control the hydrogen concentration, the purge process, and the recirculation pump. Full article
Show Figures

Figure 1

26 pages, 11381 KiB  
Review
Research Progress on Gas Supply System of Proton Exchange Membrane Fuel Cells
by Lang Cheng, Zhenxing Wu, Jiegang Mou, Yunqing Gu, Denghao Wu, Peijian Zhou and Jian Liu
Processes 2024, 12(6), 1224; https://doi.org/10.3390/pr12061224 - 14 Jun 2024
Cited by 3 | Viewed by 1402
Abstract
Proton exchange membrane fuel cells (PEMFCs) are attracting attention for their green, energy-saving, and high-efficiency advantages, becoming one of the future development trends of renewable energy utilization. However, there are still deficiencies in the gas supply system control strategy that plays a crucial [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) are attracting attention for their green, energy-saving, and high-efficiency advantages, becoming one of the future development trends of renewable energy utilization. However, there are still deficiencies in the gas supply system control strategy that plays a crucial role in PEMFCs, which limits the rapid development and application of PEMFCs. This paper provides a comprehensive and in-depth review of the PEMFC air delivery system (ADS) and hydrogen delivery system (HDS) operations. For the ADS, the advantages and disadvantages of the oxygen excess ratio (OER), oxygen pressure, and their decoupling control strategies are systematically described by the following three aspects: single control, hybrid control, and intelligent algorithm control. Additionally, the optimization strategies of the flow field or flow channel for oxygen supply speeds and distribution uniformity are compared and analyzed. For the HDS, a systematic review of hydrogen recirculation control strategies, purge strategies, and hydrogen flow control strategies is conducted. These strategies contribute a lot to improving hydrogen utilization rates. Furthermore, hydrogen supply pressure is summarized from the aspects of hybrid control and intelligent algorithm control. It is hoped to provide guidance or a reference for research on the HDS as well as the ADS control strategy and optimization strategy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 11586 KiB  
Article
Fabrication of Ceramic Microchannels with Periodic Corrugated Microstructures as Catalyst Support for Hydrogen Production via Diamond Wire Sawing
by Xinying Li, Chao Gao, Ding Yuan, Yuanbao Qin, Dongbi Fu, Xiyang Jiang and Wei Zhou
Materials 2024, 17(11), 2535; https://doi.org/10.3390/ma17112535 - 24 May 2024
Cited by 1 | Viewed by 1262
Abstract
Hydrogen energy is the clean energy with the most potential in the 21st century. The microchannel reactor for methanol steam reforming (MSR) is one of the effective ways to obtain hydrogen. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, and [...] Read more.
Hydrogen energy is the clean energy with the most potential in the 21st century. The microchannel reactor for methanol steam reforming (MSR) is one of the effective ways to obtain hydrogen. Ceramic materials have the advantages of high temperature resistance, corrosion resistance, and high mechanical strength, and are ideal materials for preparing the catalyst support in microchannel reactors. However, the structure of ceramic materials is hard and brittle, and the feature size of microchannel is generally not more than 1 mm, which is difficult to process using traditional processing methods. Diamond wire saw processing technology is mainly used in the slicing of hard and brittle materials such as sapphire and silicon. In this paper, a microchannel with a periodic corrugated microstructure was fabricated on a ceramic plate using diamond wire sawing, and then as a catalyst support when used in a microreactor for MSR hydrogen production. The effects of wire speed and feed speed on the amplitude and period size of the periodic corrugated microstructure were studied using a single-factor experiment. The microchannel surface morphology was observed via SEM and a 3D confocal laser microscope under different processing parameters. The microchannel samples obtained under different processing parameters were supported by a multiple impregnation method. The loading strength of the catalyst was tested via a strong wind purge experiment. The experimental results show that the periodic corrugated microstructure can significantly enhance the load strength of the catalyst. The microchannel catalyst support with the periodic corrugated microstructure was put into the microreactor for a hydrogen production experiment, and a good hydrogen production effect was obtained. The experimental results have a positive guiding effect on promoting ceramic materials as the microchannel catalyst support for the development of hydrogen energy. Full article
(This article belongs to the Special Issue Advanced Abrasive Processing Technology and Applications)
Show Figures

Figure 1

15 pages, 5064 KiB  
Article
A Computational Fluid Dynamics Analysis of Hydrogen Leakage and Nitrogen Purging of a Solid Oxide Fuel Cell Stack
by Rasmus Dockweiler Sørensen and Torsten Berning
Hydrogen 2023, 4(4), 917-931; https://doi.org/10.3390/hydrogen4040054 - 4 Nov 2023
Cited by 1 | Viewed by 3058
Abstract
A computational study of the nitrogen purging of a solid oxide fuel cell stack enclosed in a hot box is presented. The stack operates on ammonia as a fuel, and in the case of a hydrogen leakage, the entire compartment is immediately purged [...] Read more.
A computational study of the nitrogen purging of a solid oxide fuel cell stack enclosed in a hot box is presented. The stack operates on ammonia as a fuel, and in the case of a hydrogen leakage, the entire compartment is immediately purged with nitrogen to ensure that there are no regions with high oxygen concentrations. In addition to this, the speed at which a hydrogen leak can be detected is determined. The results are then compared to a case with a relocated nitrogen inlet. A computational fluid dynamics (CFD) model is developed using the Reynolds-averaged Navier–Stokes equations for compressible flow in combination with conservation of energy and species equations in OpenFOAM. The results suggest that for the maximum concentration of oxygen to be below 5%, the hot box should be purged for 35 s, corresponding to 1.1 kg of nitrogen, if the hot box was already heated. If the hot box was at T = 300 K, it should be purged for 95 s, corresponding to 3.0 kg of nitrogen. The purge of the heated hot box results in a heat loss of 18 kW on average. A leak could be detected in 3.2 s during open circuit voltage tests. Changing the location of the outlet does not affect the cold purge, but results in a minimum purge period of 48 s during the hot purge, and the leak could be detected in 2 s. This paper demonstrates how CFD methods can be employed in order to address questions related to hydrogen safety. Full article
(This article belongs to the Special Issue Feature Papers in Hydrogen (Volume 2))
Show Figures

Figure 1

14 pages, 11066 KiB  
Article
Efficiently Removing Hydrogen of H-Supersaturated Liquid Steel in the Vacuum Degasser with Various Gas Injection Modes
by Bing Dai, Mingming Li, Yu Yang, Lei Shao and Zongshu Zou
Metals 2023, 13(7), 1229; https://doi.org/10.3390/met13071229 - 3 Jul 2023
Viewed by 2846
Abstract
Hydrogen removal of H-supersaturated liquid steel produced in a hydrogen-rich environment in an industrial vacuum degasser (VD) is simulated here using a two-phase (argon–steel) Eulerian model. The dehydrogenation efficiency is evaluated for a series of ladle plug layouts and argon-purging modes. Increasing the [...] Read more.
Hydrogen removal of H-supersaturated liquid steel produced in a hydrogen-rich environment in an industrial vacuum degasser (VD) is simulated here using a two-phase (argon–steel) Eulerian model. The dehydrogenation efficiency is evaluated for a series of ladle plug layouts and argon-purging modes. Increasing the plug number from the prototype double-plug of the ladle to four or slightly prolonging the degassing time of a triple-plug ladle enables to obtain the specified dehydrogenation efficiency and the end-point hydrogen level. Varying the plug position of the triple-plug ladle makes no significant difference in the dehydrogenation efficiency, which, however, is improved by adjusting the plug angle. For the triple-plug ladle, the non-uniform argon-purging mode improves the melt hydrodynamic conditions, but the optimal dehydrogenation performance is achieved in the uniform mode. The plug number has the greatest impact on the dehydrogenation efficiency compared to the other ladle designs considered. The high-efficiency dehydrogenation of H-supersaturated liquid steel in the VD can be achieved through using the quadruple plugs, or by using the triple plugs positioned at 0.57R, 0.57R, and 0.41R and the angles of 108.6° and 71.4°, with the uniform argon-purging flow rate. Full article
(This article belongs to the Special Issue Advanced Tundish Metallurgy and Clean Steel Technology)
Show Figures

Figure 1

17 pages, 1800 KiB  
Article
Construction of Nitrogen Content Observer for Fuel Cell Hydrogen Circuit Based on Anode Recirculation Mode
by Weisong Li, Xuezhe Wei, Jiayuan Wang and Xueyuan Wang
World Electr. Veh. J. 2023, 14(5), 131; https://doi.org/10.3390/wevj14050131 - 20 May 2023
Cited by 2 | Viewed by 3003
Abstract
The anode recirculation mode is increasingly being adopted in today’s fuel cell systems. The recycling of hydrogen gas can effectively improve fuel utilization and the wider economy. However, using the purge strategy for the recirculation exhaust has a significant impact on the operational [...] Read more.
The anode recirculation mode is increasingly being adopted in today’s fuel cell systems. The recycling of hydrogen gas can effectively improve fuel utilization and the wider economy. However, using the purge strategy for the recirculation exhaust has a significant impact on the operational performance and economic efficiency of fuel cell systems.Experiments have shown that, when the purge interval increases from 6 s to 10 s, the recirculation pump power increases by about 20%, the nitrogen content in the exhaust gas increases, and the stack voltage shows a 10 V attenuation. The accumulation of nitrogen permeation in the anode circuit leads to the degradation of the fuel cell performance. Therefore, it is necessary to discharge the accumulated nitrogen through the purge valve in a timely manner. However, opening the exhaust valve with excessively high frequency can result in the unreacted hydrogen being discharged, which reduces the economic efficiency of the fuel cell. This paper is based on the principle of mass conservation and models each subsystem of the anode circuit in the recirculation pump mode of the fuel cell separately, including the proportional valve model, the hydrogen consumption model of the fuel cell, the nitrogen permeation model of the fuel cell, the neural network model of the circulating pump, and the purge valve model. These submodels are integrated to construct a nitrogen content observer for the hydrogen circuit, which can estimate the nitrogen content. The accuracy of the model is validated through experimental data. The estimation error is less than 5.5%. The nitrogen content in the anode circuit can be effectively estimated, providing a model reference for purge operations and improving hydrogen utilization. Full article
Show Figures

Figure 1

Back to TopTop