A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines
Abstract
:1. Introduction
2. Fundamental Aerodynamics of Wind Turbine Wake
3. Experiment Study of Wind Turbine Wake
4. Numerical Simulation Study of Wind Turbine Wake
5. Conclusions
6. Limitations of This Work and Future Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Nasouri, M.; Delgarm, N. Investigating the Role of Bushehr Nuclear Power Plants (BNPPs) in Line with Achieving the Perspective of Sustainable Energy Development in Iran. J. Therm. Sci. 2022, 31, 1392–1406. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2024. Available online: https://gwec.net/global-wind-report-2024/ (accessed on 16 April 2024).
- Gao, X.; Zhou, K.; Liu, R.; Ma, W.; Gong, X.; Zhu, X.; Wang, Y.; Zhao, F. Aerodynamic characteristics of wind turbines considering the inhomogeneity and periodic incentive of wake effects. Energy 2024, 310, 133275. [Google Scholar] [CrossRef]
- Porté-Agel, F.; Bastankhah, M.; Shamsoddin, S. Wind-Turbine and Wind-Farm Flows: A Review. Bound.-Layer Meteorol. 2020, 174, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.L.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Appl. Energy 2018, 226, 1187–1207. [Google Scholar] [CrossRef]
- Hasager, C.B.; Rasmussen, L.; Peña, A.; Jensen, L.E.; Réthoré, P.-E. Wind Farm Wake: The Horns Rev Photo Case. Energies 2013, 6, 696–716. [Google Scholar] [CrossRef]
- Edwards, E.C.; Holcombe, A.; Brown, S.; Ransley, E.; Hann, M.; Greaves, D. Trends in floating offshore wind platforms: A review of early-stage devices. Renew. Sustain. Energy Rev. 2024, 193, 114271. [Google Scholar] [CrossRef]
- Society for Underwater Technology. South West–Offshore Floating Wind–Design and Installation–Registrations Now Closed. 2018. Available online: https://www.sut.org/event/south-west-offshore-floating-wind-design-and-installation/ (accessed on 14 June 2018).
- Liu, J.; Cai, C.; Song, D.; Zhong, X.; Shi, K.; Chen, Y.; Cheng, S.; Huang, Y.; Jiang, X.; Li, Q. Nonlinear model predictive control for maximum wind energy extraction of semi-submersible floating offshore wind turbine based on simplified dynamics model. Energy 2024, 311, 133356. [Google Scholar] [CrossRef]
- Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hjort, S. Non-Empirical BEM Corrections Relating to Angular and Axial Momentum Conservation. Energies 2019, 12, 320. [Google Scholar] [CrossRef]
- Micallef, D.; Rezaeiha, A. Floating offshore wind turbine aerodynamics: Trends and future challenges. Renew. Sustain. Energy Rev. 2021, 152, 111696. [Google Scholar] [CrossRef]
- Sebastian, T.; Lackner, M.A. Characterization of the unsteady aerodynamics of offshore floating wind turbines. Wind Energy 2013, 16, 339–352. [Google Scholar] [CrossRef]
- Veers, P.; Dykes, K.; Basu, S.; Bianchini, A.; Clifton, A.; Green, P.; Holttinen, H.; Kitzing, L.; Kosovic, B.; Lundquist, J.K.; et al. Grand Challenges: Wind energy research needs for a global energy transition. Wind Energy Sci. 2022, 7, 2491–2496. [Google Scholar] [CrossRef]
- Ramos-García, N.; Kontos, S.; Pegalajar-Jurado, A.; Horcas, S.G.; Bredmose, H. Investigation of the floating IEA Wind 15 MW RWT using vortex methods Part I: Flow regimes and wake recovery. Wind Energy 2022, 25, 468–504. [Google Scholar] [CrossRef]
- Ferreira, C.; Yu, W.; Sala, A.; Viré, A. Dynamic inflow model for a floating horizontal axis wind turbine in surge motion. Wind Energy Sci. 2022, 7, 469–485. [Google Scholar] [CrossRef]
- Papi, F.; Jonkman, J.; Robertson, A.; Bianchini, A. Going beyond BEM with BEM: An insight into dynamic inflow effects on floating wind turbines. Wind Energy Sci. 2024, 9, 1069–1088. [Google Scholar] [CrossRef]
- Ainslie, J. Development of an eddy viscosity model for wind turbine wakes. In Proceedings of the BWEA Wind Energy Conference (British Wind Energy Association), Oxford, UK, 27–29 March 1985. [Google Scholar]
- Merzkirch, W. Flow Visualization II; Hemisphere Publishing Corporation: London, UK, 1982. [Google Scholar]
- Gupta, B.P.; Loewy, R.G. Theoretical Analysis of the Aerodynamic Stability of Multiple, Interdigitated Helical Vortices. AIAA J. 1974, 12, 1381–1387. [Google Scholar] [CrossRef]
- Quaranta, H.U.; Bolnot, H.; Leweke, T. Long-wave instability of a helical vortex. J. Fluid Mech. 2015, 780, 687–716. [Google Scholar] [CrossRef]
- Quaranta, H.U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D.S. Local and global pairing instabilities of two interlaced helical vortices. J. Fluid Mech. 2019, 863, 927–955. [Google Scholar] [CrossRef]
- Widnall, S.E. The stability of a helical vortex filament. J. Fluid Mech. 1972, 54, 641–663. [Google Scholar] [CrossRef]
- Lignarolo, L.E.M.; Ragni, D.; Scarano, F.; Ferreira, C.J.S.; van Bussel, G.J.W. Tip-vortex instability and turbulent mixing in wind-turbine wakes. J. Fluid Mech. 2015, 781, 467–493. [Google Scholar] [CrossRef]
- Haans, W.; Sant, T.; van Kuik, G.; van Bussel, G. Measurement of tip vortex paths in the wake of a HAWT under yawed flow conditions. J. Sol. Energy Eng. 2005, 127, 456–463. [Google Scholar] [CrossRef]
- Dong, G.; Qin, J.; Li, Z.; Yang, X. Characteristics of wind turbine wakes for different blade designs. J. Fluid Mech. 2023, 965, A15. [Google Scholar] [CrossRef]
- Wang, T.; Cai, C.; Wang, X.; Wang, Z.; Chen, Y.; Hou, C.; Zhou, S.; Xu, J.; Zhang, Y.; Li, Q. Evolution mechanism of wind turbine wake structure in yawed condition by actuator line method and theoretical analysis. Energy Convers. Manag. 2023, 281, 116852. [Google Scholar] [CrossRef]
- Ye, S.; Wang, Q.; Mu, Y.; Luo, K.; Fan, J. Loads and fatigue characteristics assessment of wind farm based on dynamic wake meandering model. Renew. Energy 2024, 236, 121419. [Google Scholar] [CrossRef]
- Lin, M.; Porté-Agel, F. Wake meandering of wind turbines under dynamic yaw control and impacts on power and fatigue. Renew. Energy 2024, 223, 120003. [Google Scholar] [CrossRef]
- Rivera-Arreba, I.; Li, Z.; Yang, X.; Bachynski-Polić, E.E. Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes. Renew. Energy 2024, 221, 119807. [Google Scholar] [CrossRef]
- Jia, R.; Ge, M.; Zhang, Z.; Li, X.; Du, B. A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model. Energy 2024, 307, 132600. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Luo, K.; Fan, J. A coupled turbine-interaction wind farm parameterization in the Weather Research and Forecasting model. Energy Convers. Manag. 2023, 283, 116919. [Google Scholar] [CrossRef]
- Meneveau, C. The top-down model of wind farm boundary layers and its applications. J. Turbul. 2012, 13, N7. [Google Scholar] [CrossRef]
- Stevens, R.J.A.M.; Gayme, D.F.; Meneveau, C. Generalized coupled wake boundary layer model: Applications and comparisons with field and LES data for two wind farms. Wind Energy 2016, 19, 2023–2040. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Tan, J.; He, R.; Ye, S.; Fan, J. Inter-farm cluster interaction of the operational and planned offshore wind power base. J. Clean. Prod. 2023, 396, 136529. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. Wind power production from very large offshore wind farms. Joule 2021, 5, 2663–2686. [Google Scholar] [CrossRef]
- Sherman, P.; Chen, X.Y.; McElroy, M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy. Sci. Adv. 2020, 6, eaax9571. [Google Scholar] [CrossRef] [PubMed]
- Díaz, H.; Silva, D.; Bernardo, C.; Soares, C.G. Micro sitting of floating wind turbines in a wind farm using a multi-criteria framework. Renew. Energy 2023, 204, 449–474. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. An overview of data for wake model evaluation in the Virtual Wakes Laboratory. Appl. Energy 2013, 104, 834–844. [Google Scholar] [CrossRef]
- Jensen, N.O. A Note on Wind Generator Interaction; Risø National Laboratory: Roskilde, Denmark, 1983. [Google Scholar]
- Bastankhah, M.; Porté-Agel, F. A new analytical model for wind-turbine wakes. Renew. Energy 2014, 70, 116–123. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lu, L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Sun, H.; Yang, H. Numerical investigation of the average wind speed of a single wind turbine and development of a novel three-dimensional multiple wind turbine wake model. Renew. Energy 2020, 147, 192–203. [Google Scholar] [CrossRef]
- Ge, M.; Wu, Y.; Liu, Y.; Li, Q. A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes. Appl. Energy 2019, 233–234, 975–984. [Google Scholar] [CrossRef]
- Xie, S.; Archer, C. Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation. Wind Energy 2015, 18, 1815–1838. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, M.; Liu, Y.; Yang, X.I.A. A new coupled model for the equivalent roughness heights of wind farms. Renew. Energy 2021, 171, 34–46. [Google Scholar] [CrossRef]
- Hosseini, A.; Cannon, D.T.; Vasel-Be-Hagh, A. Wind farm active wake control via concurrent yaw and tip-speed ratio optimization. Appl. Energy 2025, 377, 124625. [Google Scholar] [CrossRef]
- Hosseini, A.; Cannon, D.T.; Vasel-Be-Hagh, A. Tip Speed Ratio Optimization: More Energy Production with Reduced Rotor Speed. Wind 2022, 2, 691–710. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Jiang, Z.; Xu, J.; Meng, X.; Feng, X.; Si, Y.; Zhang, D. Wake redirection control for offshore wind farm power and fatigue multi-objective optimisation based on a wind turbine load indicator. Energy 2024, 313, 133893. [Google Scholar] [CrossRef]
- Li, Q.; Maeda, T.; Kamada, Y.; Mori, N. Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction). Energy 2017, 134, 482–492. [Google Scholar] [CrossRef]
- Li, Q.; Maeda, T.; Kamada, Y.; Mori, N. Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments. Energy 2017, 141, 262–272. [Google Scholar] [CrossRef]
- Böhme, G.S.; Fadigas, E.A.; Gimenes, A.L.V.; Tassinari, C.E.M. Wake effect measurement in complex terrain—A case study in Brazilian wind farms. Energy 2018, 161, 277–283. [Google Scholar] [CrossRef]
- Sun, H.; Gao, X.; Yang, H. Experimental study on wind speeds in a complex-terrain wind farm and analysis of wake effects. Appl. Energy 2020, 272, 115215. [Google Scholar] [CrossRef]
- Iungo, G.V. Experimental characterization of wind turbine wakes: Wind tunnel tests and wind LiDAR measurements. J. Wind Eng. Ind. Aerodyn. 2016, 149, 35–39. [Google Scholar] [CrossRef]
- Kumer, V.-M.; Reuder, J.; Dorninger, M.; Zauner, R.; Grubišić, V. Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications. Renew. Energy 2016, 99, 898–910. [Google Scholar] [CrossRef]
- Wang, L.; Dong, M.; Yang, J.; Wang, L.; Chen, S.; Duić, N.; Joo, Y.H.; Song, D. Wind turbine wakes modeling and applications: Past, present, and future. Ocean Eng. 2024, 309, 118508. [Google Scholar] [CrossRef]
- Wang, T.; Cai, C.; Wang, X.; Wang, Z.; Chen, Y.; Song, J.; Xu, J.; Zhang, Y.; Li, Q. A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow. Energy 2023, 271, 127089. [Google Scholar] [CrossRef]
- Abraham, A.; Dasari, T.; Hong, J. Effect of turbine nacelle and tower on the near wake of a utility-scale wind turbine. J. Wind Eng. Ind. Aerodyn. 2019, 193, 103981. [Google Scholar] [CrossRef]
- Subramanian, B.; Chokani, N.; Abhari, R.S. Aerodynamics of wind turbine wakes in flat and complex terrains. Renew. Energy 2016, 85, 454–463. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, T.; Gao, X.; Sun, H.; Yang, H.; Han, Z.; Wang, Y.; Zhu, X. Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm. Energy 2020, 199, 117416. [Google Scholar]
- Gao, X.; Wang, T.; Li, B.; Sun, H.; Yang, H.; Han, Z.; Wang, Y.; Zhao, F. Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data. Appl. Energy 2019, 255, 113816. [Google Scholar] [CrossRef]
- Li, Q.; Murata, J.; Endo, M.; Maeda, T.; Kamada, Y. Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics). Energy 2016, 113, 1304–1315. [Google Scholar] [CrossRef]
- Dar, A.S.; Porté-Agel, F. Wind turbine wakes on escarpments: A wind-tunnel study. Renew. Energy 2022, 181, 1258–1275. [Google Scholar] [CrossRef]
- Dou, B.; Guala, M.; Lei, L.; Zeng, P. Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel. Energy 2019, 166, 819–833. [Google Scholar] [CrossRef]
- Dou, B.; Guala, M.; Zeng, P.; Lei, L. Experimental investigation of the power performance of a minimal wind turbine array in an atmospheric boundary layer wind tunnel. Energy Convers. Manag. 2019, 196, 906–919. [Google Scholar] [CrossRef]
- Dou, B.; Qu, T.; Lei, L.; Zeng, P. Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model. Energy 2020, 209, 118415. [Google Scholar] [CrossRef]
- Zong, H.; Porté-Agel, F. Experimental investigation and analytical modelling of active yaw control for wind farm power optimization. Renew. Energy 2021, 170, 1228–1244. [Google Scholar] [CrossRef]
- Chen, C.; Ma, Y.; Fan, T. Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 157, 112036. [Google Scholar] [CrossRef]
- Wang, X.; Cai, C.; Cai, S.-G.; Wang, T.; Wang, Z.; Song, J.; Rong, X.; Li, Q. A review of aerodynamic and wake characteristics of floating offshore wind turbines. Renew. Sustain. Energy Rev. 2023, 175, 113144. [Google Scholar] [CrossRef]
- Cermelli, C.; Aubault, A.; Roddier, D.; McCoy, T. Qualification of a semi-submersible floating foundation for multi-megawatt wind turbines. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010. [Google Scholar]
- Chen, J.; Hu, Z.; Wan, D.; Xiao, Q. Comparisons of the dynamical characteristics of a semi-submersible floating offshore wind turbine based on two different blade concepts. Ocean Eng. 2018, 153, 305–318. [Google Scholar] [CrossRef]
- Duan, F.; Hu, Z.; Liu, G.; Wang, J. Experimental comparisons of dynamic properties of floating wind turbine systems based on two different rotor concepts. Appl. Ocean Res. 2016, 58, 266–280. [Google Scholar] [CrossRef]
- Wang, X.; Cai, C.; Chen, Y.; Chen, Y.; Liu, J.; Xiao, Y.; Zhong, X.; Shi, K.; Li, Q. Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines. Energy 2023, 283, 129082. [Google Scholar] [CrossRef]
- Wang, X.; Cai, C.; Zhou, T.; Yang, Y.; Chen, Y.; Wang, T.; Hou, C.; Zhou, S.; Li, Q. A new similarity criterion and design method for wind tunnel model tests of floating offshore wind turbines. Energy Convers. Manag. 2023, 277, 116560. [Google Scholar] [CrossRef]
- Azcona, J.; Bouchotrouch, F.; Vittori, F. Low-frequency dynamics of a floating wind turbine in wave tank–scaled experiments with SiL hybrid method. Wind Energy 2019, 22, 1402–1413. [Google Scholar] [CrossRef]
- Belloli, M.; Bayati, I.; Facchinetti, A.; Fontanella, A.; Giberti, H.; La Mura, F.; Taruffi, F.; Zasso, A. A hybrid methodology for wind tunnel testing of floating offshore wind turbines. Ocean Eng. 2020, 210, 107592. [Google Scholar] [CrossRef]
- Koo, B.J.; Goupee, A.J.; Kimball, R.W.; Lambrakos, K.F. Model Tests for a Floating Wind Turbine on Three Different Floaters. J. Offshore Mech. Arct. Eng. 2014, 136, 316–331. [Google Scholar] [CrossRef]
- Rockel, S.; Camp, E.; Schmidt, J.; Peinke, J.; Cal, R.B.; Hölling, M. Experimental Study on Influence of Pitch Motion on the Wake of a Floating Wind Turbine Model. Energies 2014, 7, 1954–1985. [Google Scholar] [CrossRef]
- Rockel, S.; Peinke, J.; Hölling, M.; Cal, R.B. Dynamic wake development of a floating wind turbine in free pitch motion subjected to turbulent inflow generated with an active grid. Renew. Energy 2017, 112, 1–16. [Google Scholar] [CrossRef]
- Bayati, I.; Belloli, M.; Bernini, L.; Zasso, A. Wind Tunnel Wake Measurements of Floating Offshore Wind Turbines. Energy Procedia 2017, 137, 214–222. [Google Scholar] [CrossRef]
- Fontanella, A.; Bayati, I.; Mikkelsen, R.; Belloli, M.; Zasso, A. UNAFLOW: A holistic wind tunnel experiment about the aerodynamic response of floating wind turbines under imposed surge motion. Wind Energy Sci. 2021, 6, 1169–1190. [Google Scholar] [CrossRef]
- Feist, C.; Sotiropoulos, F.; Guala, M. A quasi-coupled wind wave experimental framework for testing offshore wind turbine floating systems. Theor. Appl. Mech. Lett. 2021, 11, 100294. [Google Scholar] [CrossRef]
- Fu, S.; Jin, Y.; Zheng, Y.; Chamorro, L.P. Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations. Appl. Energy 2019, 253, 113605. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuang, L.; Zhao, Y.; Han, Z.; Zhou, D.; Tu, J.; Chen, M.; Ji, X. Numerical investigation of the aerodynamic and wake characteristics of a floating twin-rotor wind turbine under surge motion. Energy Convers. Manag. 2023, 283, 116957. [Google Scholar] [CrossRef]
- Zhang, W.; Calderon-Sanchez, J.; Duque, D.; Souto-Iglesias, A. Computational Fluid Dynamics (CFD) applications in Floating Offshore Wind Turbine (FOWT) dynamics: A review. Appl. Ocean Res. 2024, 150, 104075. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Law, Y.; Santo, H.; Magee, A. Hydrodynamic analysis and validation of the floating DeepCwind semi-submersible under 3-h irregular wave with the HOS and CFD coupling method. Ocean Eng. 2023, 287, 115701. [Google Scholar] [CrossRef]
- Wang, S.; Chuang, W.-L. Dynamic analysis of breaking wave impact on a floating offshore wind turbine via smoothed particle hydrodynamics. Mar. Struct. 2025, 100, 103731. [Google Scholar] [CrossRef]
- Rao, M.J.; Nallayarasu, S.; Bhattacharyya, S.K. CFD approach to heave damping of spar with heave plates with experimental validation. Appl. Ocean Res. 2021, 108, 102517. [Google Scholar] [CrossRef]
- Sun, Y.; Qian, Y.; Wang, T.; Wang, L.; Zhu, C.; Gao, Y. Quantitative impact of combining blowing and suction flow control on a floating offshore wind turbine aerodynamic performance under the surge motion. Renew. Energy 2025, 238, 121945. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, X.; Ma, L.; Chen, J.; Ouyang, H.; Du, Z. Unsteady aerodynamics of the floating offshore wind turbine due to the trailing vortex induction and airfoil dynamic stall. Energy 2024, 304, 131845. [Google Scholar] [CrossRef]
- Dong, J.; Viré, A. The aerodynamics of floating offshore wind turbines in different working states during surge motion. Renew. Energy 2022, 195, 1125–1136. [Google Scholar] [CrossRef]
- Arabgolarcheh, A.; Micallef, D.; Rezaeiha, A.; Benini, E. Modelling of two tandem floating offshore wind turbines using an actuator line model. Renew. Energy 2023, 216, 119067. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhao, H.; Shi, W.; Wang, Z. Developing a multi-region coupled analysis method for floating offshore wind turbine based on OpenFOAM. Renew. Energy 2025, 238, 122026. [Google Scholar] [CrossRef]
- Alkhabbaz, A.; Hamza, H.; Daabo, A.M.; Yang, H.-S.; Yoon, M.; Koprulu, A.; Lee, Y.-H. The aero-hydrodynamic interference impact on the NREL 5-MW floating wind turbine experiencing surge motion. Ocean Eng. 2024, 295, 116970. [Google Scholar] [CrossRef]
- AbdelSalam, A.M.; Ramalingam, V. Wake prediction of horizontal-axis wind turbine using full-rotor modeling. J. Wind Eng. Ind. Aerodyn. 2014, 124, 7–19. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Boopathi, K.; Gomathinayagam, S.; Kumar, S.S.H.K.; Ramalingam, V. Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2014, 128, 54–65. [Google Scholar] [CrossRef]
- Sanderse, B.; Van der Pijl, S.P.; Koren, B. Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 2011, 14, 799–819. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Nilsson, K.; Ivanell, S.; Asmuth, H.; Mikkelsen, R.F. Analytical body forces in numerical actuator disc model of wind turbines. Renew. Energy 2020, 147, 2259–2271. [Google Scholar] [CrossRef]
- Malecha, Z.; Dsouza, G. Modeling of Wind Turbine Interactions and Wind Farm Losses Using the Velocity-Dependent Actuator Disc Model. Computation 2023, 11, 213. [Google Scholar] [CrossRef]
- Sørensen, J.N.; Shen, W.Z. Numerical Modeling of Wind Turbine Wakes. J. Fluids Eng. 2002, 124, 393–399. [Google Scholar] [CrossRef]
- Stevens, R.J.A.M.; Martínez-Tossas, L.A.; Meneveau, C. Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renew. Energy 2018, 116, 470–478. [Google Scholar] [CrossRef]
- Yang, X.; Sotiropoulos, F. A new class of actuator surface models for wind turbines. Wind Energy 2018, 21, 285–302. [Google Scholar] [CrossRef]
- Lin, L.; Wang, K.; Vassalos, D. Detecting wake performance of floating offshore wind turbine. Ocean Eng. 2018, 156, 263–276. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Guo, Y.; Kang, S. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions. Renew. Energy 2021, 163, 1849–1870. [Google Scholar] [CrossRef]
- Li, Z.; Dong, G.; Yang, X. Onset of wake meandering for a floating offshore wind turbine under side-to-side motion. J. Fluid Mech. 2022, 934, A29. [Google Scholar] [CrossRef]
- Wang, T.; Cai, C.; Liu, J.; Peng, C.; Wang, Y.; Sun, X.; Zhong, X.; Zhang, J.; Li, Q. Wake characteristics and vortex structure evolution of floating offshore wind turbine under surge motion. Energy 2024, 302, 131788. [Google Scholar] [CrossRef]
- Ti, Z.; Deng, X.W.; Yang, H. Wake modeling of wind turbines using machine learning. Appl. Energy 2020, 257, 114025. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X. Wind farm wake modeling based on deep convolutional conditional generative adversarial network. Energy 2022, 238, 121747. [Google Scholar] [CrossRef]
- Wise, A.S.; Bachynski, E.E. Wake meandering effects on floating wind turbines. Wind Energy 2020, 23, 1266–1285. [Google Scholar] [CrossRef]
- Kleine, V.G.; Franceschini, L.; Carmo, B.S.; Hanifi, A.; Henningson, D.S. The stability of wakes of floating wind turbines. Phys. Fluids 2022, 34, 074106. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, M.; Tang, Q.; Zha, R. Investigating effects of pitch motions on aerodynamics and wake characteristics of a floating offshore wind turbine. Energy Convers. Manag. 2025, 326, 119402. [Google Scholar] [CrossRef]
- Arabgolarcheh, A.; Micallef, D.; Benini, E. The impact of platform motion phase differences on the power and load performance of tandem floating offshore wind turbines. Energy 2023, 284, 129271. [Google Scholar] [CrossRef]
- Cioni, S.; Papi, F.; Pagamonci, L.; Bianchini, A.; Ramos-García, N.; Pirrung, G.; Corniglion, R.; Lovera, A.; Galván, J.; Boisard, R.; et al. On the characteristics of the wake of a wind turbine undergoing large motions caused by a floating structure: An insight based on experiments and multi-fidelity simulations from the OC6 project Phase III. Wind Energy Sci. 2023, 8, 1659–1691. [Google Scholar] [CrossRef]
- Arabgolarcheh, A.; Rouhollahi, A.; Benini, E. Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions. Renew. Energy 2023, 208, 546–560. [Google Scholar] [CrossRef]
- Jacobsen, A.; Godvik, M. Influence of wakes and atmospheric stability on the floater responses of the Hywind Scotland wind turbines. Wind Energy 2021, 24, 149–161. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, X.; Lu, H.; Zhao, Q.; Zhu, X.; Wang, Y.; Zhao, F. Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave. Appl. Energy 2024, 365, 123189. [Google Scholar]
- Zhang, P.; Li, C.; Wei, Y.; Wu, W. Three-dimensional analytical wake model for floating offshore wind turbines under pitch motion. Ocean Eng. 2024, 311, 118935. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.; Tian, Y.; Liu, H.; Zhong, Y.; Kong, F. Research on the aero-hydro coupling characteristics of the floating twin-rotor wind turbine system. Ocean Eng. 2024, 312, 119344. [Google Scholar] [CrossRef]
- Kirchner-Bossi, N.; Porté-Agel, F. Multi-rotor Wind Farm Layout Optimization. J. Phys. Conf. Ser. 2020, 1618, 032014. [Google Scholar] [CrossRef]
Country/Region | Proportion of Wind Resources Located in Deep Water | Reserves of Wind Resources Located in Deep Water |
---|---|---|
China | >60% | >2200 GW |
Europe | >80% | >4000 GW |
America | >60% | >2450 GW |
Japan | >80% | >500 GW |
Country | Project | Developers | Installed Capacity (MW) | Number of Installed Turbines | Year |
---|---|---|---|---|---|
China | San Xia Yin Ling Hao | China Three Gorges Corporation | 5.5 | 1 | 2021 |
Fu Yao Hao | China State Shipbuilding Corporation | 6.2 | 1 | 2022 | |
Hai You Guan Lan Hao | China National Offshore Oil Corporation | 7.25 | 1 | 2023 | |
Guo Neng Gong Xiang Hao | CHN ENERGY | 4 | 1 | 2023 | |
Japan | Goto Sakiyama 2016 | Goto Floating Wind Power | 2.1 | 1 | 2016 |
Hibiki | Marubeni/Hitachi/BW ldeol | 3 | 1 | 2018 | |
Norway | Zefyros (fmr Hywind I) | Unitech | 2.3 | 1 | 2009 |
TetraSpar Demo | Shell/RWE/Tepco/Stiesdal T | 3.6 | 1 | 2021 | |
Hywind Tampen | Equinor/SSC | 94.6 | 11 | 2022 | |
France | Floatgen | Floatgen | 2 | 1 | 2018 |
Provence Grand Large (PGL) | Parc Éolien Offshore de Provence Grand Large Enbridge Éolien France 2 S.à.r.l | 24 | 3 | 2024 | |
Pennavel | Elicio Baywa | 250 | \ | \ | |
UK | Hywind Scotland | Equinor | 30 | 5 | 2017 |
Kincardine Tranche 2 | Cobra/Flotation Energy (TEPCC) | 47.5 | 5 | 2021 | |
Portugal | WindFloat Atlantic | WindPlus EDP | 25.2 | 3 | 2019 |
Republic of Korea | Ulsan Demo | Unison, KETEP, Mastek Heavy Industries, SEHO Engineering University of Ulsan | 0.75 | 1 | 2020 |
Spain | PLOCAN | \ | 1 | \ | \ |
Italy | Piombino | Renexia | 24 | 3 | \ |
USA | New England Aqua Ventus | Cianbro | 12 | 2 | \ |
… | … | … | … | … | … |
Total | \ | \ | 233 | 33 | \ |
Experimental Approaches | Mechanisms | Advantages | Weakness | Whether Currently Used in FOWT |
---|---|---|---|---|
Wind mast in field tests [50,51,52] | Cup anemometer or ultrasonic anemometer | Long-term and stable wind speed information with high frequency | Only single point measurements can be made | No |
LiDAR in field tests [53,54,55,56,57] | Interaction between laser and aerosol particles in atmosphere | The installation is more flexible and it can carry out a large range of three-dimensional scannings of wind farms | The resolution of LiDAR measurements is relatively low | No |
Super-large-scale particle image velocimetry (SLPIV) in field tests [58] | Snowflakes are adopted as the tracer particles | Flow details can be measured | High requirements on the measurement environment | No |
Drones with sensors in field tests [59] | Custom wind speed measuring instrument | Measuring points are flexible | Only single point measurements can be made | No |
Traditional wave basin test [70,71,72] | Froude number similarity criterion | Precise reproduction of hydrodynamic forces | Aerodynamic performance is not the focus, the coupling of hydrodynamics and pneumatics cannot be realized | Yes |
Traditional wind tunnel test [62,67] | Reynolds number similarity criterion | Precise reproduction of aerodynamic forces | Hydrodynamics is not the focus, the coupling of hydrodynamics and pneumatics cannot be realized | Yes |
“Hardware in the loop” wave basin test and wind tunnel test [75] | Using models to simulate hydrodynamic or aerodynamic forces | The coupling of hydrodynamics and pneumatics | At present, the real-time performance and accuracy of hydrodynamic and aerodynamic coupling need to be improved | Yes |
Simulation Approaches | Mechanisms | Advantages | Weaknesses |
---|---|---|---|
Analytical wake model [40,41,42,43,44,45] | Conservation of momentum and mass, some fundamental assumptions | Efficient calculation and suitable for engineering applications | Low fidelity |
Full rotor model combined with CFD [95,96,103,104] | The boundary layer flow on the blade surface is considered | Precise characterization of blade surface flow details | High computational costs |
CFD-based actuator methods [105,106] | The force source term is introduced to represent the force of a wind turbine | Lower computational costs and relatively high calculation accuracy | Some flow details may be missing |
Fast simulation based on Artificial Intelligence [107,108] | AI models that are trained based on physical knowledge and large amounts of data | High efficiency and high fidelity | The application in wind farms needs to be further improved |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, T.; Cai, C.; Liu, J.; Gao, X.; Guo, N.; Li, Q. A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines. J. Mar. Sci. Eng. 2025, 13, 208. https://doi.org/10.3390/jmse13020208
Chen X, Wang T, Cai C, Liu J, Gao X, Guo N, Li Q. A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines. Journal of Marine Science and Engineering. 2025; 13(2):208. https://doi.org/10.3390/jmse13020208
Chicago/Turabian StyleChen, Xiaoxu, Tengyuan Wang, Chang Cai, Jianshuang Liu, Xiaoxia Gao, Naizhi Guo, and Qingan Li. 2025. "A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines" Journal of Marine Science and Engineering 13, no. 2: 208. https://doi.org/10.3390/jmse13020208
APA StyleChen, X., Wang, T., Cai, C., Liu, J., Gao, X., Guo, N., & Li, Q. (2025). A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines. Journal of Marine Science and Engineering, 13(2), 208. https://doi.org/10.3390/jmse13020208