Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Setup
2.2. Experimental Procedure
3. Results and Discussion
3.1. Effect of Purging Duration and Buffer Tank on the Mass Flowrate
3.2. Effect of Purging Duration and Buffer Tank on the Cell Voltage
3.3. Effect of Purging Interval and Buffer Tank on Energy Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Dai, J.; Chen, X.; Hu, B.; Wei, H.; Cai, H.H. Understanding innovation of new energy industry: Observing development trend and evolution of hydrogen fuel cell based on patent mining. Int. J. Hydrogen Energy 2024, 52, 548–560. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, B. Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review. Renew. Sustain. Energy Rev. 2023, 185, 113584. [Google Scholar] [CrossRef]
- Wee, J.-H. Applications of proton exchange membrane fuel cell systems. Renew. Sustain. Energy Rev. 2007, 11, 1720–1738. [Google Scholar] [CrossRef]
- Hu, B.; Qu, Z.; Tao, W. A comprehensive system-level model for performance evaluation of proton exchange membrane fuel cell system with dead-ended anode mode. Appl. Energy 2023, 347, 121327. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Tu, Z. Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle. Renew. Energy 2024, 222, 119950. [Google Scholar] [CrossRef]
- Lin, H.; Jian, Q.; Bai, X.; Huang, W.; Feng, S. Mitigating performance deterioration analysis of VC-PEMFC with dead-ended anode by pulsation fuel supplying mode. Int. J. Hydrogen Energy 2023, 48, 10144–10159. [Google Scholar] [CrossRef]
- Taghiabadi, M.M. Analysis of performance degradation in the dead-ended anode proton exchange membrane fuel cell under different load profiles. Fuel 2024, 57, 129879. [Google Scholar] [CrossRef]
- Baumgartner, W.R.; Parz, P.; Fraser, S.; Wallnöfer, E.; Hacker, V. Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions. J. Power Sources 2008, 182, 413–421. [Google Scholar] [CrossRef]
- Chen, J.; Siegel, J.B.; Matsuura, T.; Stefanopoulou, A.G. Carbon corrosion in PEM fuel cell dead-ended anode operations. J. Electrochem. Soc. 2011, 158, B1164. [Google Scholar] [CrossRef]
- Abbou, S.; Dillet, J.; Spernjak, D.; Mukundan, R.; Fairweather, J.D.; Borup, R.L.; Maranzana, G.; Didierjean, S.; Lottin, O. Time evolution of local potentials during PEM fuel cell operation with dead-ended anode. ECS Trans. 2013, 58, 1631. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Guo, L.; Liu, H. Mechanisms of voltage spikes and mitigation strategies for proton exchange membrane fuel cells with dead-ended anode under pressure swing operation. Int. J. Hydrogen Energy 2017, 42, 28578–28587. [Google Scholar] [CrossRef]
- Tsai, S.-W.; Chen, Y.-S. A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode. Appl. Energy 2017, 188, 151–159. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Yang, G.; Gong, D.; Xu, S. Experimental study on the influence of operating conditions on performance decline with periodic anode purges in a vehicular PEMFC stack. Int. J. Hydrogen Energy 2024, 69, 1276–1286. [Google Scholar] [CrossRef]
- Strahl, S.; Husar, A.; Riera, J. Experimental study of hydrogen purge effects on performance and efficiency of an open-cathode Proton Exchange Membrane fuel cell system. J. Power Sources 2014, 248, 474–482. [Google Scholar] [CrossRef]
- Chen, J.; Siegel, J.B.; Stefanopoulou, A.G.; Waldecker, J.R. Optimization of purge cycle for dead-ended anode fuel cell operation. Int. J. Hydrogen Energy 2013, 38, 5092–5105. [Google Scholar] [CrossRef]
- De las Heras, A.; Vivas, F.; Segura, F.; Andújar, J. How the BoP configuration affects the performance in an air-cooled polymer electrolyte fuel cell. Keys to design the best configuration. Int. J. Hydrogen Energy 2017, 42, 12841–12855. [Google Scholar] [CrossRef]
- Choi, J.W.; Hwang, Y.-S.; Cha, S.W.; Kim, M.S. Experimental study on enhancing the fuel efficiency of an anodic dead-end mode polymer electrolyte membrane fuel cell by oscillating the hydrogen. Int. J. Hydrogen Energy 2010, 35, 12469–12479. [Google Scholar] [CrossRef]
- Okedi, T.I.; Meyer, Q.; Hunter, H.M.; Shearing, P.R.; Brett, D.J. Development of a polymer electrolyte fuel cell dead-ended anode purge strategy for use with a nitrogen-containing hydrogen gas supply. Int. J. Hydrogen Energy 2017, 42, 13850–13859. [Google Scholar] [CrossRef]
- Gomez, A.; Sasmito, A.P.; Shamim, T. Investigation of the purging effect on a dead-end anode PEM fuel cell-powered vehicle during segments of a European driving cycle. Energy Convers. Manag. 2015, 106, 951–957. [Google Scholar] [CrossRef]
- Yang, G.; Meng, K.; Deng, Q.; Chen, W.; Chen, B. Numerical investigation and experimental verification of liquid water dynamic transfer characteristics in the flow field of PEMFC with dead-ended anode during gas purging. Chem. Eng. J. 2024, 491, 152082. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, H.; Xiao, Y.; Cheng, C.; Tian, J.; Li, X.; Liu, J.; Liu, Z. Research on shutdown purge characteristics of proton exchange membrane fuel cells: Purge parameters conspicuity and residual water. Appl. Therm. Eng. 2024, 249, 123437. [Google Scholar] [CrossRef]
- Yu, X.; Guan, Y.; Cai, S.; Tu, Z.; Chan, S.H. An experimental study on the hydrogen utilization in air-cooled proton exchange membrane fuel cell stack with a novel anode outlet design. Renew. Energy 2024, 231, 120990. [Google Scholar] [CrossRef]
- Wang, R.; Li, K.; Ming, Y.; Guo, W.; Deng, B.; Tang, H. An enhanced salp swarm algorithm with chaotic mapping and dynamic learning for optimizing purge process of proton exchange membrane fuel cell systems. Energy 2024, 308, 132852. [Google Scholar] [CrossRef]
- Gong, K.; Tian, C.; Guo, Z.; Chen, L.; Xu, W.; Tao, W.-Q. Experimental investigation on the open cathode air-cooled proton exchange membrane fuel cells: Optimum operating parameters and control strategies. Int. J. Hydrogen Energy 2024, 60, 1134–1146. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Tu, Z.; Chan, S.H. Optimization strategies to mitigate reactant starvation in a dead-ended hydrogen–oxygen proton exchange membrane fuel cell during cyclic loading. Fuel 2024, 357, 129886. [Google Scholar] [CrossRef]
- Jang, J.-H.; Yan, W.-M.; Chiu, H.-C.; Lui, J.-Y. Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode. Appl. Energy 2015, 142, 108–114. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Chen, Y.-S. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode. J. Power Sources 2017, 340, 176–182. [Google Scholar] [CrossRef]
- Bevilacqua, N.; Schmid, M.; Zeis, R. Understanding the role of the anode on the polarization losses in high-temperature polymer electrolyte membrane fuel cells using the distribution of relaxation times analysis. J. Power Sources 2020, 471, 228469. [Google Scholar] [CrossRef]
- Smith, P.J.; Bennett, W.R.; Jakupca, I.J.; Gilligan, R.P.; Edwards, L.G. Effect of Reactant Pressure on Proton Exchange Membrane Fuel Cell Performance. NASA/TP-20205011192. 2021. Available online: https://ntrs.nasa.gov/citations/20205011192 (accessed on 22 April 2025).
- Khotseng, L. Fuel cell thermodynamics. In Thermodynamics and Energy Engineering; IntechOpen: London, UK, 2019; pp. 25–75. [Google Scholar]
- Matsuura, T.; Chen, J.; Siegel, J.B.; Stefanopoulou, A.G. Degradation phenomena in PEM fuel cell with dead-ended anode. Int. J. Hydrogen Energy 2013, 38, 11346–11356. [Google Scholar] [CrossRef]
- Matsuura, T.; Chen, J.; Siegel, J.B.; Stefanopoulou, A.G. Analysis of the behavior and degradation in proton exchange membrane fuel cells with a dead-ended anode. J. Power Sources 2014, 246, 90–99. [Google Scholar] [CrossRef]
- Yang, C.-W.; Chen, Y.-S. A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode. Appl. Energy 2014, 130, 113–121. [Google Scholar] [CrossRef]
- Wu, B.; Parkes, M.A.; de Benedetti, L.; Marquis, A.J.; Offer, G.J.; Brandon, N.P. Real-time monitoring of proton exchange membrane fuel cell stack failure. J. Appl. Electrochem. 2016, 46, 25–36. [Google Scholar] [CrossRef]
Purge interval | 10 s, 20 s |
Purge duration | 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 s |
Current load | 1 A, 5 A, 8 A |
Anode pressure | 0.1 bar, 0.3 bar, 0.5 bar, and 0.7 bar |
Hydrogen pressure | 0.1 bar, 0.3 bar, 0.5 bar, 0.7 bar |
Temperature | 64 °C |
Buffer tank | Without a buffer tank and with a buffer tank |
Operating Condition | Purge Duration | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 s | 0.2 s | 0.4 s | 0.6 s | 0.8 s | 1.0 s | ||||||||
Current Load | Purge Interval | W | Wo | W | Wo | W | Wo | W | Wo | W | Wo | W | Wo |
8 A | 10 s | 40.3 | 38.6 | 37.7 | 35.0 | 34.9 | 29.3 | 30.8 | 25.1 | 28.1 | 21.8 | 25.8 | 19.3 |
20 s | 40 | 38.7 | 38.5 | 36.5 | 35.8 | 33.0 | 33.6 | 30.0 | 31.6 | 27.7 | 29.6 | 25.7 | |
5 A | 10 s | 36.3 | 35.6 | 31.7 | 29.7 | 25.8 | 22.5 | 21.4 | 17.9 | 18.4 | 15.0 | 16.0 | 12.9 |
20 s | 41.3 | 40.1 | 38.3 | 36.1 | 33.1 | 30.1 | 29.0 | 25.7 | 25.8 | 22.5 | 23.3 | 20 | |
1 A | 10 s | 25 | 22.3 | 17.4 | 13.2 | 11.6 | 7.6 | 8.5 | 5.3 | 6.6 | 4.1 | 5.5 | 3.2 |
20 s | 31.6 | 28.7 | 24.5 | 21.8 | 17.8 | 14.1 | 14.0 | 10.4 | 11.5 | 8.2 | 10.0 | 6.7 |
Operating Condition | Purge Duration | ||||||
---|---|---|---|---|---|---|---|
Current Load | Purge Interval | 0.1 s | 0.2 s | 0.4 s | 0.6 s | 0.8 s | 1.0 s |
8 A | 10 s | 4.4 | 7.7 | 19.1 | 22.7 | 28.9 | 33.7 |
20 s | 3.4 | 5.5 | 8.5 | 12.0 | 14.1 | 15.2 | |
5 A | 10 s | 2.0 | 6.7 | 14.7 | 19.6 | 22.7 | 24.0 |
20 s | 3.0 | 6.1 | 10.0 | 12.8 | 14.7 | 16.5 | |
1 A | 10 s | 12.1 | 31.8 | 52.6 | 60.4 | 61.0 | 71.9 |
20 s | 10.1 | 12.4 | 26.2 | 34.6 | 40.2 | 49.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.-H.; Kannan, K.; Arpornwichanop, A.; Chen, Y.-S. Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank. Energies 2025, 18, 3342. https://doi.org/10.3390/en18133342
Tran T-H, Kannan K, Arpornwichanop A, Chen Y-S. Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank. Energies. 2025; 18(13):3342. https://doi.org/10.3390/en18133342
Chicago/Turabian StyleTran, Trung-Huong, Karthik Kannan, Amornchai Arpornwichanop, and Yong-Song Chen. 2025. "Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank" Energies 18, no. 13: 3342. https://doi.org/10.3390/en18133342
APA StyleTran, T.-H., Kannan, K., Arpornwichanop, A., & Chen, Y.-S. (2025). Enhancing the Energy Efficiency of a Proton Exchange Membrane Fuel Cell with a Dead-Ended Anode Using a Buffer Tank. Energies, 18(13), 3342. https://doi.org/10.3390/en18133342