Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = hybrid heat treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5280 KiB  
Review
Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
by Seung-Hoon Lee, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Electronics 2025, 14(13), 2682; https://doi.org/10.3390/electronics14132682 - 2 Jul 2025
Viewed by 2785
Abstract
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass [...] Read more.
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass Reflow Molded Underfill (MR MUF) underfills lower but do not eliminate the internal thermal resistance that rises sharply beyond 12layer stacks. We then synthesize recent hybrid bonding studies, showing that an optimized Cu pad density, interface characteristic, and mechanical treatments can cut junction-to-junction thermal resistance by between 22.8% and 47%, raise vertical thermal conductivity by up to three times, and shrink the stack height by more than 15%. A meta-analysis identifies design thresholds such as at least 20% Cu coverage that balances heat flow, interfacial stress, and reliability. The review next traces the chain from Coefficient of Thermal Expansion (CTE) mismatch to Cu protrusion, delamination, and warpage and classifies mitigation strategies into (i) material selection including SiCN dielectrics, nano twinned Cu, and polymer composites, (ii) process technologies such as sub-200 °C plasma-activated bonding and Chemical Mechanical Polishing (CMP) anneal co-optimization, and (iii) the structural design, including staggered stack and filleted corners. Integrating these levers suppresses stress hotspots and extends fatigue life in more than 16layer stacks. Finally, we outline a research roadmap combining a multiscale simulation with high layer prototyping to co-optimize thermal, mechanical, and electrical metrics for next-generation 20-layer HBM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

15 pages, 4414 KiB  
Article
A New Sustainable Approach to Enhancing the Subtractive Process in the Additive–Subtractive Hybrid Manufacturing of AISI H13 Dry Machining
by Hiva Hedayati and Maryam Aramesh
Lubricants 2025, 13(7), 278; https://doi.org/10.3390/lubricants13070278 - 21 Jun 2025
Viewed by 735
Abstract
In additive–subtractive hybrid manufacturing (ASHM), machining and additive processes are combined in a single operation to merge the benefits of both. This method faces challenges, especially during the machining steps. Parts made through additive manufacturing often have low machinability due to factors like [...] Read more.
In additive–subtractive hybrid manufacturing (ASHM), machining and additive processes are combined in a single operation to merge the benefits of both. This method faces challenges, especially during the machining steps. Parts made through additive manufacturing often have low machinability due to factors like residual stresses and fine, hard microstructures. In ASHM, intermediate heat treatments are not possible, leading to the increased hardness of the printed material. Cutting fluids, typically used to reduce temperature and friction, can contaminate the build environment and impair layer adhesion; therefore, they are not recommended in ASHM. This study investigates soft metallic lubricant coatings in ASHM as substitutes for conventional fluid lubricants during dry machining. The coatings form a lubricating layer between the tool and workpiece, providing an alternative to cutting fluids. This research evaluates their effectiveness in improving the surface integrity of additively manufactured parts and supporting dry machining. The results of our research show a 65% reduction in force, a 50% reduction in tool wear, and a reduction in microstructural changes during machining while maintaining dry machining. Full article
(This article belongs to the Special Issue Coatings and Lubrication in Extreme Environments)
Show Figures

Figure 1

33 pages, 3792 KiB  
Article
Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses
by Jia Liu, Zixuan Zhu, Leran Wang, Qiang Yuan, Honghai Zhu, Xiaoxiao Sheng, Kejie Zhang, Bingbing Liang, Huizhen Jin, Shumin Wang, Wenjun Weng, Hui Wang and Ning Sui
Biology 2025, 14(6), 633; https://doi.org/10.3390/biology14060633 - 29 May 2025
Viewed by 724
Abstract
Fritillaria thunbergii Miq., a medicinal plant rich in steroidal alkaloids, produces bulbs that clear heat, resolve phlegm, and detoxify. However, excessive yield-oriented cultivation has reduced the number of F. thunbergii plants that meet commercial standards. This study explored the effects of potassium application [...] Read more.
Fritillaria thunbergii Miq., a medicinal plant rich in steroidal alkaloids, produces bulbs that clear heat, resolve phlegm, and detoxify. However, excessive yield-oriented cultivation has reduced the number of F. thunbergii plants that meet commercial standards. This study explored the effects of potassium application and shading on the bulb biomass and medicinal substance content of F. thunbergii. Shading increased the active ingredient content in bulbs by approximately 20.71% but reduced biomass by approximately 17.24%. Fertilization with different potassium concentrations under shading (K1S–K3S) alleviated shading-induced biomass reduction and increased active ingredient accumulation, with the K2S and K3S groups yielding significantly better results than the K1S group. Pharmacological experiments showed that the K2S group exerted the best antitussive, expectorant, and anti-inflammatory effects. Metabolome analysis showed that compared with those in the controls, peiminine, peimine, imperialine, solasodine, and cyclopamine were the most abundant steroidal alkaloids under K2S treatment. Transcriptome analysis identified key genes and biosynthetic pathways for major steroidal alkaloids, namely, farnesyl pyrophosphate synthase (FtFPS) involved in steroidal alkaloid biosynthesis. Transcription factor analysis revealed that nine transcription factors predominantly expressed under the K2S treatment might regulate steroidal alkaloid biosynthesis. Furthermore, FtFPS was identified as a hub gene in the co-expression network and was verified to catalyze the biosynthesis of farnesyl pyrophosphate. The interaction between FtFPS and FtAP2/ERF was verified through yeast two-hybrid experiments. These findings offer new insights into the steroidal alkaloid biosynthesis mechanism triggered in F. thunbergii by potassium application and shading, supporting ecological strategies to enhance steroidal alkaloid levels in this species. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

17 pages, 3653 KiB  
Article
Genome-Wide Identification and Characterization of the mTERF Gene Family in Spinach and the Role of SomTERF5 in Response to Heat Stress
by Ziyue Sun, Li Li, Yaqi Liu, Yanshuang Liu, Gaojian Li, Yueyue Li, Qingbo Yu, Meihong Sun and Xiaofeng Xu
Plants 2025, 14(11), 1570; https://doi.org/10.3390/plants14111570 - 22 May 2025
Viewed by 486
Abstract
Spinach (Spinacia oleracea L.), a globally consumed, nutrient-dense vegetable, contains diverse vitamins and minerals. However, elevated temperatures can constrain yield by interrupting leaf development and photosynthetic efficiency. The mitochondrial transcription termination factor (mTERF) family, which regulates organellar gene expression, plays crucial roles [...] Read more.
Spinach (Spinacia oleracea L.), a globally consumed, nutrient-dense vegetable, contains diverse vitamins and minerals. However, elevated temperatures can constrain yield by interrupting leaf development and photosynthetic efficiency. The mitochondrial transcription termination factor (mTERF) family, which regulates organellar gene expression, plays crucial roles in plant growth and photosynthetic regulation. Thus, characterization of the spinach mTERF (SomTERF) family is critical for elucidating thermotolerance mechanisms in this crop. In this study, we systematically identified 31 SomTERF genes from the spinach genome, which are distributed across five chromosomes and nine unassembled genomic scaffolds. Subcellular localization predictions indicated that these proteins predominantly target chloroplasts and mitochondria. Conserved domain analyses confirmed that all SomTERF proteins possess canonical mTERF domains and ten conserved motifs. Phylogenetic clustering segregated these proteins into nine distinct subgroups (I–IX), with significant divergence observed in gene copy numbers among subgroups. Cis-element screening identified an abundance of heat-, cold-, and hormone-responsive motifs within SomTERF promoter regions. Notably, seven members (including SomTERF5) exhibited pronounced enrichment of heat shock elements (HSEs). Organ-specific expression profiling revealed preferential leaf expression of these seven genes. Comparative RT-qPCR in heat-sensitive (Sp73) and heat-tolerant (Sp75) cultivars under thermal stress demonstrated genotype-dependent expression dynamics. Functional validation of SomTERF5 was achieved through cloning, and transgenic Arabidopsis overexpressing SomTERF5 showed significantly enhanced thermotolerance, as evidenced by improved survival rates following heat treatment. Yeast two-hybrid (Y2H) assays further revealed physical interaction between SomTERF5 and SopTAC2. This study provides a comprehensive foundation for understanding mTERF-mediated developmental regulation and advanced molecular breeding strategies for developing heat-resilient spinach varieties. Full article
(This article belongs to the Special Issue Growth, Development, and Stress Response of Horticulture Plants)
Show Figures

Figure 1

15 pages, 1857 KiB  
Article
Prediction of Surface Roughness in Milling Additively Manufactured High-Strength Maraging Steel Using Broad Learning System
by Cuiling Zhao, Wenwen Tian, Qi Yan and Yuchao Bai
Coatings 2025, 15(5), 566; https://doi.org/10.3390/coatings15050566 - 9 May 2025
Cited by 1 | Viewed by 411
Abstract
Additive manufacturing (AM) provides a promising method to fabricate advanced functional parts with different mechanical and material performances from their traditional counterparts. However, the poor surface quality makes the subsequent post-processing necessary for precision application. Hybrid manufacturing combining additive and subtractive manufacturing processes [...] Read more.
Additive manufacturing (AM) provides a promising method to fabricate advanced functional parts with different mechanical and material performances from their traditional counterparts. However, the poor surface quality makes the subsequent post-processing necessary for precision application. Hybrid manufacturing combining additive and subtractive manufacturing processes is an effective method to improve the surface quality of additive manufacturing (AMed) metal parts rapidly by using a subtractive process, in which surface roughness is an important technical indicator. Therefore, accurate surface roughness prediction is crucial for process and quality control in the subtractive machining of additively manufactured parts. In this study, a prediction method utilizing a broad learning system (BLS) is developed to predict the surface roughness of machined AMed maraging steel parts considering aging heat treatment. First, feature extraction was performed on the force signal during the cutting process in the time domain, frequency domain, and time–frequency domain. Then, the maximum information coefficient was used to select important features from high to low feature by feature. Furthermore, the important features and cutting parameters were fused as the input of BLS. Finally, the corresponding prediction results were compared with those based only on cutting parameters. The results show that the prediction accuracy of machined surface roughness is higher when fusing force signal features and cutting parameters. The prediction errors (mean absolute percentage error) were reduced by 67.28% and 16.39% to 0.53% and 0.51%, respectively, for the AMed maraging steels with and without heat treatment. Full article
(This article belongs to the Special Issue Recent Development in Post-processing for Additive Manufacturing)
Show Figures

Figure 1

13 pages, 4801 KiB  
Article
Annealing Time Effect on the Microstructure, Phase Evolution, and Magnetic Properties of Self-Foaming AlCuFe Alloy
by Rodolfo López, José Manuel Hernández, Carlos Damián, Ismeli Alfonso Lopez, Gonzalo Gonzalez and Ignacio Alejandro Figueroa
Inorganics 2025, 13(5), 149; https://doi.org/10.3390/inorganics13050149 - 6 May 2025
Viewed by 490
Abstract
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing [...] Read more.
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing time on the resulting microstructure and physical properties remains insufficiently explored. In the present study, the effects of annealing time on the microstructure, phase evolution, and magnetic properties of self-foaming Al58Cu27Fe15 alloys are investigated. Metallic foams were synthesized using the self-foaming method, heat-treating the samples at 850 °C for 6, 9, 15, and 24 h. X-ray diffraction (XRD), differential thermal analysis (DTA), and scanning electron microscopy (SEM) reveal that prolonged annealing increases porosity, reaching 64% and 61% after 15 and 24 h, respectively. The porosity formation mechanism was attributed to a peritectic reaction involving the liquid metastable τ phase and the solid λ and β phases. Magnetic measurements indicated complex behavior consistent with the Curie–Weiss law, influenced by phase composition and interactions between Coulomb forces, Hund’s rule exchange, and Fe 3d–Al s, p orbital hybridization. Full article
Show Figures

Graphical abstract

18 pages, 1064 KiB  
Article
Post-Curing Effects on the Tensile Properties of Hybrid Fiber-Reinforced Polymers: Experimental and Numerical Insights
by Mohammed Zaini, Oumayma Hamlaoui, Jalal Chafiq, Mohamed Ait El Fqih, Mohamed Idiri, Said Aqil, Mohamed Karim Hajji, Alperen Bal, Hakan Tozan, Marta Harnicárová and Jan Valicek
Polymers 2025, 17(9), 1261; https://doi.org/10.3390/polym17091261 - 6 May 2025
Viewed by 824
Abstract
This study investigates the effects of post-curing temperatures on the tensile properties of hybrid basalt-jute-glass-carbon fiber-reinforced polymers (FRPs). Composite specimens were post-cured at 60 °C and 100 °C for 60 min, and their tensile behavior was assessed using a servo-hydraulic testing machine. Numerical [...] Read more.
This study investigates the effects of post-curing temperatures on the tensile properties of hybrid basalt-jute-glass-carbon fiber-reinforced polymers (FRPs). Composite specimens were post-cured at 60 °C and 100 °C for 60 min, and their tensile behavior was assessed using a servo-hydraulic testing machine. Numerical simulations using the Abaqus software V6.14 were also conducted to compare experimental and computational results. The findings indicate that post-curing heat treatment enhances ductility due to increased polymer cross-linking, but excessive heat treatment at 100 °C negatively impacts elongation at fracture. The results revealed that specimens post-cured at 60 °C exhibited the optimal balance between strength and ductility, with increased elongation and moderate tensile strength. However, at 100 °C, while tensile strength improved in some cases, a significant decrease in elasticity and an increased risk of brittleness were observed, suggesting that extreme heat treatment may degrade polymer integrity. Natural fiber composites, particularly jute-based samples, outperformed synthetic composites in terms of elongation and overall mechanical stability. The numerical simulations provided further insights but showed discrepancies with experimental results, mainly due to fiber property variations and fabric waviness, underscoring the challenges of accurately modeling woven composites. The study highlights the importance of controlled post-curing temperatures in optimizing the mechanical performance of FRP composites, with 60 °C identified as the most effective condition for achieving a favorable balance between tensile strength, flexibility, and material durability. These findings offer valuable insights for material scientists and engineers working on the development of high-performance composite materials for structural and industrial applications. Full article
Show Figures

Figure 1

19 pages, 18553 KiB  
Article
Transcriptomic Analysis of Leaves from Two Maize Hybrids Under Heat Stress During the Early Generative Stage
by Siqi Zhang, Lei Sun, Chunhong Ma, Dajin Xu, Bo Jiao, Jiao Wang, Fushuang Dong, Fan Yang, Shuo Zhou, Qing Yang and Pu Zhao
Genes 2025, 16(5), 480; https://doi.org/10.3390/genes16050480 - 24 Apr 2025
Viewed by 648
Abstract
Background: High temperatures during the early generative stage significantly threaten maize productivity, yet the molecular basis of heat tolerance remains unclear. Methods: To elucidate the molecular mechanisms of heat tolerance in maize, two hybrids—ZD309 (heat-tolerant) and XY335 (heat-sensitive)—were selected for integrated transcriptomic and [...] Read more.
Background: High temperatures during the early generative stage significantly threaten maize productivity, yet the molecular basis of heat tolerance remains unclear. Methods: To elucidate the molecular mechanisms of heat tolerance in maize, two hybrids—ZD309 (heat-tolerant) and XY335 (heat-sensitive)—were selected for integrated transcriptomic and physiological analyses. The plants were subjected to high-temperature treatments (3–5 °C above ambient field temperature) for 0, 1, 3, 5, and 7 days, with controls grown under natural conditions. Physiological indices, including Superoxide dismutase (SOD) activity, and proline (PRO), malondialdehyde (MDA), soluble sugar, and protein content, were measured. Results: Transcriptome analysis identified 1595 differentially expressed genes (DEGs) in XY335 (509 up- and 1086 down-regulated) and 1526 DEGs in ZD309 (863 up- and 663 down-regulated), with the most pronounced changes occurring on day 5. Key DEGs in XY335 were enriched in galactose metabolism and carbohydrate catabolism, whereas ZD309 exhibited rapid activation of oxidative stress and cell wall integrity pathways. Mfuzz time-series analysis categorized DEGs from XY335 and ZD309 into six clusters each. Weighted gene co-expression network analysis (WGCNA) identified 10 hub genes involved in ubiquitin thioesterase activity and RNA modification, suggesting protein-level regulatory roles. Conclusions: This study reveals distinct transcriptional dynamics between heat-tolerant and heat-sensitive varieties, providing candidate genes for breeding thermotolerant maize and advancing our understanding of heat stress responses during critical reproductive stages. Full article
Show Figures

Figure 1

20 pages, 5694 KiB  
Article
Mechanical Characterization of Porous Bone-like Scaffolds with Complex Microstructures for Bone Regeneration
by Brandon Coburn and Roozbeh Ross Salary
Bioengineering 2025, 12(4), 416; https://doi.org/10.3390/bioengineering12040416 - 14 Apr 2025
Cited by 2 | Viewed by 881
Abstract
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, [...] Read more.
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, and mechanically robust scaffolds for effective bone regeneration. The objective of this study is to systematically investigate the mechanical performance of SimuBone, a medical-grade biocompatible and biodegradable material, using 10 distinct triply periodic minimal surface (TPMS) designs with various internal structures. To assess the material’s tensile properties, tensile structures based on ASTM D638-14 (Design IV) were fabricated, while standard torsion structures were designed and fabricated to evaluate torsional properties. Additionally, this work examined the compressive properties of the 10 TPMS scaffold designs, parametrically designed in the Rhinoceros 3D environment and subsequently fabricated using fused deposition modeling (FDM) additive manufacturing. The FDM fabrication process utilized a microcapillary nozzle (heated to 240 °C) with a diameter of 400 µm and a print speed of 10 mm/s, depositing material on a heated surface maintained at 60 °C. It was observed that SimuBone had a shear modulus of 714.79 ± 11.97 MPa as well as an average yield strength of 44 ± 1.31 MPa. Scaffolds fabricated with horizontal material deposition exhibited the highest tensile modulus (5404.20 ± 192.30 MPa), making them ideal for load-bearing applications. Also, scaffolds with large voids required thicker walls to prevent collapse. The P.W. Hybrid scaffold design demonstrated high vertical stiffness but moderate horizontal stiffness, indicating anisotropic mechanical behavior. The Neovius scaffold design balanced mechanical stiffness and porosity, making it a promising candidate for bone tissue engineering. Overall, the outcomes of this study pave the way for the design and fabrication of scaffolds with optimal properties for the treatment of bone fractures. Full article
Show Figures

Figure 1

13 pages, 5182 KiB  
Article
High Thermoelectric Performance of Flexible and Free-Standing Composite Films Enabled by 3D Inorganic Ag2Se Conductive Networks Filled with Organic PVDF
by Zishuo Xu, Yuejuan Hu, Yuchen Hu, Xianfeng Xiao and Qin Yao
Polymers 2025, 17(7), 972; https://doi.org/10.3390/polym17070972 - 3 Apr 2025
Viewed by 796
Abstract
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of [...] Read more.
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of PVDF, the small and separated Ag2Se crystalline grains in the composite film grow and interconnect to form a three-dimensional (3D) conductive network to increase the carrier mobility, while the molten PVDF effectively fills the network voids to enhance the flexibility and mechanical strength. As a result, both the electrical conductivity and Seebeck coefficient of the composite films were significantly enhanced after heat treatment. The power factor of the PVDF/Ag2Se composite with a mass ratio of 1:4 at room temperature reached 488.8 μW m−1 K−2, among the best level of Ag2Se- or PVDF-based flexible and free-standing composite films. Bending tests demonstrated the superior flexibility of the hybrid film, with the electrical conductivity decreasing by only 10% after 1000 bending cycles. Additionally, a five-leg thermoelectric device achieved an impressive output power density of 1.75 W m−2 at a temperature difference (∆T) of 30 K. This study proposes an innovative strategy to enhance the thermoelectric performance and free-standing capability of organic-inorganic composite films, while achieving a competitive power factor and advancing the practical application of flexible thermoelectric devices. Full article
(This article belongs to the Special Issue Conductive Polymers for Electronic Devices, Displays and Sensors)
Show Figures

Figure 1

14 pages, 3084 KiB  
Article
Metal Surface Treatments for Enhanced Heat Transfer in Metal–Composite Hybrid Structures
by Dong Hyun Kim, Wonhwa Lee, Jung Bin Park and Jea Uk Lee
Micromachines 2025, 16(4), 399; https://doi.org/10.3390/mi16040399 - 29 Mar 2025
Viewed by 539
Abstract
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming [...] Read more.
Recently, there has been an increasing emphasis on improving the performance of metal components across various industries, such as automotive, aerospace, electronics, medical devices, and military applications. However, the challenges related to efficient heat generation and transfer in equipment and devices are becoming increasingly critical. A solution to these issues involves the adoption of a metal–composite hybrid structure, designed to efficiently manage heat, while substituting conventional metal components with polymer–carbon composites. In this study, nanopores were formed on the metal surface using an anodization process, serving as the basis for creating 3D-printed polymer/metal hybrid constructions. Various surface treatments, including plasma treatment, mixed electrolyte anodization, and etching, were applied to the metal surface to enhance the bonding strength between the 3D-printed polymer and the aluminum alloy. These processes were essential for developing lightweight polymer/metal hybrid structures utilizing a range of 3D-printed polymer filaments, such as polylactic acid, thermoplastic polyurethane, acrylonitrile butadiene styrene, polypropylene, thermoplastic polyester elastomer, and composite materials composed of polymer and carbon. In particular, the hybrid structures employing polymer–carbon composite materials demonstrated excellent heat dissipation characteristics, attributed to the remarkable conductive properties of carbon fibers. These technologies have the potential to effectively address the device heat problem by facilitating the development of lightweight hybrid structures applicable across various fields, including automotive, mobile electronics, medical devices, and military applications. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing of Electronic Devices)
Show Figures

Figure 1

19 pages, 6532 KiB  
Article
Effect of T6 Tempering on the Wear and Corrosive Properties of Graphene and B4C Reinforced Al6061 Matrix Composites
by Bharathiraja Parasuraman and Anthony Xavior Michael
J. Manuf. Mater. Process. 2025, 9(3), 82; https://doi.org/10.3390/jmmp9030082 - 5 Mar 2025
Viewed by 961
Abstract
This research study aims to evaluate the wear and corrosive behaviour of aluminum 6061 alloy hybrid metal matrix composites after reinforcing them with graphene (0.5, 1 wt.%) and boron carbide (6 wt.%) at varying weight percentages. The hybrid composites were processed through ball [...] Read more.
This research study aims to evaluate the wear and corrosive behaviour of aluminum 6061 alloy hybrid metal matrix composites after reinforcing them with graphene (0.5, 1 wt.%) and boron carbide (6 wt.%) at varying weight percentages. The hybrid composites were processed through ball milling and powder compaction, followed by a microwave sintering process, and T6 temper heat treatment was carried out to improve the properties. The properties were evaluated and analyzed using FE-SEM, Pin-on-Disc tribometer, surface roughness, salt spray test, and electrochemical tests. The results were evaluated prior to and subsequent to the T6 heat-treatment conditions. The T6 tempered sample S1 (Al6061-0.5% Gr-6% B4C) exhibits a wear rate of 0.00107 mm3/Nm at 10 N and 0.00127 mm3/Nm at 20 N for 0.5 m/s sliding velocity. When the sliding velocity is 1 m/s, the wear rate is 0.00137 mm3/Nm at 10 N and 0.00187 mm3/Nm at 20 N load conditions. From the Tafel polarization results, the as-fabricated (F) condition demonstrates an Ecorr of −0.789 and an Icorr of 3.592 µA/cm2 and a corrosion rate of 0.039 mm/year. Transitioning to the T6 condition further decreases Icorr to 2.514 µA/cm2, Ecorr value of −0.814, and the corrosion rate to 0.027 mm/year. The results show that an increase in the addition of graphene wt.% from 0.5 to 1 to the Al 6061 alloy matrix deteriorated the wear and corrosive properties of the hybrid matrix composites. Full article
Show Figures

Figure 1

17 pages, 7106 KiB  
Article
Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment
by Faraz Deirmina, Ville-Pekka Matilainen and Simon Lövquist
J. Manuf. Mater. Process. 2025, 9(2), 64; https://doi.org/10.3390/jmmp9020064 - 18 Feb 2025
Viewed by 742
Abstract
The hybridization of additive manufacturing (AM) with conventional manufacturing processes in tooling applications allows the customization of the tool. Examples include weight reduction, improving the vibration-dampening properties, or directing the coolant to the critical zones through intricate conformal cooling channels aimed at extending [...] Read more.
The hybridization of additive manufacturing (AM) with conventional manufacturing processes in tooling applications allows the customization of the tool. Examples include weight reduction, improving the vibration-dampening properties, or directing the coolant to the critical zones through intricate conformal cooling channels aimed at extending the tool life. In this regard, metallurgical challenges like the need for a post-processing heat treatment in the AM segment to meet the thermal and mechanical properties requirements persist. Heat treatment can destroy the dimensional accuracy of the pre-manufactured heat-treated wrought segment, on which the AM part is built. In the case of dissimilar joints, heat treatment may further impact the interface properties through the ease of diffusional reactions at elevated temperatures or buildup of residual stresses at the interface due to coefficient of thermal expansion (CTE) mismatch. In this communication, we report on the laser powder bed fusion (L-PBF) processing of MAR 60, a weldable carbon-free maraging powder, to manufacture a hybrid tool holder for general turning applications, comprising a wrought segment in 25CrMo4 low-alloy carbon-bearing tool steel. After L-PBF process optimization and manipulation, as-built (AB) MAR 60 steel was characterized with a hardness and tensile strength of ~450 HV (44–45 HRC) and >1400 MPa, respectively, matching those of pre-manufactured wrought 25CrMo4 (i.e., 42–45 HRC and 1400 MPa). The interface was defect-free with strong metallurgical bonding, showing slight microstructural and hardness variations, with a thickness of less than 400 µm. The matching strength and high Charpy V-notch impact energy (i.e., >40 J) of AB MAR 60 eliminate the necessity of any post-manufacturing heat treatment in the hybrid tool. Full article
(This article belongs to the Special Issue Advances in Dissimilar Metal Joining and Welding)
Show Figures

Figure 1

16 pages, 4072 KiB  
Article
Optimization of Laser-Induced Hybrid Hardening Process Based on Response Surface Methodology and WOA-BP Neural Network
by Qunli Zhang, Jianan Ling, Zhijun Chen, Guolong Wu, Zexin Yu, Yangfan Wang, Jun Zhou and Jianhua Yao
Appl. Sci. 2025, 15(4), 1975; https://doi.org/10.3390/app15041975 - 13 Feb 2025
Cited by 2 | Viewed by 831
Abstract
The laser-induced hybrid hardening process integrates laser quenching and electromagnetic induction heating to overcome traditional heat treatment limitations, enhancing the depth and properties of hardened layers for applications like wind turbine bearings. This study uses Box–Behnken design (BBD) experiments to analyze key process [...] Read more.
The laser-induced hybrid hardening process integrates laser quenching and electromagnetic induction heating to overcome traditional heat treatment limitations, enhancing the depth and properties of hardened layers for applications like wind turbine bearings. This study uses Box–Behnken design (BBD) experiments to analyze key process parameters and develops response surface methodology (RSM) and whale-optimization-algorithm-optimized back-propagation neural network (WOA-BPNN) models for prediction and optimization. The WOA-BPNN model outperforms the RSM model, achieving superior predictive accuracy with R2 values exceeding 0.995 for both depth and hardness, with a root mean square error (RMSE) for depth of 0.099 mm and of 1.734 HV0.3 for hardness, and with mean absolute percentage error (MAPE) of 0.697% and 0.7867%, respectively. The WOA-BPNN model provides an effective and reliable framework for optimizing laser-induced hybrid hardening, improving production efficiency and extending component life for industrial applications. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Graphical abstract

18 pages, 40226 KiB  
Article
The Effect of Post-Deposition Heat Treatment on the Microstructure, Texture, and Mechanical Properties of Inconel 718 Produced by Hybrid Wire-Arc Additive Manufacturing with Inter-Pass Forging
by Dmitrii Panov, Gleb Permyakov, Stanislav Naumov, Vladimir Mirontsov, Egor Kudryavtsev, Liying Sun, Alexander Aksenov, Nikita Stepanov, Dmitriy Trushnikov and Gennady Salishchev
Metals 2025, 15(1), 78; https://doi.org/10.3390/met15010078 - 17 Jan 2025
Cited by 2 | Viewed by 1610
Abstract
The microstructure, texture, and mechanical properties of Inconel 718 fabricated via hybrid wire-arc additive manufacturing (WAAM) with inter-pass forging, and the subsequent modified post-deposition heat treatment (PDHT), were investigated. The modified PDHT included homogenization at 1185 °C and double ageing at 720 °C, [...] Read more.
The microstructure, texture, and mechanical properties of Inconel 718 fabricated via hybrid wire-arc additive manufacturing (WAAM) with inter-pass forging, and the subsequent modified post-deposition heat treatment (PDHT), were investigated. The modified PDHT included homogenization at 1185 °C and double ageing at 720 °C, with furnace-cooling to 620 °C; this process was first used for Inconel 718 obtained via WAAM and inter-pass forging. In the as-printed material, two characteristic zones were distinguished, as follows: (i) columnar grains with a preferable <100> orientation and (ii) fine grains with a random crystallographic orientation. The development of static recrystallization induced via inter-pass forging and further heating during the deposition of the next (upper) layer provoked the formation of the fine-grained zone. In the as-printed material, particles of (Nb,Ti)C and TiN, and precipitates of a Nb-rich Laves phase that caused premature cracking and failure during mechanical testing, were detected. In the PDHT material, two zones were found, as follows: (i) a zone with coarse uniaxial grains and (ii) a zone with a gradient grain size distribution. PDHT resulted in the precipitation of γ″ nanoparticles in the γ-Ni matrix and the dissolution of the brittle Laves phase. Therefore, significant hardening and strengthening, as well as increases in ductility and impact toughness, occurred. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Graphical abstract

Back to TopTop