Operational Design Considerations for Phosphorus Adsorption Media (PAM)
Abstract
1. Introduction
- (1)
- Determining important design parameters for PAM. Included are the impact of hydraulic loading, empty bed contact time (EBCT), and the impact of EBCT on the media’s capacity;
- (2)
- Exploring options to regenerate the media;
- (3)
- Utilizing a mathematical model to predict the exhaustion of PAM;
- (4)
- Providing a PAM design approach.
2. Materials and Methods
2.1. Experimental Design
2.1.1. Phosphorus Adsorption Media
2.1.2. Reactor Design
2.2. Effectiveness of Empty Bed Contact Time on Phosphorus Removal Efficiency
2.3. Analytical Methods and Quality Assurance/Quality Control (QA/QC)
2.4. Fixed-Bed Adsorption Modeling
3. Result and Discussion
3.1. Effectiveness of Hydraulic Loading on Phosphorus Removal Efficiency
3.2. SEM to Examine the Mechanisms and Impact of Biomass Loading
3.3. Effectiveness of Empty Bed Contact Time on Phosphorus Removal Efficiency
3.4. Impact of EBCT on Media Capacity
3.5. Design Approach
- Diffusion from bulk to liquid film surrounding the solid;
- Diffusion through the liquid film;
- Diffusion into the pores of the sorbing solid;
- Sorption of solute to the solid.
3.6. Regeneration of the Media
3.7. Fixed-Bed Adsorption Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jasinski, S.M. Phosphate Rock. In Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar]
- Chowdhury, R.B.; Moore, G.A.; Weatherley, A.J.; Arora, M. Key Sustainability Challenges for the Global Phosphorus Resource, Their Implications for Global Food Security, and Options for Mitigation. J. Clean. Prod. 2017, 140, 945–963. [Google Scholar] [CrossRef]
- Van Kauwenbergh, S.J.; Stewart, M.; Mikkelsen, R. World Reserves of Phosphate Rock... a Dynamic and Unfolding Story. Better. Crops 2013, 97, 18–20. [Google Scholar]
- Li, B.; Boiarkina, I.; Young, B.; Yu, W.; Singhal, N. Prediction of Future Phosphate Rock: A Demand Based Model. J. Environ. Inform. 2017, 31, 41–53. [Google Scholar] [CrossRef]
- Li, B.; Udugama, I.A.; Mansouri, S.S.; Yu, W.; Baroutian, S.; Gernaey, K.V.; Young, B.R. An Exploration of Barriers for Commercializing Phosphorus Recovery Technologies. J. Clean. Prod. 2019, 229, 1342–1354. [Google Scholar] [CrossRef]
- Li, B.; Yu, W.; Huang, H.M.; Lim, E.; Boiarkina, I.; Young, B. Struvite Image Analysis and Its Application for Product Purity Prediction. J. Environ. Chem. Eng. 2019, 7, 103349. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. National Rivers and Streams Assessment 2008–2009 a Collaborative Survey; (EPA/841/R-16/007); U.S. Environmental Protection Agency: Washington, DC, USA, 2013.
- Lombardo, P. Phosphorus Geochemistry in Septic Tanks, Soil Absorption Systems, and Groundwater. 2006. Available online: https://lombardoassociates.com/pdfs/060410-P-Geochemistry-FINAL-LAI-Version.pdf (accessed on 25 June 2025).
- Wang, S.; Kong, L.; Long, J.; Su, M.; Diao, Z.; Chang, X.; Chen, D.; Song, G.; Shih, K. Adsorption of Phosphorus by Calcium-Flour Biochar: Isotherm, Kinetic and Transformation Studies. Chemosphere 2018, 195, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Suresh Kumar, P.; Ejerssa, W.W.; Wegener, C.C.; Korving, L.; Dugulan, A.I.; Temmink, H.; van Loosdrecht, M.C.M.; Witkamp, G.J. Understanding and Improving the Reusability of Phosphate Adsorbents for Wastewater Effluent Polishing. Water Res. 2018, 145, 365–374. [Google Scholar] [CrossRef]
- Yan, L.; Dong, F.X.; Li, Y.; Guo, P.R.; Kong, L.J.; Chu, W.; Diao, Z.H. Synchronous Removal of Cr(VI) and Phosphates by a Novel Crayfish Shell Biochar-Fe Composite from Aqueous Solution: Reactivity and Mechanism. J. Environ. Chem. Eng. 2022, 10, 107396. [Google Scholar] [CrossRef]
- Safferman, S.I.; Dong, Y.; Thelen, J.; Costaniti, L.; Saber, L.; Schorr, J.R.; Sengupta, S.; Revur, R. Phosphorus Removal From Domestic Wastewater Using. In Proceedings of the 2015 National Onsite Wastewater Recycling Association, Virginia Beach, VA, USA, 3–6 November 2015. [Google Scholar]
- Dong, Y.; Safferman, S.; Tekesin, O.; Sengupta, S.; Schorr, J.R.; Revur, R. Removal of Nutrients from Agricultural Drainage Water Using Nano-Engineered Porous Ceramic Media. In Proceedings of the 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Kumar, M.; Badruzzaman, M.; Adham, S.; Oppenheimer, J. Beneficial Phosphate Recovery from Reverse Osmosis (RO) Concentrate of an Integrated Membrane System Using Polymeric Ligand Exchanger (PLE). Water Res. 2007, 41, 2211–2219. [Google Scholar] [CrossRef]
- Kumar, P.S.; Korving, L.; van Loosdrecht, M.C.M.; Witkamp, G.J. Adsorption as a Technology to Achieve Ultra-Low Concentrations of Phosphate: Research Gaps and Economic Analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef]
- Ownby, M.; Desrosiers, D.A.; Vaneeckhaute, C. Phosphorus Removal and Recovery from Wastewater via Hybrid Ion Exchange Nanotechnology: A Study on Sustainable Regeneration Chemistries. NPJ Clean. Water 2021, 4, 100029. [Google Scholar] [CrossRef]
- Pinelli, D.; Bovina, S.; Rubertelli, G.; Martinelli, A.; Guida, S.; Soares, A.; Frascari, D. Regeneration and Modelling of a Phosphorous Removal and Recovery Hybrid Ion Exchange Resin after Long Term Operation with Municipal Wastewater. Chemosphere 2022, 286, 131581. [Google Scholar] [CrossRef]
- Suresh Kumar, P.; Korving, L.; Keesman, K.J.; van Loosdrecht, M.C.M.; Witkamp, G.J. Effect of Pore Size Distribution and Particle Size of Porous Metal Oxides on Phosphate Adsorption Capacity and Kinetics. Chem. Eng. J. 2019, 358, 160–169. [Google Scholar] [CrossRef]
- Williams, A.T.; Zitomer, D.H.; Mayer, B.K. Ion Exchange-Precipitation for Nutrient Recovery from Dilute Wastewater. Environ. Sci. 2015, 1, 832–838. [Google Scholar] [CrossRef]
- Safferman, S.I.; Henderson, E.M.; Helferich, R.L. Chemical Phosphorus Removal from Onsite Generated Wastewater. In Proceedings of the Water Environment Federation, Miami, FL, USA, 30 January–2 February 2012. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Mitrakas, M.; Raptopoulou, C.; Tolkou, A.; Palasantza, P.A.; Zouboulis, A. Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environ. Process. 2016, 3, 5–22. [Google Scholar] [CrossRef]
- Genz, A.; Kornmüller, A.; Jekel, M. Advanced Phosphorus Removal from Membrane Filtrates by Adsorption on Activated Aluminium Oxide and Granulated Ferric Hydroxide. Water Res. 2004, 38, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and Ammonium Sorption Capacity of Biochar and Hydrochar from Different Wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Šarko, J.; Mažeikienė, A. Investigation of Sorbents for Phosphorus Removal. In Proceedings of the Environmental Engineering (Lithuania), Vilnius, Lithuania, 21–22 May 2020. [Google Scholar]
- Albright, M.F.; Waterfield, H.A. Continued Evaluation of Phosphorus-Removal Media for Use in Onsite Wastewater Treatment Systems; Annual Report; SUNY Oneonta Biological Field Station: Cooperstown, NY, USA, 2010; Volume 43, pp. 103–118. [Google Scholar]
- Hauda, J.K.; Safferman, S.I.; Ghane, E. Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage Water. Int. J. Environ. Res. Public Health 2020, 17, 7693. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Nelson, J.H. Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 1984, 45, 509–516. [Google Scholar] [CrossRef]
- Chu, K.H.; Hashim, M.A. Comparing Different Versions of the Yoon–Nelson Model in Describing Organic Micropollutant Adsorption within Fixed Bed Adsorbers. Environ. Sci. Pollut. Res. 2024, 31, 21136–21143. [Google Scholar] [CrossRef]
- Reynolds, T.; Richards, P. Unit Operations and Processes in Environmental Engineering, 2nd ed.; PWS Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Brooks, A.S.; Rozenwald, M.N.; Geohring, L.D.; Lion, L.W.; Steenhuis, T.S. Phosphorus Removal by Wollastonite: A Constructed Wetland Substrate. Ecol. Eng. 2000, 15, 121–132. [Google Scholar] [CrossRef]
- Ronbanchob, A.; Chu, K.H. Improved fixed bed models for correlating asymmetric adsorption breakthrough curves. J. Water Process Eng. 2021, 40, 101810. [Google Scholar]
Category | General Characteristic | Media Name | Manufacturer | Capacity (mg/g) | HRT (min) | References | Comments |
---|---|---|---|---|---|---|---|
Manufactured Nanomaterial | Nano-Coated Ceramic | PO4Sponge | MetaMateria | 50 | 60–90 | [12,13,14] | Limited production capacity |
Nano-Coated Resin | BioPhree | Aquacare (Netherlands) | 2.5 | 5 | [15,16] | Highly researched and many variations but trials with actual wastewater show substantial interference with capacity. Research to improve selectivity is ongoing | |
FerrIXA33E/Lewatit | Purolite (USA)/LanXess (Norway) | 3 | N/A | [17] | |||
LayneRT | REPCO) | 2.5 | 17.6 | [10,18,19,20] | |||
PhosX | Hagen (USA and Europe) | 0.01 | 8.5 | [15] | |||
Manufactured Natural Material | Activated Aluminum | ActiGuard AAFS50 | Axens (Alcan) | 13 | 17.5 | [21] | Established and well-studied |
Compalox | Huber/Martin-werk (UK and other) | 10.4 | N/A | [22,23] | |||
Torrefied Biomass | Biochar | 30 | N/A | [24] | Emerging | ||
Iron/Manganese Oxy-Hydroxide | AquAsZero | Laufaksis Chemical | 10.4 | 44 | [22] | No longer appears to be available | |
Metal Oxide | FerroSorp AW | HeGo Biotech (Germany) | 3.1 | N/A | [10,19] | ||
Expanded Clay | Filtralite Nature P | Filtralite | 0.3 | N/A | [25] | ||
Ferric Hydroxide | GFH | GEH Wasserchemi Osnabruck (Germany) | 4.2 | N/A | [19,23] | Established and well-studied | |
Rock Opoka Thermal Treated | Polonite Nordic | Bioptech | 7 | N/A | [26] | Not recommended by Coffey Group |
Columns | Diameter of Column (cm) | Flow (mL/min) | EBCT (min) | Vol. of Media (mL) | Hydraulic Loading (mL/min/cm2) |
---|---|---|---|---|---|
1 | 3.8 | 2.5 | 60 | 150 | 0.22 |
2 | 5.1 | 2.5 | 60 | 150 | 0.12 |
3 | 7.6 | 2.5 | 60 | 150 | 0.05 |
Columns | Diameter of Column (cm) | Flow (mL/min) | EBCT (min) | Vol. of Media (mL) | Hydraulic Loading (mL/min/cm2) |
---|---|---|---|---|---|
1 | 3.81 | 0.8 | 190 | 150 | 0.07 |
2 | 3.81 | 0.8 | 90 | 70 | 0.07 |
3 | 3.81 | 0.8 | 60 | 50 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Safferman, S.I. Operational Design Considerations for Phosphorus Adsorption Media (PAM). Sustainability 2025, 17, 6069. https://doi.org/10.3390/su17136069
Dong Y, Safferman SI. Operational Design Considerations for Phosphorus Adsorption Media (PAM). Sustainability. 2025; 17(13):6069. https://doi.org/10.3390/su17136069
Chicago/Turabian StyleDong, Younsuk, and Steven I. Safferman. 2025. "Operational Design Considerations for Phosphorus Adsorption Media (PAM)" Sustainability 17, no. 13: 6069. https://doi.org/10.3390/su17136069
APA StyleDong, Y., & Safferman, S. I. (2025). Operational Design Considerations for Phosphorus Adsorption Media (PAM). Sustainability, 17(13), 6069. https://doi.org/10.3390/su17136069