Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = hydrogen feedstock material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3274 KiB  
Article
Investigation of the Influence of Process Parameters on the Physicochemical and Functional Properties of Oil-Based Composites
by Anita Zawadzka and Magda Kijania-Kontak
Materials 2025, 18(15), 3447; https://doi.org/10.3390/ma18153447 - 23 Jul 2025
Viewed by 261
Abstract
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) [...] Read more.
The increasing consumption of edible oils has resulted in a parallel rise in waste cooking oil (WCO), a harmful waste stream but one that also represents a promising raw material. In this study, oil-based binders were synthesised from WCO using various reagents: Sulfuric(VI) acid, hydrobromic acid, acetic acid, salicylic acid, glycolic acid, zinc acetate, ethanol, hydrogen peroxide, and their selected mixtures. The manufacturing process was optimised, and the composites were evaluated for physicochemical and mechanical properties, including compressive strength, bending strength, and water absorption. The best performance was observed for composites catalysed with a mixture of sulfuric(VI) acid and 20% hydrogen peroxide, cured at 240 °C, yielding compressive and bending strengths of 5.20 MPa and 1.34 MPa, respectively. Under modified curing conditions, a compressive strength of 5.70 MPa and a bending strength of 0.75 MPa were obtained. The composite modified with glycolic acid showed the lowest water absorption (3%). These findings demonstrate how catalyst type and curing parameters influence composite structure, porosity, and mechanical behaviour. The study provides new insights into the process–structure–property relationships in oil-based materials and supports the development of environmentally friendly composites from waste feedstocks. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 1272 KiB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 607
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

16 pages, 3183 KiB  
Article
Relationship Between Density and Structure of Lignins Obtained from Different Feedstocks Pretreated with Protic Ionic Liquids
by Francisco Malaret, Pedro Y. S. Nakasu, Pedro Verdía Barbará, Cynthia Hopson and Jason Hallett
Processes 2025, 13(6), 1848; https://doi.org/10.3390/pr13061848 - 11 Jun 2025
Viewed by 562
Abstract
Lignin, one of the most abundant biopolymers on Earth, holds significant promise as a feedstock for applications such as resins, biofuels, foams, and carbon fibres. However, despite extensive research, lignin remains largely underutilised, with its primary use limited to combustion for energy. While [...] Read more.
Lignin, one of the most abundant biopolymers on Earth, holds significant promise as a feedstock for applications such as resins, biofuels, foams, and carbon fibres. However, despite extensive research, lignin remains largely underutilised, with its primary use limited to combustion for energy. While lignin’s structural features are well documented, there is a lack of consistent data on its key physical properties such as density. This study addresses that gap by providing experimentally determined values for skeletal and bulk densities of lignins obtained through different extraction methods, including Kraft; soda pulping; and particularly the ionoSolv process, using ionic liquids such as N,N-dimethyl butyl ammonium hydrogen sulphate ([DMBA][HSO4]). The results reveal correlations between lignin chemical structure and density in ionoSolv-extracted lignins from Eucalyptus Red Grandis, suggesting opportunities to tune the extraction parameters for targeted material properties. The skeletal density of the lignin samples ranged from 1.3370 to 1.4598 g/cm3, while the bulk density varied more widely—from 0.0944 to 0.5302 g/cm3—reflecting significant differences in particle packing and porosity depending on the biomass source and extraction method. These findings contribute valuable data for process design and scale-up, advancing the commercial viability of lignin-based products. Full article
(This article belongs to the Special Issue Ionic Liquid Applications in Sustainable Biomass Processing)
Show Figures

Figure 1

36 pages, 1130 KiB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Viewed by 1456
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

20 pages, 1834 KiB  
Article
Conversion of Sewage Sludge with Combined Pyrolysis and Gasification via the Enhanced Carbon-To-X-Output Technology
by Wolfgang Gebhard, Sebastian Zant, Johannes Neidel, Andreas Apfelbacher and Robert Daschner
Biomass 2025, 5(2), 28; https://doi.org/10.3390/biomass5020028 - 17 May 2025
Viewed by 1354
Abstract
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion [...] Read more.
Sustainably produced hydrogen has the potential to substitute fossil fuels and significantly reduce CO2 emissions. Fraunhofer UMSICHT develops a new thermochemical conversion technology to gasify ash-rich biogenic residues and waste materials that are difficult to treat with conventional gasifiers, enabling their conversion into higher-quality energy carriers such as hydrogen and syngas. Ash-rich feedstocks are difficult to convert in conventional gasification methods, as they tend to agglomerate and form slag, leading to blockages in the reactor and process disturbances. In this experimental study, hydrogen-rich syngas is produced from biogenic residual and waste materials (sewage sludge) using the Enhanced Carbon-To-X-Output (EXO) process. The EXO process is a three-stage thermochemical conversion process that consists of a combination of multi-stage gasification and a subsequent reforming step. The influence of temperature in the reforming step on the gas composition and hydrogen yield is systematically investigated. The reformer temperature of the process is gradually increased from 500 °C to 900 °C. The feedstock throughput of the pilot plant is approximately 10 kg/h. The results demonstrate that the temperature of the reforming step has a significant impact on the composition and yield of syngas as well as the hydrogen yield. By increasing the reformer temperature, the syngas yield could be enhanced. The hydrogen yield increased from 15.7 gH2/kgFeed to 35.7 gH2/kgFeed. The hydrogen content in the syngas significantly increased from 23.6 vol.% to 39 vol.%. The produced syngas can be effectively utilized for sustainable hydrogen production, as a feedstock for subsequent syntheses, or for power and heat generation. Full article
Show Figures

Figure 1

29 pages, 3251 KiB  
Review
Review of Gasification of Thermoplastics and Thermosets
by Mariana Busto, Franco Nardi, Liza Dosso, Juan Manuel Badano, Enrique Eduardo Tarifa and Carlos Román Vera
Processes 2025, 13(3), 647; https://doi.org/10.3390/pr13030647 - 25 Feb 2025
Cited by 1 | Viewed by 1108
Abstract
The end-of-life management of plastic represents a significant environmental challenge, largely due to its limited use, low biodegradability, and high volume of disposed material, in the order of 400 million tonnes by 2019. Several types of polymers can be recycled by mechanical means, [...] Read more.
The end-of-life management of plastic represents a significant environmental challenge, largely due to its limited use, low biodegradability, and high volume of disposed material, in the order of 400 million tonnes by 2019. Several types of polymers can be recycled by mechanical means, but some others, like plastics, sometimes require chemical methods for their reuse. In this context, gasification is one of the most promising chemical recycling techniques. Gasification is a thermochemical process performed at moderate temperatures of work (800–1100 °C) that converts carbonaceous materials into rich hydrogen gas, which can be used for energy obtention or the Fisher–Tropsch process. However, this procedure can also produce undesirable by-products like tar and char. The products’ composition and relative quantities are highly dependent on the overall process configuration and the input fuel. The current study evaluates the catalytic gasification of the most common plastic waste, seeking to obtain higher gas yields and syngas with high energy. The text focuses on the current state of development and recent advances in various publications over the last fifteen years, with emphasis on thermoplastics and thermosets. The search showed that temperatures, the type of fluidizing gas, and the catalyst have a major influence on the quality of the obtained gas. Optimal gasification conditions, such as temperatures between 600 and 900 °C, depending on the plastic feedstock, steam-to-feedstock ratios > 1, the appropriate selection of a gasifying agent according to gas requirements and energy optimization, and the composition and location of the catalyst in the system (in situ, in the reactor, or ex situ), are identified as critical for maximizing H2 and CO production and minimizing tar. Finally, we provide summaries of the last advanced patent in the field, where the main focus appears to be feedstock pretreatment intended to ensure handling feasibility due to the variety of plastic wastes. Full article
Show Figures

Figure 1

28 pages, 6461 KiB  
Article
Technical–Economic Assessment and FP2O Technical–Economic Resilience Analysis of the Gas Oil Hydrocracking Process at Large Scale
by Sofía García-Maza and Ángel Darío González-Delgado
Sci 2025, 7(1), 17; https://doi.org/10.3390/sci7010017 - 12 Feb 2025
Viewed by 944
Abstract
The increasing requirement for distillates, accompanied by higher quantities of heavy crude oil in world production, has positioned gas oil hydrocracking as one of the most significant processes in refineries. In the petrochemical industry, hydrocracking is an essential process that converts heavy hydrocarbons [...] Read more.
The increasing requirement for distillates, accompanied by higher quantities of heavy crude oil in world production, has positioned gas oil hydrocracking as one of the most significant processes in refineries. In the petrochemical industry, hydrocracking is an essential process that converts heavy hydrocarbons into lighter and more valuable products such as LPG (liquefied petroleum gas), diesel, kerosene, light naphtha, and heavy naphtha. This method uses hydrogen and a catalyst to break down the gas oil feedstock through hydrogenation and hydrocracking reactions. However, the gas oil hydrocracking process faces significant technical, economic, and financial obstacles that must be overcome to reveal its full potential. In this study, a computer-assisted technical–economic evaluation and an evaluation of the technical–economic resilience of the gas oil hydrocracking process at an industrial scale was carried out. Twelve technical–economic and three financial indicators were evaluated to identify this type of process’s current commercial status and to analyze possible economic performance parameter optimizations. The economic indicators listed include gross profit (GP), profitability after taxes (PAT), economic potential (EP), cumulative cash flow (CCF), payback period (PBP), depreciable payback period (DPBP), return on investment (ROI), internal rate of return (IRR), net present value (NPV), annual cost/revenues (ACR), break-even point (BEP), and on-stream efficiency at the BEP. On the other hand, the financial indicators proposed by the methodology are earnings before taxes (EBT), earnings before interest and taxes (EBIT), and earnings before interest, taxes, depreciation, and amortization (EBITDA). The technical–economic resilience of the process was also evaluated, considering the costs of raw materials, the market prices of the products, and processing capacity. The gas oil hydrocracking plant described, with a useful life of 20 years and a processing capacity of 1,937,247.91 tonnes per year, achieved a gross profit (GP) of USD 58.97 million and a return after tax (PAT) of USD 39.77 million for the first year, operating at maximum capacity. The results indicated that the process is attractive under a commercial approach, presenting a net present value (NPV) of USD 68.87 million at the end of the last year of operation and a cumulative cash flow (CCF) of less than one year−1 (0.34 years−1) for the first year at full processing capacity, which shows that in this process, variable costs have more weight on the economic indicators than fixed costs. Full article
(This article belongs to the Section Chemistry Science)
Show Figures

Figure 1

18 pages, 4220 KiB  
Article
Catalytic OBSiC Open Cell Foams for Methane-Rich Gas Production Through Hydrogasification of Plastic Waste
by Emilia Saraceno, Eugenio Meloni, Alberto Giaconia and Vincenzo Palma
Catalysts 2025, 15(2), 152; https://doi.org/10.3390/catal15020152 - 6 Feb 2025
Cited by 1 | Viewed by 917
Abstract
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A [...] Read more.
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A notable innovation is transforming plastic waste into methane-rich streams via catalytic hydrogasification, a process in which carbon-based feedstocks interact with hydrogen using a selective catalyst. In this study, a structured catalyst was developed, characterized, and tested for converting plastic waste samples. The thermal degradation properties of plastic waste were first studied using thermogravimetric analysis. The catalyst was prepared using an Oxygen Bonded Silicon Carbide (OBSiC) open-cell foam as the carrier, coated with γ-Al2O3-based washcoat, CeO2, and Ni layers. It was characterized in terms of specific surface area, coating adhesion, pore distribution, acidity, and the strength of its active sites. Experimental tests revealed that a hydrogen-enriched atmosphere significantly enhances CH4 formation. Specifically, during catalytic hydrogasification, methane selectivity reached approximately 59%, compared to 6.7%, 13.7%, and 7.8% observed during pyrolysis, catalyzed pyrolysis, and non-catalyzed hydrogasification tests, respectively. This study presents a novel and effective approach for converting plastic waste using a structured catalyst, a method rarely explored in literature. Full article
Show Figures

Figure 1

16 pages, 2571 KiB  
Article
Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method
by Samah Daffalla
Molecules 2025, 30(2), 407; https://doi.org/10.3390/molecules30020407 - 19 Jan 2025
Cited by 1 | Viewed by 995
Abstract
Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to [...] Read more.
Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons. According to the SEM results, the surface morphology differed significantly from that of the raw material due to the many pores created by activating agents during carbonization. Various surface groups existed on the activated carbon surface as shown by FTIR analysis. An oxidation process utilizing hydrogen peroxide (H2O2) was investigated for MG. Various reaction parameters such as pH value, H2O2 concentration, and activated carbon dosage were investigated for the oxidative degradation of MG. By using BS-AAC and BS-BAC, 97.9% and 78% dye degradation efficiency in aqueous solutions, respectively, was achieved under optimal conditions. This study reveals that MG dye degradation increases with solution pH, making BS-AAC and BS-BAC ineffective at low pH values. However, degradation declines above pH 6. Based on the BS-AAC data, MG removal kinetics were fitted with a first-order kinetic model, while BS-BAC data were fitted with a second-order kinetic model. It was demonstrated that activating baobab with sulfuric acid can form a novel activated carbon that can quickly remove MG from aqueous solutions. The results showed that the removal of malachite green was over 89% for AC-AAC and 77% for AC-BAC, even after four regeneration cycles. Full article
(This article belongs to the Special Issue Porous and Nanoporous Materials in Heterogeneous Catalysis)
Show Figures

Figure 1

14 pages, 7502 KiB  
Article
A Systematic Study of the Structural Properties of Technical Lignins
by Keiti Gilioli Tosin, Noriê Finimundi and Matheus Poletto
Polymers 2025, 17(2), 214; https://doi.org/10.3390/polym17020214 - 16 Jan 2025
Viewed by 1076
Abstract
Technical lignins are globally available and a sustainable feedstock. The unique properties of technical lignins suggest that these materials should have several industrial applications. The main proposal of this study is to evaluate the relationship between the structure and properties of two technical [...] Read more.
Technical lignins are globally available and a sustainable feedstock. The unique properties of technical lignins suggest that these materials should have several industrial applications. The main proposal of this study is to evaluate the relationship between the structure and properties of two technical lignins. Morphological, chemical, physical, and thermal properties of sodium lignosulfonate (LGNa) and magnesium lignosulfonate (LGMg) were investigated. The results showed that a higher formation of intramolecular hydrogen bonds may occur in lignins with a higher content of phenolic hydroxyl groups, such as LGMg. As a result, an increase in the energy of hydrogen bonds in the lignosulfonate structure was observed, without significant change in the hydrogen bond distances. In addition, higher content of phenolic hydroxyl groups might also reduce lignosulfonates thermal stability. The combustion index value was three times higher for LGMg than for LGNa. The characterization study also revealed that phenolic hydroxyl groups influence the main properties of technical lignins and can be a determining factor when these lignosulfonates are used in industrial applications. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

21 pages, 1095 KiB  
Review
Effects of Calcium-Oxide-Modified Biochar on the Anaerobic Digestion of Vacuum Blackwater
by Ping Fa Chiang, Teng Ling Zhang, Abdulmoseen Segun Giwa, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Nasir Ali, Ehtisham Shafique and Mohammadtaghi Vakili
Molecules 2025, 30(2), 215; https://doi.org/10.3390/molecules30020215 - 7 Jan 2025
Cited by 3 | Viewed by 2085
Abstract
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and [...] Read more.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation. However, the performance of AD can be influenced by various factors, including the composition of the feedstock, pH levels, and the presence of inhibitors. This review investigates the effects of calcium oxide (CaO)-modified biochar (BC) as an additive in AD of VBW. Modifying BC with CaO enhances its alkalinity, nutrient retention, and adsorption capacity, creating a more favorable environment for microorganisms and promoting biogas production, which serves as a valuable source of heat, fuel and electricity. Additionally, the digestate can be processed through plasma pyrolysis to ensure the complete destruction of pathogens while promoting resource utilization. Plasma pyrolysis operates at extremely high temperatures, effectively sterilizing the digestate and eliminating both pathogens and harmful contaminants. This process not only guarantees the safety of the end products, but also transforms organic materials into valuable outputs such as syngas and slag. The syngas produced is a versatile energy carrier that can be utilized as a source of hydrogen, electricity, and heat, making it a valuable resource for various applications, including fuel cells and power generation. Furthermore, the slag has potential for reuse as an additive in the AD process or as a biofertilizer to enhance soil properties. This study aims to provide insights into the benefits of using modified BC as a co-substrate in AD systems. The findings will contribute to the development of more sustainable and efficient waste management strategies, addressing the challenges associated with VBW treatment while promoting renewable energy production. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Graphical abstract

13 pages, 3308 KiB  
Article
Metal Acetate-Enhanced Microwave Pyrolysis of Waste Textiles for Efficient Syngas Production
by Bo Zhang, Lei Wu, Fei Li, Wuwan Xiong, Peiyu Yao, Yang Zhang and Xiang Li
Processes 2024, 12(11), 2505; https://doi.org/10.3390/pr12112505 - 11 Nov 2024
Cited by 1 | Viewed by 1226
Abstract
The production of waste textiles has increased rapidly in the past two decades along with the rapid development of the economy, the majority of which has been either landfilled or incinerated, resulting in energy loss and environmental pollution. Microwave pyrolysis, which can transform [...] Read more.
The production of waste textiles has increased rapidly in the past two decades along with the rapid development of the economy, the majority of which has been either landfilled or incinerated, resulting in energy loss and environmental pollution. Microwave pyrolysis, which can transform heterogeneous and complex waste feedstocks into value-added products, is considered one of the most competitive technologies for processing waste textiles. However, achieving selective product formation during the microwave pyrolysis of waste textiles remains a significant challenge. Herein, sodium acetate, potassium acetate, and nickel acetate were introduced into waste textiles through an impregnation method as raw materials to improve the pyrolysis efficiency. The optimized process parameters indicated that nickel acetate had the most favorable promotional effect of the three acetates. Notably, the waste textiles containing 1.0% Ni exhibited the highest gas production rate, with the hydrogen-containing combustible gas reaching 81.1% and 61.0%, respectively. Using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy to characterize the waste textiles before and after pyrolysis, it was found that nickel acetate was converted into metallic nickel (Ni0) during microwave pyrolysis. This active site significantly enhanced the pyrolysis process, and as the gas yield increased, the disorder of the resulting pyrolytic carbon also rose. The proposed Ni0-enhanced microwave pyrolysis mediated by nickel acetate offers a novel method for the efficient disposal and simultaneous resource recovery of waste textiles. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

12 pages, 7313 KiB  
Article
Morphological Characteristics of W/Cu Composite Nanoparticles with Complex Phase Structure Synthesized via Reactive Radio Frequency (RF) Thermal Plasma
by Chulwoong Han, Song-Yi Kim, Soobin Kim and Ji-Woon Lee
Metals 2024, 14(9), 1070; https://doi.org/10.3390/met14091070 - 18 Sep 2024
Cited by 1 | Viewed by 967
Abstract
The W/Cu binary system is characterized by its mutual insolubility and excellent wettability, making W/Cu composite materials ideal for managing thermal and electrical properties in electronic components. To optimize material properties, control over the microstructure is crucial, and nanocomposites with uniform dispersion offer [...] Read more.
The W/Cu binary system is characterized by its mutual insolubility and excellent wettability, making W/Cu composite materials ideal for managing thermal and electrical properties in electronic components. To optimize material properties, control over the microstructure is crucial, and nanocomposites with uniform dispersion offer significant advantages. In this study, W/Cu composite nanoparticles were synthesized by feeding a blended feedstock of tungsten trioxide (WO3) micro-powder and cupric oxide (CuO) micro-powder into a reactive radio frequency (RF) argon–hydrogen thermal plasma system. Cu-coated W nanocomposite particles were obtained through the vaporization, reduction, and condensation processes. The resulting nanocomposite particles were composed of body-centered cubic (BCC) α-W, A15 β-W, and face-centered cubic (FCC) Cu phases, with a chemical composition closely matching theoretical calculations. The phase evolution and morphological changes of the synthesized particles were analyzed as a function of heat treatment temperatures up to 1000 °C in a reducing atmosphere. Up to 600 °C, the phase composition and morphology remained stable. At 800 °C, localized diffusion and coalescence of Cu led to the formation of particulate Cu, and a significant phase transformation from metastable β-W to α-W was observed. Additionally, extensive Cu segregation due to long-range diffusion resulted in distinct Cu-rich and Cu-depleted regions. In these regions, notable sintering of W particles and the complete disappearance of β-W occurred. The results showed that the temperature-dependent redistribution of Cu plays a crucial role in the phase transformation of W and the morphology of W/Cu composite particles. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Figure 1

14 pages, 3698 KiB  
Article
Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management
by Deepak Sharma, Rishi Mahajan, Vikas Baghel, Saurabh Bansal, Vishal Ahuja and Gunjan Goel
BioTech 2024, 13(3), 35; https://doi.org/10.3390/biotech13030035 - 5 Sep 2024
Cited by 3 | Viewed by 2186
Abstract
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility [...] Read more.
Power scarcity and pollution can be overcome with the use of green energy forms like ethanol, biogas, electricity, hydrogen, etc., especially energy produced from renewable and industrial feedstocks. In hilly areas, pine needles are the most abundant biomass that has a low possibility of valorization due to high lignin content. On the other hand, anaerobic digestion (AD) of lignin and animal waste has low biogas yield due to poor conductivity. This study focuses on the simultaneous production of biogas and electricity through the co-digestion of cow dung and pine needles. The digester was initially established and stabilized in the lab to ensure a continuous supply of inoculum throughout the experiment. The optimization process involved the determination of an ideal cow dung-to-water ratio and selecting the appropriate conductive material that can enhance the energy generation from the feedstock. Afterward, both batch and continuous anaerobic digestion experiments were conducted. The results revealed that the addition of powdered graphite (5 mM), activated charcoal (15 mM), and biochar (25 mM) exhibited maximum voltage of 0.71 ± 0.013 V, 0.56 ± 0.013 V, and 0.49 ± 0.011 V on the 30th, 25th and 20th day of AD, respectively. The batch experiment showed that 5 mM graphite powder enhanced electron transfer in the AD process and generated a voltage of 0.77 ± 0.014 V on the 30th day, indicating an increase of ~1.5-fold as compared to the control (0.56 ± 0.019 V). The results from the continuous AD process showed that the digester with cow dung, pine needle, and a conductive material in combination exhibited the maximum voltage of 0.76 ± 0.012 V on the 21st day of AD, while the digester with cow dung only exhibited a maximum voltage of 0.62 ± 0.015 V on the 22nd day of AD, representing a 1.3-fold increase over the control. Furthermore, the current work used discarded plastic items and electrodes from spent batteries to emphasize waste management and aid in attaining sustainable energy and development goals. Full article
(This article belongs to the Section Environmental Biotechnology)
Show Figures

Figure 1

13 pages, 2772 KiB  
Article
Low-Cost Ni-W Catalysts Supported on Glucose/Carbon Nanotube Hybrid Carbons for Sustainable Ethylene Glycol Synthesis
by Rafael G. Morais, Lucília S. Ribeiro, José J. M. Órfão and Manuel Fernando R. Pereira
Molecules 2024, 29(16), 3962; https://doi.org/10.3390/molecules29163962 - 22 Aug 2024
Cited by 4 | Viewed by 1305
Abstract
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, [...] Read more.
The production of ethylene glycol (EG) from cellulose has garnered significant attention in recent years as an attractive alternative to fossil fuels due to the potential of cellulose as a renewable and sustainable feedstock. In this work, to the best of our knowledge, a series of low-cost Ni-W bimetallic catalysts supported on glucose/carbon nanotube hybrid carbons were synthesised for the first time and employed to transform cellulose into EG. Two different strategies were combined for the preparation of the carbons: the activation and addition of carbon nanotubes (CNTs) to obtain a hybrid material (AG-CNT). The catalytic conversion process proceeded through cellulose hydrolysis to glucose, followed by glucose retro-aldol condensation to glycolaldehyde and its subsequent hydrogenation to EG. Through the optimisation of the catalyst’s properties, particularly the metals’ content, a good synergistic effect of C-C bond cleavage and hydrogenation capabilities was assured, resulting in the highly selective production of EG. The balance between Ni and W active sites was confirmed to be a crucial parameter. Thus, total cellulose conversion (100%) was achieved with EG yields of 60–62%, which are amongst the best yields ever reported for the catalytic conversion of cellulose into EG via carbon-supported catalysts. Full article
Show Figures

Graphical abstract

Back to TopTop