Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (202)

Search Parameters:
Keywords = hydrodynamic force measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3608 KB  
Review
A State-of-the-Art Review of the Hydrodynamics of Offshore Pipelines Under Submarine Gravity Flows and Their Interactions
by Cheng Zhang, Tao Tang, Fan Zhang, Chengjiao Ren, Hongcao Zhang and Guochao Wu
J. Mar. Sci. Eng. 2025, 13(9), 1654; https://doi.org/10.3390/jmse13091654 - 29 Aug 2025
Viewed by 205
Abstract
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding [...] Read more.
Submarine gravity flows, e.g., debris flows and turbidity currents, pose a significant threat to offshore pipeline integrity. This risk primarily manifests through the imposition of substantial dynamic loads on pipelines or their large displacement when impacted by such flows. To enhance our understanding of these threats and facilitate the development of more robust pipeline design and protection strategies, this work reviewed the interactions between submarine gravity flows and offshore pipelines. For an individual pipeline, critical focus lies in characterizing the influence of key parameters—including Reynolds number, span height, impact angle, pipe geometry, ambient temperature, and surface roughness—on both the resultant impact forces and the fluid-structure interaction dynamics. Then, investigations into the interactions between gravity flows and multiple pipes are summarized, where the in-line spacing distance between two pipes is a key factor in reducing the impact force. Further, flow-induced vibration responses of a single pipeline and two tandem pipelines under gravity flows are presented. Building upon a thorough review, we conducted overall evaluations. There are few experimental studies and most investigations ideally treat the seabed to be horizontal, which does not always occur in practical engineering. Choosing empirical formulas to evaluate hydrodynamic loads should carefully consider the specific working conditions. An appropriate non-Newtonian fluid model is significantly important to avoid uncertainties. Some practical risk reduction measures such as streamlined structures and reduction in roughness are recommended. Finally, suggestions for future study and practice are proposed, including the requirement for three-dimensional numerical investigations, assessment of fatigue damage by flow-induced vibrations, consideration of flexible pipeline, and more attention to multiple pipelines. Full article
Show Figures

Figure 1

36 pages, 10414 KB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 426
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

25 pages, 4409 KB  
Article
Comparison of Drag Force Models in Liquid–Solid Mixed Batch Simulations by Observing Off-Bottom Suspension Flow Patterns
by Filip Randák and Tomáš Jirout
Processes 2025, 13(8), 2404; https://doi.org/10.3390/pr13082404 - 29 Jul 2025
Viewed by 436
Abstract
The mixing of liquid–solid systems still poses a challenge in modern engineering. Numerical models often struggle to reliably describe the complex hydrodynamics in many aspects, such as the fundamental drag force model. In this article, an established experimental method is revisited. The method [...] Read more.
The mixing of liquid–solid systems still poses a challenge in modern engineering. Numerical models often struggle to reliably describe the complex hydrodynamics in many aspects, such as the fundamental drag force model. In this article, an established experimental method is revisited. The method is newly modified through computer-aided image analysis for increased objectivity and repurposed for comparative experiments with numerical results to aid in model validation in practical engineering cases without the need for expensive equipment. The original method consists of measuring patterns forming in settled particles at impeller speeds below the just off-bottom suspension speed in a mixing tank with a flat transparent bottom. The use of mathematical p-norms to fully capture the emerging shapes is introduced here for the first time. Using this methodology, LES CFD results with different drag force models are quantitatively compared with the experimental findings. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

31 pages, 5988 KB  
Article
Influence of the Upstream Channel of a Ship Lift on the Hydrodynamic Performance of a Fleet Entry Chamber and Design of Traction Scheme
by Haichao Chang, Qiang Zheng, Zuyuan Liu, Yu Yao, Xide Cheng, Baiwei Feng and Chengsheng Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1375; https://doi.org/10.3390/jmse13071375 - 18 Jul 2025
Viewed by 407
Abstract
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) [...] Read more.
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) approach with overlapping grid technology, numerical simulations were conducted for both single and grouped ships navigating through varying water depths, speeds, and shore distances. The results revealed significant transverse force oscillations near the floating navigation wall due to unilateral shore effects, posing risks of deviation. The cargo ship experienced drastic resistance fluctuations in shallow-to-very-shallow-water transitions, while tugboats were notably affected by hydrodynamic interactions during group entry. A mechanical traction system with a four-link robotic arm was designed and analyzed kinematically and statically, demonstrating structural feasibility under converted real-ship traction forces (55.1 kN). The key findings emphasize the need for collision avoidance measures in wall sections and validate the proposed traction scheme for safe and efficient ship entry/exit. This research provides critical insights for optimizing ship lift operations in restricted waters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 25499 KB  
Article
A Combined CFD, Theoretical, and Experimental Approach for Improved Hydrodynamic Performance of a Clam Dredge System
by Rui You and Nathan H. Kennedy
J. Mar. Sci. Eng. 2025, 13(7), 1305; https://doi.org/10.3390/jmse13071305 - 4 Jul 2025
Viewed by 851
Abstract
This paper addresses the need for an integrated approach to develop an improved clam dredge system. Current designs often rely on empirical methods, resulting in a disconnect between theoretical models, computational simulations, and experimental validation. To bridge this gap, the study integrates computational [...] Read more.
This paper addresses the need for an integrated approach to develop an improved clam dredge system. Current designs often rely on empirical methods, resulting in a disconnect between theoretical models, computational simulations, and experimental validation. To bridge this gap, the study integrates computational fluid dynamics (CFD), experimental tests, and analytical methods to develop a clam dredge system. Firstly, the paper introduces an analytical tool that facilitates decision making by evaluating pump parameters, and to determine the operating point for various hose and nozzle parameters. This guides the parameter selection of pump, hose and jets for maximum performance. Secondly, CFD is utilized to analyze flow behavior, enabling the design of internal nozzle geometries that minimize head losses and maximize the scouring effect. A full-scale experimental measurement was conducted to validate computational results. Furthermore, a replica manifold is constructed using 3D printing and tested, demonstrating improvements in jet speed with both original and new nozzle designs. Analytical results indicate that increasing hose length reduces BHP, flow rate, and jet velocity, while increasing hose or jet diameter boosts BHP and flow but reduces jet speed due to pressure drops. Switching pumps reduced power consumption by 10.5% with minimal speed loss. The CFD analysis optimized nozzle design, reducing jet loss and enhancing efficiency. The proposed slit nozzle design reduces the loss coefficient by 85.24% in small-scale runs and by 83% in full-scale runs compared to the original circular jet design. The experiments confirmed the pressure differences between the CFD and experimental tests are within 10%, and demonstrated that rectangular jets increase speed by 9% and seafloor force by 19%. This paper improved the hydrodynamic design of the clam dredge system, and provides a framework for future dredge system designs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 6378 KB  
Article
Regular Wave Effects on the Hydrodynamic Performance of Fine-Mesh Nettings in Sampling Nets
by Zhiqiang Liu, Fuxiang Hu, Rong Wan, Shaojian Guo, Yucheng Wang and Cheng Zhou
Appl. Sci. 2025, 15(13), 7229; https://doi.org/10.3390/app15137229 - 27 Jun 2025
Viewed by 368
Abstract
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study [...] Read more.
Fine-mesh netting, with mesh dimensions of the order of a few millimeters, is widely used in sampling nets for the collection of larval and juvenile fishes. The wave force characteristics of fine-mesh netting significantly affect the operational performance of these nets. This study employed both wave tank experiments and numerical simulations to analyze the hydrodynamic performance of fine-mesh netting under varying wave conditions. A series of numerical simulations and particle image velocimetry (PIV) experiments were conducted to investigate the damping effects of fine-mesh netting on wave propagation. The results revealed that horizontal wave forces increased with both the wave period and wave height. When the wave period was held constant, the drag and inertial coefficients of the netting generally decreased as the Reynolds number and the Keulegan–Carpenter (KC) number increased. The wave transmission coefficients of the netting decreased as the wave height increased for the same wave period. However, at a constant wave height, the transmission coefficients initially increased and then decreased with the increasing wave period. The water particle velocity was significantly affected by the netting, with a notable reduction in velocity downstream of the netting at both the wave crest and trough phases. The simulation results and PIV measurements of the water particle velocity field distribution were in good agreement. This study provides important insights for the design and optimization of sampling nets. Full article
Show Figures

Figure 1

10 pages, 2206 KB  
Article
Experimental Investigation of Lubrication Performance of Rhombic-Textured TiN-Coated Surfaces Under Lubricated Conditions
by Juan Chen, Jie Zhou, Binbin Ji, Liangcai Zeng, Yang Mao and Jun Wei
Coatings 2025, 15(5), 594; https://doi.org/10.3390/coatings15050594 - 17 May 2025
Viewed by 462
Abstract
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A [...] Read more.
Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological properties of mechanical friction pairs. This work aims to investigate the lubrication performance of rhombic-textured TiN-coated surfaces under oil-lubricated conditions using a pin-on-disk test mode. A total of 17 sets of samples were designed, including a control sample (with no rhombic texture and no TiN coating), a TiN-coated sample and rhombic-textured TiN-coated samples. The rhombic surface texture was fabricated using the end surface of a brass bar. TiN coating deposited TiN on the textured surface. This study focuses on measuring and comparatively analyzing the lubrication load capacity, friction coefficient (COF) and binding force of TiN coatings/substrates in the pin-on-disk friction test mode. Compared with the bare control sample, a rhombic texture can enhance lubrication load-carrying capacity by generating hydrodynamic lubrication effects, thereby reducing friction. Additionally, a rhombic texture enables the mitigation of third-body wear due to wear debris. This research provides valuable insights into the design and fabrication of mechanical friction pairs with high wear resistance under oil-lubricated conditions. For lubrication property enhancement, the influence of groove depth was larger than that of the length of the rhombic side. Full article
Show Figures

Figure 1

21 pages, 4049 KB  
Article
Jacking Force Prediction for Long-Distance Pipe by Integrating Physical Information and Adversarial Learning Mechanism
by Yaohong Yang, Yuxiang Liu, Junhua Zhang, Zhe Zhang and Qunsheng Li
Buildings 2025, 15(8), 1337; https://doi.org/10.3390/buildings15081337 - 17 Apr 2025
Viewed by 435
Abstract
Accurate prediction of jacking force is crucial for long-distance pipe jacking construction. This study establishes a theoretical jacking force model considering the soil pressure arch effect, where the Persson contact model and the hydrodynamic parallel plate model are incorporated to accurately characterize pipe–soil [...] Read more.
Accurate prediction of jacking force is crucial for long-distance pipe jacking construction. This study establishes a theoretical jacking force model considering the soil pressure arch effect, where the Persson contact model and the hydrodynamic parallel plate model are incorporated to accurately characterize pipe–soil friction and lubrication resistance, resulting in more reliable friction force estimation as confirmed by field measurements. To enhance prediction accuracy, a Physics-Informed Domain Adversarial Training Neural Network (PIDANN) is proposed, integrating physical constraints into neural network training and expanding the dataset with theoretical values. A case study on the Zheng-Kai city water supply project demonstrates that (1) the theoretical model improves friction force predictions by incorporating the pressure arch effect; (2) PIDANN achieves superior prediction accuracy compared to models without adversarial training; (3) the two fusion methods of physical information integration reduce the mean squared error (MSE) by 36.9% and 20.2%, enhancing generalization and reducing overfitting risks. These findings provide valuable guidance for jacking force control in pipe jacking construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 7559 KB  
Article
Multi-Column Semi-Submersible Floating Body Hydrodynamic Performance Analysis
by Wei Wang, Jingyi Hu, Cheng Zhao, Yonghe Xie, Xiwu Gong and Dingliang Jiang
Energies 2025, 18(8), 1884; https://doi.org/10.3390/en18081884 - 8 Apr 2025
Viewed by 478
Abstract
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to [...] Read more.
Due to the limited availability of land resources, offshore wind turbines have become a crucial technology for the development of deep-water renewable energy. The multi-floating body platform, characterized by its shallow draft and main body located near the sea surface, is prone to significant motion in marine environments. The proper chamfering of the heave plate can effectively enhance its resistance during wave action, thereby improving the stability of the floating platform. The optimal chamfer angle is 35°. Considering the complexity of the floating body’s motion response, this study focuses on the damping characteristics of the heave plate with 35° chamfered perforations. Using the NREL 5 MW three-column semi-submersible floating wind turbine platform as the research model, the hydrodynamic characteristics of the floating body with a perforated heave plate are systematically studied through theoretical analysis, numerical simulation, and physical tests. The amplitude of vertical force under various working conditions is measured. Through theoretical analysis, the additional mass coefficient and additional damping coefficient for different working conditions and models are determined. The study confirms that the heave plate with 35° chamfered perforations significantly reduces heave in the multi-floating body. Full article
(This article belongs to the Special Issue Advancements in Wind Farm Design and Optimization)
Show Figures

Figure 1

14 pages, 4559 KB  
Article
CFD Study of Submarine Hydrodynamics near the Free Surface in Snorkel Conditions
by Doojin Jung and Sunho Park
Water 2025, 17(5), 734; https://doi.org/10.3390/w17050734 - 3 Mar 2025
Cited by 1 | Viewed by 1462
Abstract
Submarines are primarily designed for optimal performance while operating submerged, as they spend the majority of their operational time below the free surface. However, they also navigate at various depths near the free surface, such as during snorkel conditions or other shallow-water operations. [...] Read more.
Submarines are primarily designed for optimal performance while operating submerged, as they spend the majority of their operational time below the free surface. However, they also navigate at various depths near the free surface, such as during snorkel conditions or other shallow-water operations. Under snorkel conditions, as the sail depth decreases and the distance between the free surface and the top of the hull is reduced, a suction effect occurs, inducing an upward force on the submarine. Consequently, a comprehensive assessment of hydrodynamic forces at different depths and speeds is essential during the design phase to ensure stability and performance optimization. In this study, computational fluid dynamic (CFD) simulations were performed to analyze the heave and surge forces acting on the generic Joubert BB2 (BB2) submarine. The computed surge and heave forces, as well as the pitch moment, were validated against experimental data, showing discrepancies within approximately 12%. The influence of the free surface on these forces and moments was investigated, demonstrating trends consistent with both experimental measurements and numerical predictions. These findings confirm that CFD simulations serve as a reliable tool for predicting free-surface effects on submarines, offering valuable insights for the design process. Full article
Show Figures

Figure 1

20 pages, 14270 KB  
Article
Hydrodynamic Loads on Rectangular Bridge Decks at Very Low Proximity in Fixed and Movable Beds
by Michele Palermo, Ajit Kumar, Huan Wei and Stefano Pagliara
Water 2025, 17(5), 617; https://doi.org/10.3390/w17050617 - 20 Feb 2025
Viewed by 719
Abstract
Bridges positioned near riverbeds experience complex interactions between flow dynamics and structural geometry, significantly affecting hydrodynamic loading and stability. This study analyzes the effect of deck proximity to the bed on pressure distribution and hydrodynamic loading, including drag and lift forces. Experimental tests [...] Read more.
Bridges positioned near riverbeds experience complex interactions between flow dynamics and structural geometry, significantly affecting hydrodynamic loading and stability. This study analyzes the effect of deck proximity to the bed on pressure distribution and hydrodynamic loading, including drag and lift forces. Experimental tests were conducted in a rectangular channel using a scaled bridge deck model, varying deck positions, flow conditions, and upstream–downstream water depth levels. To the best of the authors’ knowledge, for the first time, a comparative analysis of hydrodynamic loads on bridge decks was conducted using both rigid and deformable granular beds. Pressure distributions on the front, rear, and bottom faces of the deck were measured using transducers sensors. Our findings corroborate that changes in Reynolds number have minimal impact on the deck drag and lift coefficients, under identical submergence conditions, whereas both coefficients decrease with the Froude number for both bed types. More importantly, the analysis of experimental evidence unveiled some interesting aspects pertaining to the physics of the phenomenon, allowing us to provide the following, unprecedented results: (1) lift and drag coefficients significantly decrease with proximity, exhibiting much higher values than those reported in the literature for larger clearance; (2) under identical hydraulic conditions (both upstream and downstream of the deck), drag and lift coefficients are significantly amplified by the presence of rigid beds compared to granular beds; and (3) the scour evolution alters the effective deck proximity, resulting in time-dependent hydrodynamic loads acting on the deck. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

24 pages, 7772 KB  
Review
A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines
by Xiaoxu Chen, Tengyuan Wang, Chang Cai, Jianshuang Liu, Xiaoxia Gao, Naizhi Guo and Qingan Li
J. Mar. Sci. Eng. 2025, 13(2), 208; https://doi.org/10.3390/jmse13020208 - 22 Jan 2025
Viewed by 2329
Abstract
With the urgent demand for net-zero emissions, renewable energy is taking the lead and wind power is becoming increasingly important. Among the most promising sources, offshore wind energy located in deep water has gained significant attention. This review focuses on the experimental methods, [...] Read more.
With the urgent demand for net-zero emissions, renewable energy is taking the lead and wind power is becoming increasingly important. Among the most promising sources, offshore wind energy located in deep water has gained significant attention. This review focuses on the experimental methods, simulation approaches, and wake characteristics of floating offshore wind turbines (FOWTs). The hydrodynamics and aerodynamics of FOWTs are not isolated and they interact with each other. Under the environmental load and mooring force, the floating platform has six degrees of freedom motions, which bring the changes in the relative wind speed to the turbine rotor, and furthermore, to the turbine aerodynamics. Then, the platform’s movements lead to a complex FOWT wake evolution, including wake recovery acceleration, velocity deficit fluctuations, wake deformation and wake meandering. In scale FOWT tests, it is challenging to simultaneously satisfy Reynolds number and Froude number similarity, resulting in gaps between scale model experiments and field measurements. Recently, progress has been made in scale model experiments; furthermore, a “Hardware in the loop” technique has been developed as an effective solution to the above contradiction. In numerical simulations, the coupling of hydrodynamics and aerodynamics is the concern and a typical numerical simulation of multi-body and multi-physical coupling is reviewed in this paper. Furthermore, recent advancements have been made in the analysis of wake characteristics, such as the application of instability theory and modal decomposition techniques in the study of FOWT wake evolution. These studies have revealed the formation of vortex rings and leapfrogging behavior in adjacent helical vortices, which deepens the understanding of the FOWT wake. Overall, this paper provides a comprehensive review of recent research on FOWT wake dynamics. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

23 pages, 5706 KB  
Article
Erosion–Seepage System (ESS) for Flow-Induced Soil Erosion Rate with Seepage
by Yuhuan Zhang, Lin Cui, Dong-Sheng Jeng, Zheng Wang and Hualing Zhai
J. Mar. Sci. Eng. 2025, 13(1), 152; https://doi.org/10.3390/jmse13010152 - 16 Jan 2025
Cited by 1 | Viewed by 1087
Abstract
Critical shear stress and erosion rate are two key factors for the prediction of the incipient motion of sediment and the transport of sediment. Seabed seepage can significantly alter the pore pressure gradient within the soil and the hydrodynamics around the surface of [...] Read more.
Critical shear stress and erosion rate are two key factors for the prediction of the incipient motion of sediment and the transport of sediment. Seabed seepage can significantly alter the pore pressure gradient within the soil and the hydrodynamics around the surface of the seabed, further affecting erosion processes. Previous studies attempted to theoretically clarify the effect of the seepage force on sediment incipient motion. In this study, a newly designed erosion–seepage system (ESS) that considers the effect of seepage under steady or oscillatory flow is used to simulate the erosion process. Through the designed ESS, the erosion height per unit time was measured directly on the Yellow River sand, and the upward seepage force was applied at the bottom of the soil sample in the process. Then, the relationship between the erosion rate and seepage was established.The experimental results show that upward seepage reduces the critical shear stress of the sand bed and increases the erosion rate of the soils under both steady flow and oscillatory flow conditions. The erosion coefficients in the erosion models decrease with increasing seepage gradient. The effect of seepage on erosion is more obvious when the flow velocity of the steady stream is large, while the effect of seepage on erosion is relatively small under the oscillatory state with a shorter period. However, when violent erosion of soil samples occurs, seepage under both flow conditions greatly increases the erosion rate. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 8524 KB  
Article
Levitation Performance of Radial Film Riding Seals for Gas Turbine Engines
by Syed Muntazir Mehdi, Young Cheol Kim and Eojin Kim
Lubricants 2024, 12(12), 433; https://doi.org/10.3390/lubricants12120433 - 5 Dec 2024
Viewed by 1183
Abstract
Turbomachinery in gas turbines uses seals to control the leakage between regions of high and low pressure, consequently enhancing engine efficiency and performance. A film riding seal hybridizes the advantages of contact and non-contact seals, i.e., low leakage and low friction and wear. [...] Read more.
Turbomachinery in gas turbines uses seals to control the leakage between regions of high and low pressure, consequently enhancing engine efficiency and performance. A film riding seal hybridizes the advantages of contact and non-contact seals, i.e., low leakage and low friction and wear. The literature focuses on the leakage performance of these seals; however, one of their fundamental characteristics, i.e., the gap between the rotor and seal surface, is scarcely presented. The seal pad levitates due to the deflection of the springs at its back under the influence of hydrodynamic forces. This study develops a test rig to measure the levitation of film riding seals. A high-speed motor rotates the rotor and gap sensors measure the levitation of the seal pads. Measurements are also compared with the predictions from a Reynolds equation-based theoretical model. Tests performed for the increasing rotor speed indicated that, initially, until a certain rotor speed, the pads adjust their position, then rub against the rotor until another rotor speed is reached, before finally starting levitating with further increased rotor speeds. Moreover, both the measured and predicted results show that pads levitated the most when located 90° clockwise from the positive horizontal axis (bottom of seal housing) compared to other circumferential positions. Full article
(This article belongs to the Special Issue Thermal Hydrodynamic Lubrication)
Show Figures

Figure 1

25 pages, 8351 KB  
Article
Trans-Media Motion Control of a Hybrid Aerial Underwater Vehicle Considering Actuator Dynamic Input Saturation
by Tongjin Wei, Yuanbo Bi, Zheng Zeng, Lian Lian and Yangwen Dan
J. Mar. Sci. Eng. 2024, 12(12), 2169; https://doi.org/10.3390/jmse12122169 - 27 Nov 2024
Cited by 1 | Viewed by 896
Abstract
Hybrid aerial underwater vehicles (HAUVs) have shown broad development prospects for rapid emergency response and marine scientific observation at the sea–air interface in recent decades. The trans-media motion control problem of HAUV is a special and critical problem in the HAUV field. This [...] Read more.
Hybrid aerial underwater vehicles (HAUVs) have shown broad development prospects for rapid emergency response and marine scientific observation at the sea–air interface in recent decades. The trans-media motion control problem of HAUV is a special and critical problem in the HAUV field. This paper extracts the key factors of HAUV trans-media motion control: the significant changes in dynamic input saturation of the actuator and hydrodynamic force on the HAUV body during the trans-media process. In response to the issue, this paper firstly established a HAUV trans-media motion model considering actuator dynamic input saturation based on the measured HAUV trans-media test data. Then, this paper developed a control strategy for the priority attitude angle and rear heave during the trans-media process of multi-rotor HAUV, and designed a trans-media motion control algorithm that considers actuator dynamic input saturation and model uncertainty. The stability of the control algorithm was proven through Lyapunov stability theory. Finally, this paper conducted simulation verification on the designed control algorithm, and the results showed that compared with the traditional sliding mode control algorithm, this control algorithm had a significant improvement in the performance of trans-media speed control. The speed overshoot of the traditional sliding mode control algorithm was 4.25 times that of the control algorithm proposed in this paper. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles: Perception, Planning, Control and Swarm)
Show Figures

Figure 1

Back to TopTop