Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,499)

Search Parameters:
Keywords = hybrid operating strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1977 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
32 pages, 1403 KiB  
Review
Advancements in Environmentally Friendly Lubricant Technologies: Towards Sustainable Performance and Efficiency
by Iwona Wilińska and Sabina Wilkanowicz
Energies 2025, 18(15), 4006; https://doi.org/10.3390/en18154006 - 28 Jul 2025
Abstract
The advancement of next-generation lubricants is pivotal for enhancing energy efficiency and mitigating environmental impacts across diverse industrial applications. This review systematically examines recent developments in lubricant technologies, with a particular focus on sustainable strategies incorporating bio-based feedstocks, nanostructured additives, and hybrid formulations. [...] Read more.
The advancement of next-generation lubricants is pivotal for enhancing energy efficiency and mitigating environmental impacts across diverse industrial applications. This review systematically examines recent developments in lubricant technologies, with a particular focus on sustainable strategies incorporating bio-based feedstocks, nanostructured additives, and hybrid formulations. These innovations are designed to reduce friction and wear, decrease energy consumption, and prolong the operational lifespan of mechanical systems. A critical assessment of tribological behavior, environmental compatibility, and functional performance is presented. Furthermore, the integration of artificial intelligence (AI) into lubricant formulation and performance prediction is explored, highlighting its potential to accelerate development cycles and enable application-specific optimization through data-driven approaches. The findings emphasize the strategic role of eco-innovative lubricants in supporting low-carbon technologies and facilitating the transition toward sustainable energy systems. Full article
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

11 pages, 4175 KiB  
Article
Comparison of Hybrid Dynamic Stabilization with TLIF Versus Dynamic Stabilization Alone in Degenerative Lumbar Instability
by Uzay Erdogan, Gurkan Berikol, Ibrahim Taha Albas, Mehmet Yigit Akgun, Tunc Oktenoglu, Ozkan Ates and Ali Fahir Ozer
Diagnostics 2025, 15(15), 1887; https://doi.org/10.3390/diagnostics15151887 - 28 Jul 2025
Abstract
Objective: This study aimed to compare the clinical and radiological outcomes of dynamic rod stabilization with and without transforaminal lumbar interbody fusion (TLIF) in patients undergoing surgery for degenerative lumbar instability. Specifically, we evaluated the prognostic value of hybrid systems in reducing [...] Read more.
Objective: This study aimed to compare the clinical and radiological outcomes of dynamic rod stabilization with and without transforaminal lumbar interbody fusion (TLIF) in patients undergoing surgery for degenerative lumbar instability. Specifically, we evaluated the prognostic value of hybrid systems in reducing adjacent segment disease (ASD), enhancing fusion rates, and improving functional outcomes. Methods: A retrospective analysis was conducted on 62 patients treated between 2019 and 2022. Group 1 (n = 34) underwent dynamic rod stabilization alone, while Group 2 (n = 28) received dynamic stabilization combined with TLIF. Radiological assessments included disk height index (DHI) and fusion rates. Clinical outcomes were measured using the Visual Analog Scale (VAS) for back and leg pain at baseline, 12, and 24 months. Statistical analysis was performed using Jamovi® software (version 2.4.1). Results: The hybrid group (dynamic + TLIF) demonstrated significantly higher anterior fusion rates (p < 0.001) and greater improvement in VAS scores for back (p = 0.005) and leg pain (p < 0.001) at 12 months. Although operative time was longer (p = 0.002), there was no significant difference in hospital stay (p = 0.635). No significant differences were observed in ASD development (p = 0.11) or pseudoarthrosis (p = 0.396). The hybrid group maintained better lumbar lordosis and higher adjacent segment DHI. Conclusions: Hybrid dynamic stabilization combined with TLIF provides superior clinical outcomes and fusion rates compared to dynamic stabilization alone, without significantly increasing the risk of ASD. These findings support the use of hybrid constructs as a balanced strategy for treating degenerative lumbar instability. Full article
(This article belongs to the Special Issue Recent Advances in Bone and Joint Imaging—3rd Edition)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 107
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

23 pages, 1410 KiB  
Article
Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem
by Yingli Li, Biao Zhang, Kaipu Wang, Liping Zhang, Zikai Zhang and Yong Wang
Mathematics 2025, 13(15), 2401; https://doi.org/10.3390/math13152401 - 25 Jul 2025
Viewed by 89
Abstract
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between [...] Read more.
This study presents a graph knowledge-enhanced iterated greedy algorithm that incorporates dual directional decoding strategies, disjunctive graphs, neighborhood structures, and a rapid evaluation method to demonstrate its superior performance for the hybrid flowshop scheduling problem (HFSP). The proposed algorithm addresses the trade-off between the finite solution space corresponding to solution representation and the search space for the optimal solution, as well as constructs a decision mechanism to determine which search operator should be used in different search stages to minimize the occurrence of futile searching and the low computational efficiency caused by individuals conducting unordered neighborhood searches. The algorithm employs dual decoding with a novel disturbance operation to generate initial solutions and expand the search space. The derivation of the critical path and the design of neighborhood structures based on it provide a clear direction for identifying and prioritizing operations that have a significant impact on the objective. The use of a disjunctive graph provides a clear depiction of the detailed changes in the job sequence both before and after the neighborhood searches, providing a comprehensive view of the operational sequence transformations. By integrating the rapid evaluation technique, it becomes feasible to identify promising regions within a constrained timeframe. The numerical evaluation with well-known benchmarks verifies that the performance of the graph knowledge-enhanced algorithm is superior to that of a prior algorithm, and seeks new best solutions for 183 hard instances. Full article
29 pages, 1020 KiB  
Article
Energy Management of Industrial Energy Systems via Rolling Horizon and Hybrid Optimization: A Real-Plant Application in Germany
by Loukas Kyriakidis, Rushit Kansara and Maria Isabel Roldán Serrano
Energies 2025, 18(15), 3977; https://doi.org/10.3390/en18153977 - 25 Jul 2025
Viewed by 176
Abstract
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses [...] Read more.
Industrial energy systems are increasingly required to reduce operating costs and CO2 emissions while integrating variable renewable energy sources. Managing these objectives under uncertainty requires advanced optimization strategies capable of delivering reliable and real-time decisions. To address these challenges, this study focuses on the short-term operational planning of an industrial energy supply system using the rolling horizon approach (RHA). The RHA offers an effective framework to handle uncertainties by repeatedly updating forecasts and re-optimizing over a moving time window, thereby enabling adaptive and responsive energy management. To solve the resulting nonlinear and constrained optimization problem at each RHA iteration, we propose a novel hybrid algorithm that combines Bayesian optimization (BO) with the Interior Point OPTimizer (IPOPT). While global deterministic and stochastic optimization methods are frequently used in practice, they often suffer from high computational costs and slow convergence, particularly when applied to large-scale, nonlinear problems with complex constraints. To overcome these limitations, we employ the BO–IPOPT, integrating the global search capabilities of BO with the efficient local convergence and constraint fulfillment of the IPOPT. Applied to a large-scale real-world case study of a food and cosmetic industry in Germany, the proposed BO–IPOPT method outperformed state-of-the-art solvers in both solution quality and robustness, achieving up to 97.25%-better objective function values at the same CPU time. Additionally, the influence of key parameters, such as forecast uncertainty, optimization horizon length, and computational effort per RHA iteration, was analyzed to assess their impact on system performance and decision quality. Full article
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Viewed by 138
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 160
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 227
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 298
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

21 pages, 2828 KiB  
Article
A Novel Loss-Balancing Modulation Strategy for ANPC Three-Level Inverter for Variable-Speed Pump Storage Applications
by Yali Wang, Liyang Liu, Tao Liu, Yikai Li, Kai Guo and Yiming Ma
Electronics 2025, 14(15), 2944; https://doi.org/10.3390/electronics14152944 - 23 Jul 2025
Viewed by 126
Abstract
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic [...] Read more.
The non-uniform thermal distribution in the active neutral-point clamped (ANPC) topology causes significant thermal gradients during high-power operation, restricting its use in large-capacity power conversion systems like variable-speed pumped storage. This study introduces a novel hybrid fundamental frequency modulation strategy. Through a dynamic allocation mechanism based on a reference signal, this strategy alternates inner and outer power switches at the fundamental frequency, ensuring balanced switching frequency across devices. Consequently, it effectively mitigates the inherent loss imbalance in conventional ANPC topologies. Quantitative analysis using a power device loss model shows that, compared to conventional carrier phase-shift modulation, the proposed method reduces total system losses by 39.98% and improves the loss-balancing index by 18.27% over inner-switch fundamental frequency modulation. A multidimensional validation framework, including an MW-level hardware platform, numerical simulations, and test data, was established. The results confirm the proposed strategy’s effectiveness in improving power device thermal balance. Full article
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 193
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

18 pages, 6751 KiB  
Article
State-Aware Energy Management Strategy for Marine Multi-Stack Hybrid Energy Storage Systems Considering Fuel Cell Health
by Pan Geng and Jingxuan Xu
Energies 2025, 18(15), 3892; https://doi.org/10.3390/en18153892 - 22 Jul 2025
Viewed by 142
Abstract
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power [...] Read more.
To address the limitations of conventional single-stack fuel cell hybrid systems using equivalent hydrogen consumption strategies, this study proposes a multi-stack energy management strategy incorporating fuel cell health degradation. Leveraging a fuel cell efficiency decay model and lithium-ion battery cycle life assessment, power distribution is reformulated as an equivalent hydrogen consumption optimization problem with stack degradation constraints. A hybrid Genetic Algorithm–Particle Swarm Optimization (GA-PSO) approach achieves global optimization. The experimental results demonstrate that compared with the Frequency Decoupling (FD) method, the GA-PSO strategy reduces hydrogen consumption by 7.03 g and operational costs by 4.78%; compared with the traditional Particle Swarm Optimization (PSO) algorithm, it reduces hydrogen consumption by 3.61 g per operational cycle and decreases operational costs by 2.66%. This strategy ensures stable operation of the marine power system while providing an economically viable solution for hybrid-powered vessels. Full article
Show Figures

Figure 1

17 pages, 2635 KiB  
Article
Effects of Vibration Direction, Feature Selection, and the SVM Kernel on Unbalance Fault Classification
by Mine Ateş and Barış Erkuş
Machines 2025, 13(8), 634; https://doi.org/10.3390/machines13080634 - 22 Jul 2025
Viewed by 173
Abstract
In this study, the combined influence of vibration direction, feature selection strategy, and the support vector machine (SVM) kernel on the classification accuracy of unbalance faults was investigated. Experiments were carried out on a Jeffcott rotor test rig at a constant speed and [...] Read more.
In this study, the combined influence of vibration direction, feature selection strategy, and the support vector machine (SVM) kernel on the classification accuracy of unbalance faults was investigated. Experiments were carried out on a Jeffcott rotor test rig at a constant speed and under three operating conditions. The overlapping sliding window method was used for raw sample expansion. Features extracted from time domain signals and from the order and power spectra obtained in the frequency domain were ranked using the Kruskal–Wallis algorithm. Based on the feature-ranking results, the three most discriminative features for each domain–axis combination, as well as all nine most discriminative features for each axis in a hybrid manner, were fed into SVM classifiers with different kernels, and their performance was evaluated using ten-fold cross-validation. Classification using vibration signals in the vertical direction had higher accuracy rates than those using signals in the horizontal direction for the feature sets obtained in the same domains. According to the statistical results, feature set selection had a much greater impact on classification accuracy than SVM kernel choice. Power spectrum-based features allowed higher classification accuracies in all SVM algorithms compared to both the time domain features and the order spectrum-based features for detecting unbalance faults. Increasing the number of features or employing hybrid feature selection did not result in a consistent or significant enhancement in overall classification performance. Selecting the right SVM kernel shapes both the model’s flexibility and its fit to the chosen feature space; when this fit is inadequate, classification accuracy may decrease. Consequently, by selecting the appropriate vibration direction, feature set, and SVM kernel, an improvement of up to 67% in unbalance fault classification accuracy was achieved. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

Back to TopTop