Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = hydraulic contact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 215
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

18 pages, 11176 KiB  
Article
Impact Mechanical Properties of Magnesium Alloy Structures with Annularly Distributed Multi-Sphere Point Contacts
by Xiaoting Sun, Guibo Yu, Qiao Ma, Yi Wang and Wei Wang
Crystals 2025, 15(7), 665; https://doi.org/10.3390/cryst15070665 - 21 Jul 2025
Viewed by 244
Abstract
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An [...] Read more.
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An annularly distributed multi-sphere point contact structure was designed and fabricated on a magnesium alloy substrate based on the Hertz contact theory. The accuracy of the finite element numerical model, constructed using Abaqus/Explicit, was verified through hydraulic impact tests. The impact mechanical properties of the structure were studied by analyzing the influence of the number, diameter, and cavity radius of hemispheres using an experimentally verified finite element model. The axial and radial deformations of the structure were compared and analyzed. The research findings indicate that the deformation and impact resistance of the structure can be greatly influenced by increasing the number of hemispheres, enlarging the hemisphere diameter, and incorporating internal cavities. Specifically, with 6 hemispheres, each with a diameter of Φ 6 mm and a cavity radius of R1.5 mm, the axial and radial deformations are only 1.03 mm and 3.02 mm, respectively. The contact area of a single hemisphere is 7.16 mm2. The study offers new perspectives on choosing buffer structures in high-impact environments. Full article
Show Figures

Figure 1

15 pages, 3624 KiB  
Article
Operational Design Considerations for Phosphorus Adsorption Media (PAM)
by Younsuk Dong and Steven I. Safferman
Sustainability 2025, 17(13), 6069; https://doi.org/10.3390/su17136069 - 2 Jul 2025
Viewed by 386
Abstract
Phosphorus Adsorption Media (PAM) is an emerging technology used to remove phosphorus from water and has the advantage of minimal operation and maintenance support when compared to biological and chemical treatments. Although the capacity of PAM has been researched, the understanding of important [...] Read more.
Phosphorus Adsorption Media (PAM) is an emerging technology used to remove phosphorus from water and has the advantage of minimal operation and maintenance support when compared to biological and chemical treatments. Although the capacity of PAM has been researched, the understanding of important design parameters for PAM is lacking. Therefore, this study focused on determining critical design parameters for PAM, such as hydraulic loading, Empty Bed Contact Time (EBCT), and its impact on the media’s capacity. In addition, the regeneration potential of PAM and the mathematical model for predicting the exhaustion of PAM are discussed to provide a practice tool for designing PAM. The results indicate that hydraulic loadings do not show a strong effect on PAM performance, as there are no significant differences between hydraulic loadings of 0.05, 0.12, and 0.22 mL/min/cm2. This study also showed that the higher EBCT (190 min) has higher removal rates than the lower EBCT (60 and 90 min). This indicated that EBCT is a critical design parameter for PAM. Laboratory studies demonstrating the regeneration of exhausted media by washing with a caustic solution have been conducted, and a qualitative study showed that exhausted media can be used in hydroponics. Batch testing showed that over 99% of the sorbed phosphorus was eliminated after six cycles of the regeneration process. Full article
Show Figures

Figure 1

24 pages, 7564 KiB  
Article
Macro- and Micro-Behavior of Suffusion Under Cyclic Hydraulic Loading: Transparent Soil Experiments and DEM Simulation
by Bo Huang, Xin Zhao, Chang Guo and Linfeng Cao
Water 2025, 17(13), 1894; https://doi.org/10.3390/w17131894 - 25 Jun 2025
Viewed by 324
Abstract
Cyclic hydraulic loading frequently affects embankment dams during reservoir regulation, tidal fluctuations, and intense rainfall. It potentially worsens fine particle migration during internal erosion and increases dam failure risks. This study is the first to systematically explore the influence of cyclic hydraulic loading [...] Read more.
Cyclic hydraulic loading frequently affects embankment dams during reservoir regulation, tidal fluctuations, and intense rainfall. It potentially worsens fine particle migration during internal erosion and increases dam failure risks. This study is the first to systematically explore the influence of cyclic hydraulic loading on the critical hydraulic gradient (icr) of gap-graded soils, providing new insights into suffusion behavior. Transparent soil experiments, which enable direct observation of soil structural evolution, are combined with coupled DEM–Darcy simulations that offer microscopic mechanical insights, marking the first integrated use of these two approaches to investigate suffusion behavior. To quantify fine particle migration, we propose a novel modified grayscale threshold segmentation (MGTS) method for analyzing cross-sectional images captured during transparent soil experiments. The results from both methods show consistency in fine particle migration, clogging formation, and failure, with differences in permeability and icr remaining within acceptable limits. Fine particle content significantly influences the post-cyclic icr of internally unstable soils. For soils with lower fine particle content (15%), icr increases after cyclic hydraulic loading and rises with the mean hydraulic gradient during cycling. Conversely, soils with higher fine particle content (20%) exhibit a decrease in post-cyclic icr. This behavior is explained by changes in the average contact force between fine particles (Fff) observed in DEM simulations. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

31 pages, 9138 KiB  
Article
Tension Force Estimation of Cable-Stayed Bridges Based on Computer Vision Without the Need for Direct Measurement of Mechanical Parameters of the Cables
by German Michel Guzman-Acevedo, Juan A. Quintana-Rodriguez, Guadalupe Esteban Vazquez-Becerra, Luis Alvaro Martinez-Trujano, Francisco J. Carrion-Viramontes and Jorge Garcia-Armenta
Sensors 2025, 25(13), 3910; https://doi.org/10.3390/s25133910 - 23 Jun 2025
Viewed by 542
Abstract
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this [...] Read more.
Commonly, accelerometers are used to determine the tension force in cables through an indirect process; however, it is necessary to know the mechanical parameters of each element, such as mass and length. Typically, obtaining or measuring these parameters is not feasible. Therefore, this research proposed an alternative methodology to indirectly estimate them based on historical information about the so-called classic instruments (accelerometers and hydraulic jack). This case study focused on the Rio Papaloapan Bridge located in Veracruz, Mexico, a structure that has experienced material casting issues due to inadequate heat treatment in some cable top anchor over its lifespan. Thirteen cables from the structure were selected to evaluate the proposed methodology, yielding results within 3.8% of difference compared to direct tension estimation generated by a hydraulic jack. Furthermore, to enhance data collection, this process was complemented using a computer vision methodology. This involved remotely measuring the vibration frequency of cables from high-resolution videos recorded with a smartphone. The non-contact method was validated in a laboratory using a vibrating table, successfully estimating oscillation frequencies from video-recording with a fixed camera. A field test on eight cables of a bridge was also conducted to assess the performance and feasibility of the proposed method. The results demonstrated an RMS Error of approximately 2 mHz and a percentage difference in the tension force estimation below 3% compared to an accelerometer measurement approach. Finally, it was determined that this composed methodology for indirect tension force determination is a viable option when: (1) cables are challenging to access; (2) there is no line of sight between the camera and cables outside the bridge; (3) there is a lack of information about the mechanical parameters of the cables. Full article
(This article belongs to the Special Issue Recent Advances in Structural Health Monitoring of Bridges)
Show Figures

Figure 1

20 pages, 1188 KiB  
Article
Assessing Nitrosamine Migration from Drinking Water Contact Materials Using a Validated LLE-GC-MS Method
by Beatriz Antunes, Andreia Videira, Ana Penetra, Vitor V. Cardoso, Rui N. Carneiro and Cristina M. M. Almeida
Molecules 2025, 30(11), 2403; https://doi.org/10.3390/molecules30112403 - 30 May 2025
Viewed by 524
Abstract
Nitrosamines (NAs) are toxic compounds associated with disinfection processes. Human exposure can occur through the hydraulic hoses and seals that are in contact with drinking water. This study develops and validates a chromatographic method to quantify 11 NAs in water leachates from four [...] Read more.
Nitrosamines (NAs) are toxic compounds associated with disinfection processes. Human exposure can occur through the hydraulic hoses and seals that are in contact with drinking water. This study develops and validates a chromatographic method to quantify 11 NAs in water leachates from four organic materials. The method is based on liquid–liquid extraction (LLE) followed by gas chromatography coupled with mass spectrometry (GC-MS). The method was validated by the application of several statistical tests, namely, linearity/working range, precision, trueness, and recovery tests. The GC-MS method showed a good linear range for all NAs with coefficients of determination (r2) higher than 0.9989, coefficients of variation of the method (CVm) lower than 2.5%, and PG < F (0.05; 1; N-3). The working range varies between 10 µg/L and 386.7 µg/L. The GC-MS method showed good precision under repeatability and reproducibility conditions with a relative standard deviation (RSD) lower than 12% and 10%, respectively. The GC-MS showed good trueness with a relative error lower than 20%. Matrix effects were significant, with recovery (Rec) values between 47% and 125% and an RSD lower than 20%. The limit of detection (LOD) and quantification (LOQ) ranged between 0.71 µg/L and 8.9 µg/L and between 2.3 µg/L and 29.8 µg/L, respectively. The method quantification limits (MQL) ranged from 0.0045 µg/L to 0.0378 µg/L. The sum of the MQL (0.2 µg/L) is lower than the reference limit of 0.3 µg/L for NAs in the leachates from the migration tests. Four organic materials were subjected to migration tests with demineralized and chlorinated water to assess their suitability for the water supply system. These materials met the NA specifications for use in the water network. Full article
Show Figures

Graphical abstract

26 pages, 4872 KiB  
Article
Using Expert Knowledge to Assess Resistance to Internal Erosion of Levees with Tree Vegetation
by Gisèle Bambara, Corinne Curt, Laurent Peyras and Rémy Tourment
Geotechnics 2025, 5(2), 30; https://doi.org/10.3390/geotechnics5020030 - 21 May 2025
Viewed by 842
Abstract
The breaching of river levees can have dramatic economic and human impacts. In many countries, including France, laws and regulations require the assessment and inspection of hydraulic structures. Methods are required to carry out these missions. The following article presents a method for [...] Read more.
The breaching of river levees can have dramatic economic and human impacts. In many countries, including France, laws and regulations require the assessment and inspection of hydraulic structures. Methods are required to carry out these missions. The following article presents a method for assessing the impacts of tree vegetation on the resistance of river levees to internal erosion. Indeed, the presence of trees—particularly following the decomposition of their roots—may cause damage in the structure through contact erosion, concentrated erosion, backward erosion or suffusion. The proposed method takes into account the possible presence of trees and especially roots in different parts of the levee. The method is based on the formalization and aggregation of expert knowledge. It permits the calculation of a performance indicator, which is obtained by aggregating criteria determined using formalized status indicators. The entire method is available in the article. The method was tested on two real cases. Full article
Show Figures

Figure 1

16 pages, 5257 KiB  
Article
Effects of Driving Current Ripple Fluctuations on the Liquefied Layer of the Armature–Rail Interface in Railguns
by Wen Tian, Gongwei Wang, Ying Zhao, Weikang Zhao, Weiqun Yuan and Ping Yan
Energies 2025, 18(10), 2596; https://doi.org/10.3390/en18102596 - 16 May 2025
Viewed by 334
Abstract
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power [...] Read more.
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power supply. Due to the limitation of control accuracy, the driving current is not an ideal trapezoidal wave, but there is a certain fluctuation (current ripple) in the flat top portion of the trapezoidal wave. The fluctuation of the current will affect the thickness of the liquefied layer at the armature–rail interface as well as the magnitude of the contact pressure, thereby inducing instability at the armature–rail interface and generating micro-arcs, which result in a reduction in the service life of the rails within the launcher. Consequently, it is imperative to conduct an in-depth analysis of the influence of current ripple on the liquefied layer during electromagnetic launching. In this paper, a thermoelastic magnetohydrodynamic model is constructed by coupling temperature, stress, and electromagnetic fields, which are predicated on the Reynolds equation of the metal liquefied layer at the armature–rail contact interface. The effects of current fluctuations on the melting rate of the surface of the armature, the thickness of the liquefied layer, and the hydraulic pressure of the liquefied layer under four different current ripple coefficients (RCs) were analyzed. The results show the following: (1) The thickness and the pressure of the liquefied layer at the armature–rail interface fluctuate with the fluctuation of the current, and, the larger the ripple coefficient, the greater the fluctuations in the thickness and pressure of the liquefied layer. (2) The falling edge of the current fluctuation leads to a decrease in the hydraulic pressure of the liquefied layer, which results in the instability of the liquefied layer between the armature and rails. (3) As the ripple coefficient increases, the time taken for the liquefied layer to reach a stable state increases. In addition, a launching experiment was also conducted in this paper, and the results showed that, at the falling edge of the current fluctuation, the liquefied layer is unstable, and a phenomenon such as the ejection of molten armature and transition may occur. The results of the experiment and simulations mutually confirm that the impact of current fluctuations on the armature–rail interface increases with increases in the ripple coefficient. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

29 pages, 10395 KiB  
Article
Performance Analysis of DCMD Modules Enhanced with 3D-Printed Turbulence Promoters of Various Hydraulic Diameters
by Chii-Dong Ho, Ming-Shen Chiang and Choon Aun Ng
Membranes 2025, 15(5), 144; https://doi.org/10.3390/membranes15050144 - 10 May 2025
Viewed by 661
Abstract
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant [...] Read more.
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant temperature for the cold inlet stream. The temperature difference between the two streams creates a gradient across the membrane surfaces, leading to thermal energy dissipation due to temperature polarization effects. To address this challenge, 3D-printed turbulence promoters were incorporated into the DCMD modules. Acting as eddy promoters, these structures aim to reduce the temperature polarization effect, thereby enhancing permeate flux and improving pure water productivity. Various designs of promoter-filled channels—with differing array configurations and geometric shapes—were implemented to optimize flow characteristics and further mitigate polarization effects. Theoretical predictions were validated against experimental results across a range of process parameters, including inlet temperatures, volumetric flow rates, hydraulic diameters, and flow configurations, with deviations within 10%. The DCMD module with the inserted 3D-printed turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 91.73% under the descending diamond-type module in comparison with the module of using the no-promoter-filled channel. The modeling equations demonstrated technical feasibility, particularly with the use of both descending and ascending hydraulic diameters of 3D-printed turbulence promoters inserted into the saline feed stream, as compared to a module using an empty channel. Full article
(This article belongs to the Special Issue Solar-Assisted Thermal-Driven Membrane Distillation)
Show Figures

Figure 1

14 pages, 4181 KiB  
Article
Behavioral Study of Elastomeric O-Rings Built into Coaxial Sealing Systems
by Andrea Deaconescu and Tudor Deaconescu
Polymers 2025, 17(9), 1275; https://doi.org/10.3390/polym17091275 - 7 May 2025
Viewed by 633
Abstract
Coaxial sealing systems are increasingly used in the construction of hydraulic cylinders. In addition to the seal that ensures the actual packing of the entire system, the O-ring plays an important role in the functioning of the hydraulic subassembly. In order to understand [...] Read more.
Coaxial sealing systems are increasingly used in the construction of hydraulic cylinders. In addition to the seal that ensures the actual packing of the entire system, the O-ring plays an important role in the functioning of the hydraulic subassembly. In order to understand the sealing phenomenon of coaxial systems, a physical and mathematical model of the contact between the O-ring and its contacting surfaces is required. Within this context, this paper presents a calculation method of the pressures generated in the contact areas of the O-ring with its adjacent surfaces, as well as of the widths of the contact areas. The input quantities for these calculations were certain material characteristics (hardness, elasticity modulus, and Poisson’s coefficient) of the sealed-off fluid pressure and the specific radial deformation, which is a characteristic that describes the mounting of the O-ring in its groove. This article concludes with recommendations for the mounting of the O-ring and the required characteristics of the used materials. Full article
Show Figures

Figure 1

15 pages, 4515 KiB  
Article
Analysis of Stress Perturbation Patterns in Oil and Gas Reservoirs Induced by Faults
by Haoran Sun, Shuang Tian, Yuankai Xiang, Leiming Cheng and Fujian Yang
Processes 2025, 13(5), 1416; https://doi.org/10.3390/pr13051416 - 6 May 2025
Viewed by 558
Abstract
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in [...] Read more.
The distribution of in situ stress fields in reservoirs is critical for the accurate exploration and efficient exploitation of hydrocarbon resources, especially in deep, fault-developed strata where tectonic activities significantly complicate stress field patterns. To clarify the perturbation effects of faults on in situ stress fields in deep reservoirs, this study combines dynamic–static parameter conversion models derived from laboratory experiments (acoustic emission Kaiser effect and triaxial compression tests) with a coupled “continuous matrix–discontinuous fault” numerical framework implemented in FLAC3D6.0. Focusing on the BKQ Formation reservoir in the MH area, China, we developed a multivariate regression-based inversion model integrating gravitational and bidirectional tectonic stress fields, validated against field measurements with errors of −2.96% to 9.07%. The key findings of this study include the following: (1) fault slip induces stress reductions up to 22.3 MPa near fault zones, with perturbation ranges quantified via exponential decay functions (184.91–317.74 m); (2) the “continuous matrix–discontinuous fault” coupling method resolves limitations of traditional continuum models by simulating fault slip through interface contact elements; and (3) stress redistribution exhibits NW-SE gradients, aligning with regional tectonic compression. These results provide quantitative guidelines for optimizing hydrocarbon development boundaries and hydraulic fracturing designs in faulted reservoirs. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

29 pages, 1122 KiB  
Review
Trends in Lubrication Research on Tapered Roller Bearings: A Review by Bearing Type and Size, Lubricant, and Study Approach
by Muhammad Ishaq Khan, Lorenzo Maccioni and Franco Concli
Lubricants 2025, 13(5), 204; https://doi.org/10.3390/lubricants13050204 - 6 May 2025
Cited by 1 | Viewed by 891
Abstract
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it [...] Read more.
A tapered roller bearing (TRB) is a specialized type of bearing with a high load-to-volume ratio, designed to support both radial and axial loads. Lubrication plays a crucial role in TRB operation by reducing friction and dissipating heat generated during rotation. However, it can also negatively impact TRB performance due to the viscous and inertial effects of the lubricant. Extensive research has been conducted to examine the role of lubrication in TRB performance. Lubrication primarily influences the frictional characteristics, thermal behavior, hydraulic losses, dynamic stability, and contact mechanics of TRBs. This paper aims to collect and classify the scientific literature on TRB lubrication based on these key aspects. Specifically, it explores the scope of research on the use of Newtonian and non-Newtonian lubricants in TRBs. Furthermore, this study analyzes research based on TRB size and type, considering both oil and grease as lubricants. The findings indicate that both numerical and experimental studies have been conducted to investigate Newtonian and non-Newtonian lubricants across various TRB sizes and types. However, the results highlight that limited research has focused on non-Newtonian lubricants in TRBs with an Outer Diameter (OD) exceeding 300 mm, i.e., those typically used in wind turbines, industrial gearboxes, and railways. Full article
(This article belongs to the Special Issue Tribological Characteristics of Bearing System, 3rd Edition)
Show Figures

Figure 1

16 pages, 3243 KiB  
Article
Enhanced Nitrification of High-Ammonium Reject Water in Lab-Scale Sequencing Batch Reactors (SBRs)
by Sandeep Gyawali, Eshetu Janka and Carlos Dinamarca
Water 2025, 17(9), 1344; https://doi.org/10.3390/w17091344 - 30 Apr 2025
Viewed by 487
Abstract
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well [...] Read more.
Dewatering anaerobic digested sludge leaves a liquid fraction known as reject water, a liquid organic fertilizer containing high amounts of ammonium nitrogen (NH4-N). However, its concentration should be enhanced to produce commercial fertilizer. Thus, reject water nitrification for stabilization as well as for nitrate capture in biochar to be used as a slow-release fertilizer is proposed. This study attempted to accomplish enhanced nitrification by tuning the operating parameters in two lab-scale sequential-batch reactors (SBRs), which were fed reject water (containing 520 ± 55 mg NH4-N/L). Sufficient alkalinity as per stoichiometric value was needed to maintain the pH and free nitrous acid (FNA) within the optimum range. A nitrogen loading rate (NLR) of 0.14 ± 0.01 kg/m3·d and 3.34 days hydraulic retention time (HRT) helped to achieved complete 100% nitrification in reactor 1 (R1) on day 61 and in reactor 2 (R2) on day 82. After a well-developed bacterial biomass, increasing the NH4-N concentration up to 750 ± 85 mg/L and NLR to 0.23 ± 0.03 kg/m3·d did not affect the nitrification process. Moreover, a feeding sequence once a day provided adequate contact time between nitrifying sludge and reject water, resulting in complete nitrification. It can be concluded that enhanced stable nitrification of reject water can be achieved with quick adjustment of loading, alkalinity, and HRT in SBRs. Full article
Show Figures

Graphical abstract

23 pages, 14677 KiB  
Article
Design of and Experimentation on an Intelligent Intra-Row Obstacle Avoidance and Weeding Machine for Orchards
by Weidong Jia, Kaile Tai, Xiang Dong, Mingxiong Ou and Xiaowen Wang
Agriculture 2025, 15(9), 947; https://doi.org/10.3390/agriculture15090947 - 27 Apr 2025
Viewed by 577
Abstract
Based on the current issues of difficulty in clearing intra-row weeds in orchards, inaccurate sensor detection, and the inability to adjust the row spacing depth, this study designs an intelligent intra-row obstacle avoidance and weeding machine for orchards. We designed the weeding machine’s [...] Read more.
Based on the current issues of difficulty in clearing intra-row weeds in orchards, inaccurate sensor detection, and the inability to adjust the row spacing depth, this study designs an intelligent intra-row obstacle avoidance and weeding machine for orchards. We designed the weeding machine’s sensor device, depth-limiting device, row spacing adjustment mechanism, joystick-based obstacle avoidance mechanism, weeding shovel, and hydraulic system. The sensor device integrates non-contact sensors and a mechanical tactile structure, which overcomes the instability of non-contact detection and avoids the risk of collision obstacle avoidance by the weeding parts. The weeding shovel can be adapted to the environments of orchards with small plant spacing. The combination of the sensor device and the obstacle avoidance mechanism realizes flexible obstacle avoidance. We used Ansys Workbench to conduct static and vibration modal analyses on the chassis of the in-field weeding machine. On this basis, through topology optimization, the chassis quality of the weeding machine is reduced by 8%, which realizes the goal of light weight and ensures the stable operation of the machinery. To further optimize the weeding operation parameters, we employed the Box–Behnken design response surface analysis, with weeding coverage as the optimization target. We systematically explored the effects of forward speed, hydraulic cylinder extension speed, and retraction speed on the weeding efficiency. The optimal operational parameter combination determined by this study for the weeding machine is as follows: forward speed of 0.5 m/s, hydraulic cylinder extension speed of 11.5 cm/s, and hydraulic cylinder retraction speed of 8 cm/s. Based on the theoretical analysis and scenario simulations, we validated the performance of the weeding machine through field experiments. The results show that the weeding machine, while exhibiting excellent obstacle avoidance performance, can achieve a maximum weeding coverage of 84.6%. This study provides a theoretical foundation and technical support for the design and development of in-field mechanical weeding, which is of great significance for achieving intelligent orchard management and further improving fruit yield and quality. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

19 pages, 4650 KiB  
Article
Simulation Analysis of an Electric Locomotive with a Hydraulic Wheelset Guidance System for Improved Performance in Curved Tracks
by Jan Kalivoda
Machines 2025, 13(4), 321; https://doi.org/10.3390/machines13040321 - 14 Apr 2025
Viewed by 447
Abstract
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their [...] Read more.
A reduction of forces acting between the railway track and the vehicle is one of the key issues in the design of modern rolling stock. Because the capabilities of reducing wheel–rail contact forces in track curves by conventional methods are encountered at their limits, innovative approaches in the design of vehicle suspension and wheelset guidance occur. Among them, an active wheelset steering appears to be very promising. However, an active wheelset steering system is rather complicated and expensive and raises many safety issues. Therefore, a passive hydraulic system that links longitudinal motions of axle boxes is proposed. The system is relatively simple and, compared to the active wheelset steering, does not need any energy supply or sensor system for the detection of a track shape. Two arrangements of the hydraulic system had been proposed and implemented in a simulation model. The simulation model is based on a cosimulation of two separate models, a multibody model of an electric locomotive, and a model of the hydraulic system. The goal of this study is to evaluate the contribution of the hydraulic system to the natural radial alignment of wheelsets in curves and thus to reduce the wear of wheels and to determine the parameters of the hydraulic system to maximize the wear reduction benefits while minimizing a decrease in critical speed. Simulations of a vehicle running in various scenarios, including a run in a real track section of a length of 20 km, have been performed. As a criterion for the wear of wheels and rails, a T-gamma wear number was used, from which a sum of frictional work in wheel–rail contacts was calculated. The results of the simulations and the comparison of hydraulic axle box connection systems and a standard locomotive are presented and discussed in the paper. The results obtained confirmed a significant potential benefit of the proposed hydraulic system in reducing wheel wear on curved tracks. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

Back to TopTop