Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Layout
2.2. Measurement of F. thunbergii Bulb Quality Indices
2.3. Pharmacology of F. thunbergii Bulb
2.3.1. Preparation of Extraction Solution
2.3.2. Ammonia-Induced Cough Mouse Model
2.3.3. Tracheal Phenol Red Sputum Excretion Experiment
2.3.4. Xylene-Induced Ear Swelling Experiment
2.4. Metabolome Analysis by Using UHPLC-Q Exactive HF-X
2.5. RNA Isolation and Transcriptomic Analysis
2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.7. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction Analysis (qRT-PCR) Analysis
2.8. Localization and Yeast Two-Hybrid Assay
2.9. Enzymatic Activity of FtFPS
2.10. Statistical Analysis
3. Results
3.1. Effects of Shading, Potassium Application, and Their Coupling on the Content and Accumulation of Active Ingredients in F. thunbergii Bulbs
3.2. Effects of Shading, Potassium Application, and Their Coupling on the Pharmacology of Active Ingredients in F. thunbergii Bulbs
3.3. Metabolomic Profiles in Response to Shading, K Application, and Their Coupling Treatments
3.4. De Novo Assembly and Functional Annotation of F. thunbergii Bulb Under Shading, Potassium Application, and Their Coupling
3.5. Steroidal Alkaloid Biosynthesis in F. thunbergii Bulb Rapidly Reprogrammed by Shading, Potassium Application, and Their Coupling
3.6. Identification of TFs Potentially Involved in the Biosynthesis of Steroidal Alkaloids in F. thunbergii Bulb
3.7. WGCNA of F. thunbergii Bulb in Response to Shading, Potassium Application, and Their Coupling
3.8. Location and Functional Verification of FtFPS Protein
4. Discussion
4.1. Synergistic Application of Shading and Potassium Exerts Dual Regulatory Effects on Both the Yield Stability and Quality of F. thunbergii Bulbs
4.2. Untargeted Metabolomics Reveals Steroidal Alkaloid Dynamics in F. thunbergii Bulbs Under Different Treatments
4.3. Transcriptome-Based Analysis of the Steroidal Alkaloid Biosynthesis Pathway in F. thunbergii Bulbs
4.4. Co-Expression Module–Transcriptome Association Analysis and Identification of Rate-Limiting Nodes in Steroidal Alkaloid Biosynthesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
HMGR | 3-hydroxy-3-methylglutaryl coenzyme A reductase |
MK | mevalonate kinase |
FPS | farnesyl pyrophosphate synthase |
DXR | 1-deoxy-D-xylulose-5-phosphate reductoisomerase |
MCS | 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase |
AOP2 | antioxidant protein 2 |
DMAPP | dimethylallyl diphosphate |
IPP | isopentenyl diphosphate |
MVD | mevalonate diphosphate decarboxylase |
AACT | acetyl-CoA acetyltransferase |
DOXP | 1-deoxy-D-xylulose-5-phosphate |
G3P | glyceraldehyde-3-phosphate |
HMGS | 3-hydroxy-3-methylglutaryl-CoA synthase |
PMK | phosphomevalonate kinase |
HDS | 1-hydroxy-2-methyl-2-butenyl-4-diphosphate synthase |
MCT | 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase |
CMK | 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase |
FPP | farnesyl pyrophosphate |
SQS | squalene synthase |
SQE | squalene epoxidase |
SSR2 | sterol side chain reductase2 |
3βHSD | 3-beta-hydroxysteroid-dehydrogenase |
CPI | cyclopropyl sterol isomerase |
CYP734A6 | cytochrome P450 734A6 |
CYP94N2 | cytochrome P450 94N2 |
GAME17 | gamma-solanine acetyltransferase 17 |
MVA | Mevalonic acid |
MEP | Methylerythritol phosphate |
AHS | Nin Jiom Pei Pa Koa |
KNHRCPS | Ambroxol Hydrochloride |
DSP | Dexamethasone Sodium Phosphate Injection |
PBS | Phosphate-Buffered Saline |
GC-MS | Gas Chromatography–Mass Spectrometry |
PLS-DA | Partial Least Squares-Discriminant Analysis |
References
- Woodcock, H.D.; Stearn, W.T. Lilies of the World, Their Cultivation & Classification; Country Life; Scribner: London, UK; New York, NY, USA, 1950; p. 431. [Google Scholar]
- Onder, A. Recent progress on Prangos (Apiaceae) species used in traditional herbal medicine. J. Ethnopharmacol. 2024, 334, 118480. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Partap, M.; Ashrita; Rana, D.; Kumar, P.; Warghat, A.R. Metabolite and expression profiling of steroidal alkaloids in wild tissues compared to bulb derived in vitro cultures of Fritillaria roylei—High value critically endangered himalayan medicinal herb. Ind. Crops Prod. 2020, 145, 111945. [Google Scholar] [CrossRef]
- Lin, G.; Li, P.; Li, S.L.; Chan, S.W. Chromatographic analysis of Fritillaria isosteroidal alkaloids, the active ingredients of beimu, the antitussive traditional Chinese medicinal herb. J. Chromatogr. A 2001, 935, 321–338. [Google Scholar] [CrossRef]
- Kawano, S.; Masuda, J.; Hayshi, K. Life-history monographs of Japanese plants. 10: Fritillaria koidzumiana Ohwi (Liliaceae). Plant Species Biol. 2008, 23, 51–57. [Google Scholar] [CrossRef]
- Tomita, M.; Shiga, N.; Ikeda, T. Seasonal occurrence and vertical distribution of appendicularians in Toyama Bay, southern Japan Sea. J. Plankton Res. 2003, 25, 579–589. [Google Scholar] [CrossRef]
- Bhat, B.A.; Mir, W.R.; Sheikh, B.A.; Alkanani, M.; Mir, M.A. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins. Sci. Rep. 2022, 12, 7296. [Google Scholar] [CrossRef]
- Wu, F.; Tian, M.; Sun, Y.; Wu, C.; Liu, X. Efficacy, chemical composition, and pharmacological effects of herbal drugs derived from Fritillaria cirrhosa D. Don and Fritillaria thunbergii Miq. Front. Pharmacol. 2022, 13, 985935. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, H.; Ren, Q.; Hu, H.; Yang, T.; Li, X. Natural drug sources for respiratory diseases from Fritillaria: Chemical and biological analyses. Chin. Med. 2021, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Su, J.; Wu, D.; Wang, L.; Hu, J.; Sieniawska, E.; Kai, G. Fritillaria thunbergii Miq. (Zhe Beimu): A review on its traditional uses, phytochemical profile and pharmacological properties. Food. Chem. Toxicol. 2021, 153, 112289. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, J.; Zhao, J.; Li, Y.; Liu, M.; Yang, L.; Yang, B.; Zhang, Z. What degree of light deficiency is suitable for saikosaponin accumulation by Bupleurum chinense DC.? Ind. Crops Prod. 2018, 122, 392–401. [Google Scholar] [CrossRef]
- Hou, J.; Li, W.; Zheng, Q.; Wang, W.; Xiao, B.; Xing, D. Effect of low light intensity on growth and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis Fisch. Biochem. Syst. Ecol. 2010, 38, 160–168. [Google Scholar] [CrossRef]
- Zheng, S.; Tian, M.; Liu, J.; Zhao, T.; Zhang, Z. Effects of low-light stress on photosynthetic characteristics of Paris polyphylla var. chinensis in artificial domestication cultivation. Zhong Yao Cai 2014, 37, 1518–1522. Available online: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=25857146&query_hl=1 (accessed on 27 October 2024). [PubMed]
- Cheng, B.; Wang, L.; Liu, R.; Wang, W.; Yu, R.; Zhou, T.; Ahmad, I.; Raza, A.; Jiang, S.; Xu, M.; et al. Shade-Tolerant soybean reduces yield loss by regulating its canopy structure and stem characteristics in the maize-soybean strip intercropping system. Front. Plant Sci. 2022, 13, 848893. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.B.; Hu, J.; Fan, H.Y.; Jiang, B.Y.; Zhang, S.L.; Yu, B.; Li, S.Q.; Zhang, C.C. The effect of different shading treatments on the quality of Fritillaria thunbergii. Chin. J. Mod. Appl. Pharm. 2019, 36, 312–316. [Google Scholar] [CrossRef]
- Cutolo, E.A.; Guardini, Z.; Dall’Osto, L.; Bassi, R. A paler shade of green: Engineering cellular chlorophyll content to enhance photosynthesis in crowded environments. New Phytol. 2023, 239, 1567–1583. [Google Scholar] [CrossRef]
- Frede, K.; Baldermann, S. Accumulation of carotenoids in Brassica rapa ssp. chinensis by a high proportion of blue in the light spectrum. Photochem. Photobiol. Sci. 2022, 21, 1947–1959. [Google Scholar] [CrossRef]
- Medina, F.; Manzano, A.; Herranz, R.; Kiss, J.Z. Red light enhances plant adaptation to spaceflight and mars g-levels. Life 2022, 12, 1484. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Lebot, V.; Champagne, A.; Malapa, R.; Shiley, D. NIR determination of major constituents in tropical root and tuber crop flours. J. Agric. Food. Chem. 2009, 57, 10539–10547. [Google Scholar] [CrossRef]
- Cui, P.Z. Changes of nitrogen, phosphorus and potassium absorption characteristics and alkaloid content in Fritillaria thunbergii at various growth stages. J. Chin. Med. Mater. 1990, 13, 3–5. (In Chinese) [Google Scholar] [CrossRef]
- Salama, D.M.; Khater, M.A.; Abd El-Aziz, M.E. The influence of potassium nanoparticles as a foliar fertilizer on onion growth, production, chemical content, and DNA fingerprint. Heliyon 2024, 10, e31635. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Abdollahi-Bastam, S.; Aghaee, A.; Ghorbanpour, M. Foliar-applied silicate potassium modulates growth, phytochemical, and physiological traits in Cichorium intybus L. under salinity stress. BMC Plant Biol. 2024, 24, 288. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, H.; Gao, X.; Zhang, H. Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep. 2010, 29, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.L.; de Guzman, C.C.; Cadiz, N.M.; Hoang, T.T.H.; Tran, D.H.; Rehman, H. Salicylic acid and calcium signaling induce physiological and phytochemical changes to improve salinity tolerance in red amaranth (Amaranthus tricolor L.). J. Soil Sci. Plant Nutr. 2020, 20, 1759–1769. [Google Scholar] [CrossRef]
- Sui, N.; Wang, L.; Sun, J.; Wu, J.; Chen, M.; Zhang, S.; Yuan, Q.; Kai, G. Estimating Fritillaria thunbergii Miq. yield, quality, and potassium use efficiency in response to potassium application rate. Ind. Crops Prod. 2021, 164, 113409. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Kai, G.; Sui, N. Screening of the optimal potassium fertilization rate for maximizing bulb yield and potassium nutrient evaluation in Fritillaria thunbergii Miq. Clin. Complement. Med. Pharmacol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Zhang, Y.; Liu, C.Y.; Zhang, B.L.; Liu, J.; Wang, C.X. Cloning and Functional characterization of Farnesyl Diphosphate Synthase gene in terpenoid biosynthesis of chinese medicinal herbs. Chin. J. Exp. Tradit. Med. Formulae 2025, 31, 175–183. [Google Scholar] [CrossRef]
- Zou, L.; Sun, T.; Li, D.; Tan, Y.; Zhang, G.; Wang, F.; Zhang, J. De novo transcriptome analysis of inonotus baumii by RNA-seq. J. Biosci. Bioeng. 2016, 121, 380–384. [Google Scholar] [CrossRef]
- Wright, L.P.; Rohwer, J.M.; Ghirardo, A.; Hammerbacher, A.; Ortiz-Alcaide, M.; Raguschke, B.; Schnitzler, J.; Gershenzon, J.; Phillips, M.A. Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in Arabidopsis. Plant Physiol. 2014, 165, 1488–1504. [Google Scholar] [CrossRef]
- Bian, X.; Wu, T.; Qiang, R.; Deng, Z.; Rehman, F.; Han, Q.; Xu, D.; Yuan, Y.; Wang, X.; An, Z.; et al. Genome-Wide identification and expression profile of Farnesyl Pyrophosphate Synthase (FPS) gene family in Euphorbia Hirta L. Int. J. Mol. Sci. 2025, 26, 798. [Google Scholar] [CrossRef]
- Wei, G.; Chen, Y.; Wang, J.; Feng, L. Molecular cloning and characterization of farnesyl diphosphate synthase from Rosa rugosa Thunb associated with salinity stress. PeerJ 2024, 12, e16929. [Google Scholar] [CrossRef]
- Liu, F.; Liu, S.; Qi, Y.; Liu, Z.; Chen, J.; Wei, L.; Hua, Q. Enhancing trans-nerolidol productivity in yarrowia lipolytica by improving precursor supply and optimizing nerolidol synthase activity. J. Agric. Food. Chem. 2022, 70, 15157–15165. [Google Scholar] [CrossRef] [PubMed]
- Keim, V.; Manzano, D.; Fernández, F.J.; Closa, M.; Andrade, P.; Caudepón, D.; Bortolotti, C.; Vega, M.C.; Arró, M.; Ferrer, A. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds. PLoS ONE 2012, 7, e49109. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Ran, G.; Tan, D. Advances in the biosynthesis and metabolic regulation of terpenoids in Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao 2024, 40, 1661–1693. [Google Scholar] [CrossRef]
- Cheng, X.M.; Li, D.S.; Jiang, Z.; Ye, H.J.; Yan, H.; Qu, C.; Wu, Q.N. Effects of biocontrol agent on yield, quality, and rhizosphere soil environment of F. thunbergii. Zhong Yao Cai 2023, 46, 284–292. [Google Scholar]
- Duan, Y.; Liu, X.; Wu, J.; You, J.; Wang, F.; Guo, X.; Tang, T.; Liao, M.; Guo, J. Transcriptomic and metabolic analyses reveal the potential mechanism of increasing steroidal alkaloids in Fritillaria hupehensis through intercropping with Magnolia officinalis. Front. Plant Sci. 2022, 13, 997868. [Google Scholar] [CrossRef]
- Liu, X.; Tan, J.; Cheng, S.; Chen, Z.; Ye, J.; Zheng, J.; Xu, F.; Zhang, W.; Liao, Y.; Yang, X. Comparative transcriptome analysis provides novel insights into the molecular mechanism of berberine biosynthesis in Coptis chinensis. Sci. Hortic. 2022, 291, 110585. [Google Scholar] [CrossRef]
- Nakano, T.; Suzuki, K.; Fujimura, T.; Shinshi, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006, 140, 411–432. [Google Scholar] [CrossRef] [PubMed]
- Commission, C.P. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. Transrate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016, 26, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kul’Kova, V.V.; Shakirov, R.; D’Yakonov, A.L. Steroid alkaloids of the plant and animal kingdoms. Chem. Nat. Compd. 1999, 35, 107–149. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Qi, Y.; Chu, S.; Ma, Y.; Xu, L.; Lv, S.; Zhang, H.; Yang, D.; Zhu, Y.; et al. Endophytic fungus Cladosporium tenuissimum DF11, an efficient inducer of tanshinone biosynthesis in Salvia miltiorrhiza roots. Phytochemistry 2022, 194, 113021. [Google Scholar] [CrossRef]
- Gao, H.; Xu, D.; Zhang, H.; Qian, J.; Yang, Q. Transcriptomics and metabolomics analyses reveal the differential accumulation of phenylpropanoids between Cinnamomum cassia Presl and Cinnamomum cassia Presl var. macrophyllum Chu. Ind. Crops Prod. 2020, 148, 112282. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, Y.; Zhong, Y.; Wu, Y.; Li, Z.; Xu, L.; Xu, M. Transcriptome analysis and identification of genes related to terpenoid biosynthesis in Cinnamomum camphora. BMC Genom. 2018, 19, 550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Z.; Wang, P.; Qin, C.; He, L.; Kong, L.; Ren, W.; Liu, X.; Ma, W. Genome-wide identification of the NAC transcription factors family and regulation of metabolites under salt stress in Isatis indigotica. Int. J. Biol. Macromol. 2023, 240, 124436. [Google Scholar] [CrossRef]
- Huang, X.; Qiu, X.; Wang, Y.; Abubakar, A.S.; Chen, P.; Chen, J.; Chen, K.; Yu, C.; Wang, X.; Gao, G.; et al. Genome-wide investigation of the NAC transcription factor family in Apocynum venetum revealed their synergistic roles in abiotic stress response and trehalose metabolism. Int. J. Mol. Sci. 2023, 24, 4578. [Google Scholar] [CrossRef]
- Xu, Y.; Ming, T.W.; Gaun, T.K.W.; Wang, S.; Ye, B. A comparative assessment of acute oral toxicity and traditional pharmacological activities between extracts of Fritillaria cirrhosae bulbus and Fritillaria pallidiflora bulbus. J. Ethnopharmacol. 2019, 238, 111853. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Gu, X.; Xiao, P.; Peng, Y. Phytochemical and biological research of Fritillaria medicine resources. Chin. J. Nat. Med. 2013, 11, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Christ, B.; Xu, C.; Xu, M.; Li, F.; Wada, N.; Mitchell, A.J.; Han, X.; Wen, M.; Fujita, M.; Weng, J. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat. Commun. 2019, 10, 3206. [Google Scholar] [CrossRef]
- Kroc, M.; Koczyk, G.; Kamel, K.A.; Czepiel, K.; Fedorowicz-Strońska, O.; Krajewski, P.; Kosińska, J.; Podkowiński, J.; Wilczura, P.; Więcicki, W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci. Rep. 2019, 9, 2231. [Google Scholar] [CrossRef]
- Eshaghi, M.; Shiran, B.; Fallahi, H.; Ravash, R.; Eri, B.B. Identification of genes involved in steroid alkaloid biosynthesis in Fritillaria imperialis via de novo transcriptomics. Genomics 2019, 111, 1360–1372. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.Q. Potassium nutrition and quality formation in medicinal plants: Advances in biosynthesis regulation, active compound accumulation, and stress resistance mechanisms. J. Zhejiang Chin. Med. Univ. 2017, 41, 711–714. [Google Scholar] [CrossRef]
- Yin, Z.; Guo, W.; Xiao, H.; Liang, J.; Hao, X.; Dong, N.; Leng, T.; Wang, Y.; Wang, Q.; Yin, F. Nitrogen, phosphorus, and potassium fertilization to achieve expected yield and improve yield components of mung bean. PLoS ONE 2018, 13, e0206285. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Y.F.; Wng, X.F.; Wu, W.H.; Gao, H.Y.; Chen, D.H.; Si, J.P.; Li, C. Advances in physiological-morphological adaptations and light response mechanisms of plants under shaded environments. J. Zhejiang A&F Univ. 2024, 41, 1313–1322. [Google Scholar]
- Wang, H.Q.; Yuan, L.Q.; Liu, J.Y.; Zhu, S.D.; Wang, Q.L.; Yuan, M.M.; Wang, H.T. Advances in the effects of shade stress on Zea mays L.: Physiological adaptations, yield implications, and molecular mechanisms. J. Henan. Agric. Sci. 2021, 50, 1–8. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Gong, X.; Yang, X.; Zhu, Y.; Cheng, Z. Characterizing the major morphological traits and chemical compositions in the bulbs of widely cultivated Fritillaria species in China. Biochem. Syst. Ecol. 2013, 46, 130–136. [Google Scholar] [CrossRef]
- Alberola-Die, A.; Encinar, J.A.; Cobo, R.; Fernández-Ballester, G.; González-Ros, J.M.; Ivorra, I.; Morales, A. Peimine, an anti-inflammatory compound from Chinese herbal extracts, modulates muscle-type nicotinic receptors. Int. J. Mol. Sci. 2021, 22, 11287. [Google Scholar] [CrossRef]
- Wang, D.; Du, Q.; Li, H.; Wang, S. The isosteroid alkaloid imperialine from bulbs of Fritillaria cirrhosa mitigates pulmonary functional and structural impairment and suppresses inflammatory response in a COPD-like rat model. Mediat. Inflamm. 2016, 2016, 4192483. [Google Scholar] [CrossRef]
- Lin, Q.; Fu, Y.; Li, J.; Qu, M.; Deng, L.; Gong, T.; Zhang, Z. A (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer)-dispersed sustained-release tablet for imperialine to simultaneously prolong the drug release and improve the oral bioavailability. Eur. J. Pharm. Sci. 2015, 79, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Ijaz, S.; Mohammad, I.S.; Muhammad, K.S.; Akhtar, N.; Khan, H.M.S. Aglycone solanidine and solasodine derivatives: A natural approach towards cancer. Biomed. Pharmacother. 2017, 94, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, H.; Zhang, X. Cyclopamine, a naturally occurring alkaloid, and its analogues may find wide applications in cancer therapy. Curr. Top. Med. Chem. 2013, 13, 2208–2215. [Google Scholar] [CrossRef]
- Vavitsas, K.; Fabris, M.; Vickers, C.E. Terpenoid metabolic engineering in photosynthetic microorganisms. Genes 2018, 9, 520. [Google Scholar] [CrossRef]
- Suzuki, M.; Muranaka, T. Molecular genetics of plant sterol backbone synthesis. Lipids 2007, 42, 47–54. [Google Scholar] [CrossRef]
- Arnqvist, L.; Dutta, P.C.; Jonsson, L.; Sitbon, F. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol. 2003, 131, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhao, Y.; Chen, S.; Kennelly, E.J. Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. Nat. Prod. Rep. 2021, 38, 1423–1444. [Google Scholar] [CrossRef]
- Godbole, R.C.; Pable, A.A.; Singh, S.; Barvkar, V.T. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022, 12, 250. [Google Scholar] [CrossRef]
- Lacchini, E.; Goossens, A. Combinatorial control of plant specialized metabolism: Mechanisms, functions, and consequences. Annu. Rev. Cell Dev.Biol. 2020, 36, 291–313. [Google Scholar] [CrossRef]
- Wang, C.; Hao, X.; Wang, Y.; Maoz, I.; Zhou, W.; Zhou, Z.; Kai, G. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Hortic. Res. 2022, 9, uhac099. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiong, Y.; Li, Y.; Ye, S.; Yin, Q.; Gao, S.; Yang, D.; Yang, M.; Palva, E.T.; Deng, X. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera. Int. J. Mol. Sci. 2019, 20, 5006. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gao, F.; Ren, J.; Lu, X.; Ren, G.; Wang, R. A novel AP2/ERF transcription factor CR1 regulates the accumulation of vindoline and serpentine in Catharanthus roseus. Front. Plant Sci. 2017, 8, 2082. [Google Scholar] [CrossRef]
- Sharma, B.; Seth, R.; Thakur, S.; Parmar, R.; Masand, M.; Devi, A.; Singh, G.; Dhyani, P.; Choudhary, S.; Sharma, R.K. Genome-wide transcriptional analysis unveils the molecular basis of organ-specific expression of isosteroidal alkaloids biosynthesis in critically endangered Fritillaria roylei Hook. Phytochemistry 2021, 187, 112772. [Google Scholar] [CrossRef]
- Kumar, P.; Ashrita; Acharya, V.; Warghat, A.R. Comparative transcriptome analysis infers bulb derived in vitro cultures as a promising source for sipeimine biosynthesis in Fritillaria cirrhosa D. Don (Liliaceae, syn. Fritillaria roylei Hook.)—High value Himalayan medicinal herb. Phytochemistry 2021, 183, 112631. [Google Scholar] [CrossRef]
- Li, C.Y.; Leopold, A.L.; Sander, G.W.; Shanks, J.V.; Zhao, L.; Gibson, S.I. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. Front. Plant Sci. 2015, 6, 818. [Google Scholar] [CrossRef]
- Rohani, E.R.; Chiba, M.; Kawaharada, M.; Asano, T.; Oshima, Y.; Mitsuda, N.; Ohme-Takagi, M.; Fukushima, A.; Rai, A.; Saito, K.; et al. An MYB transcription factor regulating specialized metabolisms in Ophiorrhiza pumila. Plant Biotechnol. 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Apuya, N.R.; Park, J.; Zhang, L.; Ahyow, M.; Davidow, P.; Van Fleet, J.; Rarang, J.C.; Hippley, M.; Johnson, T.W.; Yoo, H.; et al. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors. Plant Biotechnol. J. 2008, 6, 160–175. [Google Scholar] [CrossRef]
- Kato, N.; Dubouzet, E.; Kokabu, Y.; Yoshida, S.; Taniguchi, Y.; Dubouzet, J.G.; Yazaki, K.; Sato, F. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol. 2007, 48, 8–18. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, L.; Fang, T.; Xiong, Y.; Ogutu, C.; Yang, D.; Vimolmangkang, S.; Liu, Y.; Han, Y. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Hortic. Res. 2018, 5, 29. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Dang, M.; Li, S.; Chen, S.; Liu, R.; Zhang, Z.; Li, G.; Zhang, M.; Yang, D.; et al. Jasmonate-responsive transcription factors NnWRKY70a and NnWRKY70b positively regulate benzylisoquinoline alkaloid biosynthesis in lotus (Nelumbo nucifera). Front. Plant Sci. 2022, 13, 862915. [Google Scholar] [CrossRef]
- Li, K.; Tang, R.; Wang, C.; Luan, S. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis. Nat. Commun. 2023, 14, 360. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, H.; Zeng, R.; Wang, X.; Huang, L.; Wang, L.; Wang, X.; Zhang, L. Shade effects on peanut yield associate with physiological and expressional regulation on photosynthesis and sucrose metabolism. Int. J. Mol. Sci. 2020, 21, 5284. [Google Scholar] [CrossRef]
- Feng, Y.B.; Li, M.Y.; Wu, Q.L.; Jiang, J.M.; Shen, X.X.; Wang, Z.H. Cloning of farnesyl diphosphate synthase (FPS) gene and Its regulatory role in alkaloid metabolism of Fritillaria thunbergii. Chin. Tradit. Herbal Drugs 2017, 48, 971–978. [Google Scholar]
- Feng, K.; Hou, X.; Xing, G.; Liu, J.; Duan, A.; Xu, Z.; Li, M.; Zhuang, J.; Xiong, A. Advances in AP2/ERF super-family transcription factors in plant. Crit. Rev. Biotechnol. 2020, 40, 750–776. [Google Scholar] [CrossRef]
- Ruan, Q.; Wang, J.; Xiao, C.; Yang, Y.; Luo, E.; Sheng, M.; Zheng, Y.; Zhou, W.; Kai, G.; Hao, X. Differential transcriptome analysis of genes associated with the rhizome growth and sesquiterpene biosynthesis in Atractylodes macrocephala. Ind. Crops Prod. 2021, 173, 114141. [Google Scholar] [CrossRef]
- Yin, J.; Li, Y.; Li, C.; Xiao, J.; Yang, J.; Li, X.; Sun, L.; Wang, S.; Tian, H.; Zhan, Y. Cloning, expression characteristics of a new FPS gene from birch (Betula platyphylla suk.) and functional identification in triterpenoid synthesis. Ind. Crops Prod. 2020, 154, 112591. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, L.; Wang, X.; Han, H.; Chen, D.; Qiu, D.; Yang, Y. Transcriptome-wide analysis of AP2/ERF transcription factors involved in regulating Taxol biosynthesis in Taxus × media. Ind. Crops Prod. 2021, 171, 113972. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, P.; Zheng, Y.; Huang, X.; Liu, J.; Yan, H.; Quan, H.; Tan, R.; Ren, F.; Jiang, H.; et al. Genome-wide identi fication of AP2/ERF gene family in Coptis Chinensis Franch reveals its role in tissue-specific accumulation of benzylisoquinoline alkaloids. BMC Genom. 2024, 25, 972. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhu, Z.; Wang, L.; Yuan, Q.; Zhu, H.; Sheng, X.; Zhang, K.; Liang, B.; Jin, H.; Wang, S.; et al. Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses. Biology 2025, 14, 633. https://doi.org/10.3390/biology14060633
Liu J, Zhu Z, Wang L, Yuan Q, Zhu H, Sheng X, Zhang K, Liang B, Jin H, Wang S, et al. Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses. Biology. 2025; 14(6):633. https://doi.org/10.3390/biology14060633
Chicago/Turabian StyleLiu, Jia, Zixuan Zhu, Leran Wang, Qiang Yuan, Honghai Zhu, Xiaoxiao Sheng, Kejie Zhang, Bingbing Liang, Huizhen Jin, Shumin Wang, and et al. 2025. "Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses" Biology 14, no. 6: 633. https://doi.org/10.3390/biology14060633
APA StyleLiu, J., Zhu, Z., Wang, L., Yuan, Q., Zhu, H., Sheng, X., Zhang, K., Liang, B., Jin, H., Wang, S., Weng, W., Wang, H., & Sui, N. (2025). Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses. Biology, 14(6), 633. https://doi.org/10.3390/biology14060633