Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (914)

Search Parameters:
Keywords = hybrid adaptive control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 (registering DOI) - 24 Jul 2025
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

15 pages, 1306 KiB  
Article
Risk Perception in Complex Systems: A Comparative Analysis of Process Control and Autonomous Vehicle Failures
by He Wen, Zaman Sajid and Rajeevan Arunthavanathan
AI 2025, 6(8), 164; https://doi.org/10.3390/ai6080164 - 22 Jul 2025
Abstract
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and [...] Read more.
Background: As intelligent systems increasingly operate in high-risk environments, understanding how they perceive and respond to hazards is critical for ensuring safety. Methods: In this study, we conduct a comparative analysis of 60 real-world accident reports, 30 from process control systems (PCSs) and 30 from autonomous vehicles (AVs), to examine differences in risk triggers, perception paradigms, and interaction failures between humans and artificial intelligence (AI). Results: Our findings reveal that PCS risks are predominantly internal to the system and detectable through deterministic, rule-based mechanisms, whereas AVs’ risks are externally driven and managed via probabilistic, multi-modal sensor fusion. More importantly, despite these architectural differences, both domains exhibit recurring human–AI interaction failures, including over-reliance on automation, mode confusion, and delayed intervention. In the case of PCSs, these failures are historically tied to human–automation interaction; this article extrapolates these patterns to anticipate potential human–AI interaction challenges as AI adaptation increases. Conclusions: This study highlights the need for a hybrid risk perception framework and improved human-centered design to enhance situational awareness and responsiveness. While AI has not yet been implemented in PCS incident studies, this work interprets human–automation failures in these cases as indicative of potential challenges in human–AI interaction that may arise in future AI-integrated process systems. Implications extend to developing safer intelligent systems across industrial and transportation sectors. Full article
Show Figures

Figure 1

22 pages, 5966 KiB  
Article
Road-Adaptive Precise Path Tracking Based on Reinforcement Learning Method
by Bingheng Han and Jinhong Sun
Sensors 2025, 25(15), 4533; https://doi.org/10.3390/s25154533 - 22 Jul 2025
Viewed by 31
Abstract
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature [...] Read more.
This paper proposes a speed-adaptive autonomous driving path-tracking framework based on the soft actor–critic (SAC) and pure pursuit (PP) methods, named the SACPP controller. The framework first analyzes the obstacles around the vehicle and plans an obstacle-free reference path with the minimum curvature using the hybrid A* algorithm. Next, based on the generated reference path, the current state of the vehicle, and the vehicle motor energy efficiency diagram, the optimal speed is calculated in real time, and the vehicle dynamics preview point at the future moment—specifically, the look-ahead distance—is predicted. This process relies on the learning of the SAC network structure. Finally, PP is used to generate the front wheel angle control value by combining the current speed and the predicted preview point. In the second layer, we carefully designed the evaluation function in the tracking process based on the uncertainties and performance requirements that may occur during vehicle driving. This design ensures that the autonomous vehicle can not only quickly and accurately track the path, but also effectively avoid surrounding obstacles, while keeping the motor running in the high-efficiency range, thereby reducing energy loss. In addition, since the entire framework uses a lightweight network structure and a geometry-based method to generate the front wheel angle, the computational load is significantly reduced, and computing resources are saved. The actual running results on the i7 CPU show that the control cycle of the control framework exceeds 100 Hz. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

23 pages, 740 KiB  
Article
A Multi-Paradigm Ethical Framework for Hybrid Intelligence in Blockchain Technology and Cryptocurrency Systems Governance
by Haris Alibašić
FinTech 2025, 4(3), 34; https://doi.org/10.3390/fintech4030034 - 22 Jul 2025
Viewed by 68
Abstract
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and [...] Read more.
The integration of artificial intelligence and human decision-making within blockchain systems has raised complex ethical considerations, necessitating the development of comprehensive theoretical frameworks. This research develops a multi-paradigm ethical framework addressing the ethical dimensions of hybrid intelligence—the dynamic interplay between human judgment and artificial intelligence—in the governance of blockchain technology and cryptocurrency systems. Drawing upon complexity theory and institutional theory, this study employs a theory synthesis methodology to investigate inherent paradoxes within hybrid intelligence systems, including how transparency creates new opacities in AI decision-making, decentralization enables centralized control, and algorithmic efficiency undermines ethical sensitivity. Through PRISMA-compliant systematic literature analysis of 50 relevant publications and theoretical synthesis, this research demonstrates how blockchain technology fundamentally redefines hybrid intelligence by establishing novel forms of trust, accountability, and collective decision-making. The framework advances three testable propositions regarding emergent intelligence properties, adaptive capacity, and institutional legitimacy while providing practical governance principles and implementation methodologies for blockchain developers, regulators, and participants. This study contributes theoretically by bridging the fields of complex systems and institutional analysis, integrating complex adaptive systems with institutional legitimacy processes through a multi-paradigm integration methodology. It delivers an ethical framework that addresses accountability distribution in Decentralized Autonomous Organizations, quantifies ethical challenges across major platforms, and offers empirically validated guidelines for balancing algorithmic autonomy with human oversight in decentralized systems. Full article
Show Figures

Figure 1

14 pages, 4097 KiB  
Article
Preparation and Performance Evaluation of Graphene Oxide-Based Self-Healing Gel for Lost Circulation Control
by Wenzhe Li, Pingya Luo and Xudong Wang
Polymers 2025, 17(15), 1999; https://doi.org/10.3390/polym17151999 - 22 Jul 2025
Viewed by 104
Abstract
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete [...] Read more.
Lost circulation is a major challenge in oil and gas drilling operations, severely restricting drilling efficiency and compromising operational safety. Conventional bridging and plugging materials rely on precise particle-to-fracture size matching, resulting in low success rates. Self-healing gels penetrate loss zones as discrete particles that progressively swell, accumulate, and self-repair in integrated gel masses to effectively seal fracture networks. Self-healing gels effectively overcome the shortcomings of traditional bridging agents including poor adaptability to fractures, uncontrollable gel formation of conventional downhole crosslinking gels, and the low strength of conventional pre-crosslinked gels. This work employs stearyl methacrylate (SMA) as a hydrophobic monomer, acrylamide (AM) and acrylic acid (AA) as hydrophilic monomers, and graphene oxide (GO) as an inorganic dopant to develop a GO-based self-healing organic–inorganic hybrid plugging material (SG gel). The results demonstrate that the incorporation of GO significantly enhances the material’s mechanical and rheological properties, with the SG-1.5 gel exhibiting a rheological strength of 3750 Pa and a tensile fracture stress of 27.1 kPa. GO enhances the crosslinking density of the gel network through physical crosslinking interactions, thereby improving thermal stability and reducing the swelling ratio of the gel. Under conditions of 120 °C and 6 MPa, SG-1.5 gel demonstrated a fluid loss volume of only 34.6 mL in 60–80-mesh sand bed tests. This gel achieves self-healing within fractures through dynamic hydrophobic associations and GO-enabled physical crosslinking interactions, forming a compact plugging layer. It provides an efficient solution for lost circulation control in drilling fluids. Full article
Show Figures

Figure 1

39 pages, 5325 KiB  
Review
Mechanical Ventilation Strategies in Buildings: A Comprehensive Review of Climate Management, Indoor Air Quality, and Energy Efficiency
by Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Najah M. L. Al Maimuri, Arman Ameen, Ephraim Bonah Agyekum, Atef Chibani and Mohamed Kezzar
Buildings 2025, 15(14), 2579; https://doi.org/10.3390/buildings15142579 - 21 Jul 2025
Viewed by 242
Abstract
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance [...] Read more.
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance of mechanical ventilation systems in regulating indoor climate, improving air quality, and minimising energy consumption. The findings indicate that demand-controlled ventilation (DCV) can enhance energy efficiency by up to 88% while maintaining CO2 concentrations below 1000 ppm during 76% of the occupancy period. Heat recovery systems achieve efficiencies of nearly 90%, leading to a reduction in heating energy consumption by approximately 19%. Studies also show that employing mechanical rather than natural ventilation in schools lowers CO2 levels by 20–30%. Nevertheless, occupant misuse or poorly designed systems can result in CO2 concentrations exceeding 1600 ppm in residential environments. Hybrid ventilation systems have demonstrated improved thermal comfort, with predicted mean vote (PMV) values ranging from –0.41 to 0.37 when radiant heating is utilized. Despite ongoing technological advancements, issues such as system durability, user acceptance, and adaptability across climate zones remain. Smart, personalized ventilation strategies supported by modern control algorithms and continuous monitoring are essential for the development of resilient and health-promoting buildings. Future research should prioritize the integration of renewable energy sources and adaptive ventilation controls to further optimise system performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 1066 KiB  
Article
GA-Synthesized Training Framework for Adaptive Neuro-Fuzzy PID Control in High-Precision SPAD Thermal Management
by Mingjun Kuang, Qingwen Hou, Jindong Wang, Jianping Guo and Zhengjun Wei
Machines 2025, 13(7), 624; https://doi.org/10.3390/machines13070624 - 21 Jul 2025
Viewed by 102
Abstract
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset [...] Read more.
This study presents a hybrid adaptive control strategy that integrates genetic algorithm (GA) optimization with an adaptive neuro-fuzzy inference system (ANFIS) for precise thermal regulation of single-photon avalanche diodes (SPADs). To address the nonlinear and disturbance-sensitive dynamics of SPAD systems, a performance-oriented dataset is constructed through multi-scenario simulations using settling time, overshoot, and steady-state error as fitness metrics. The genetic algorithm (GA) facilitates broad exploration of the proportional–integral–derivative (PID) controller parameter space while ensuring control stability by discarding low-performing gain combinations. The resulting high-quality dataset is used to train the ANFIS model, enabling real-time, adaptive tuning of PID gains. Simulation results demonstrate that the proposed GA-ANFIS-PID controller significantly enhances dynamic response, robustness, and adaptability over both the conventional Ziegler–Nichols PID and GA-only PID schemes. The controller maintains stability under structural perturbations and abrupt thermal disturbances without the need for offline retuning, owing to the real-time inference capabilities of the ANFIS model. By combining global evolutionary optimization with intelligent online adaptation, this approach improves both accuracy and generalization, offering a practical and scalable solution for SPAD thermal management in demanding environments such as quantum communication, sensing, and single-photon detection platforms. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

28 pages, 5208 KiB  
Article
ORC System Temperature and Evaporation Pressure Control Based on DDPG-MGPC
by Jing Li, Zexu Gao, Xi Zhou and Junyuan Zhang
Processes 2025, 13(7), 2314; https://doi.org/10.3390/pr13072314 - 21 Jul 2025
Viewed by 180
Abstract
The organic Rankine cycle (ORC) is a key technology for the recovery of low-grade waste heat, but its efficient and stable operation is challenged by complex kinetic coupling. This paper proposes a model partitioning strategy based on gap measurement to construct a high-fidelity [...] Read more.
The organic Rankine cycle (ORC) is a key technology for the recovery of low-grade waste heat, but its efficient and stable operation is challenged by complex kinetic coupling. This paper proposes a model partitioning strategy based on gap measurement to construct a high-fidelity ORC system model and combines the setting of observer decoupling and multi-model switching strategies to reduce the coupling impact and enhance adaptability. For control optimization, the reinforcement learning method of deep deterministic Policy Gradient (DDPG) is adopted to break through the limitations of the traditional discrete action space and achieve precise optimization in the continuous space. The proposed DDPG-MGPC (Hybrid Model Predictive Control) framework significantly enhances robustness and adaptability through the synergy of reinforcement learning and model prediction. Simulation shows that, compared with the existing hybrid reinforcement learning and MPC methods, DDPG-MGPC has better tracking performance and anti-interference ability under dynamic working conditions, providing a more efficient solution for the practical application of ORC. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 4944 KiB  
Article
Multi-Objective Optimization Methods for University Campus Planning and Design—A Case Study of Dalian University of Technology
by Lin Qi, Chaoran Chen and Jun Dong
Buildings 2025, 15(14), 2551; https://doi.org/10.3390/buildings15142551 - 19 Jul 2025
Viewed by 176
Abstract
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification [...] Read more.
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification and standardization of 29 key variables to construct mapping relationships among objective functions. On the algorithmic level, an adapted NSGA-III was implemented on the MATLAB platform (version R2022b), introducing a dynamic reference point mechanism and hybrid constraint-handling strategy to enhance convergence and solution diversity. Taking the northern residential area of the western campus of Dalian University of Technology as a case study, multiple Pareto-optimal solutions were generated. Five representative alternatives were selected and evaluated through the AHP–TOPSIS method to determine the optimal scheme. The results indicated significant improvements in energy, economic, spatial, and ecological dimensions, while also achieving quantifiable control over cultural expression. On this basis, an integrated optimization strategy targeting “form–function–environment–culture” was proposed, offering data-informed support and procedural reference for systematic campus planning. This study demonstrates the effectiveness, adaptability, and practical value of the proposed approach in addressing multi-objective conflicts in university planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 1383 KiB  
Article
Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods
by Ivan Itai Bernal Lara, Roberto Jair Lorenzo Diaz, María de los Ángeles Sánchez Galván, Jaime Robles García, Mohamed Badaoui, David Romero Romero and Rodolfo Alfonso Moreno Flores
Forecasting 2025, 7(3), 39; https://doi.org/10.3390/forecast7030039 - 18 Jul 2025
Viewed by 269
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the [...] Read more.
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

30 pages, 1042 KiB  
Article
A Privacy-Preserving Polymorphic Heterogeneous Security Architecture for Cloud–Edge Collaboration Industrial Control Systems
by Yukun Niu, Xiaopeng Han, Chuan He, Yunfan Wang, Zhigang Cao and Ding Zhou
Appl. Sci. 2025, 15(14), 8032; https://doi.org/10.3390/app15148032 - 18 Jul 2025
Viewed by 139
Abstract
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for [...] Read more.
Cloud–edge collaboration industrial control systems (ICSs) face critical security and privacy challenges that existing dynamic heterogeneous redundancy (DHR) architectures inadequately address due to two fundamental limitations: event-triggered scheduling approaches that amplify common-mode escape impacts in resource-constrained environments, and insufficient privacy-preserving arbitration mechanisms for sensitive industrial data processing. In contrast to existing work that treats scheduling and privacy as separate concerns, this paper proposes a unified polymorphic heterogeneous security architecture that integrates hybrid event–time triggered scheduling with adaptive privacy-preserving arbitration, specifically designed to address the unique challenges of cloud–edge collaboration ICSs where both security resilience and privacy preservation are paramount requirements. The architecture introduces three key innovations: (1) a hybrid event–time triggered scheduling algorithm with credibility assessment and heterogeneity metrics to mitigate common-mode escape scenarios, (2) an adaptive privacy budget allocation mechanism that balances privacy protection effectiveness with system availability based on attack activity levels, and (3) a unified framework that organically integrates privacy-preserving arbitration with heterogeneous redundancy management. Comprehensive evaluations using natural gas pipeline pressure control and smart grid voltage control systems demonstrate superior performance: the proposed method achieves 100% system availability compared to 62.57% for static redundancy and 86.53% for moving target defense, maintains 99.98% availability even under common-mode attacks (102 probability), and consistently outperforms moving target defense methods integrated with state-of-the-art detection mechanisms (99.7790% and 99.6735% average availability when false data deviations from true values are 5% and 3%, respectively) across different attack detection scenarios, validating its effectiveness in defending against availability attacks and privacy leakage threats in cloud–edge collaboration environments. Full article
Show Figures

Figure 1

19 pages, 3620 KiB  
Article
Computerised Method of Multiparameter Optimisation of Predictive Control Algorithms for Asynchronous Electric Drives
by Grygorii Diachenko, Serhii Semenov, Katarzyna Marczak, Gernot Schullerus and Ivan Laktionov
Appl. Sci. 2025, 15(14), 8014; https://doi.org/10.3390/app15148014 - 18 Jul 2025
Viewed by 135
Abstract
This article addresses the problem of increasing the energy efficiency of electromechanical systems driven by asynchronous electric drives. In this context, one of the promising areas is the application of a predictive control strategy that allows for reducing energy losses in dynamic modes [...] Read more.
This article addresses the problem of increasing the energy efficiency of electromechanical systems driven by asynchronous electric drives. In this context, one of the promising areas is the application of a predictive control strategy that allows for reducing energy losses in dynamic modes of electric drives. This paper proposes a computerised method for the multiparameter optimisation of predictive control algorithms for asynchronous electric drives. A computer model was designed in MATLAB and Simulink R2024a based on the gradient-based model predictive control strategy. A series of simulation experiments were carried out by varying the sampling step, number of iterations, prediction horizon, loss function parameters, and maximum linear search step to identify their impact on the control quality indicators. A taxonomic approach was used for multi-criteria optimisation. The study results show that the optimal setting of the algorithmic parameters improves the accuracy of task processing, reduces energy consumption, and reduces computation time. The results obtained can be used to design and operate energy-efficient control systems for asynchronous electric drives in industrial and transport applications. Prospects for further research will focus on hybrid intelligent architectures to enhance adaptability and integration into automated systems. Full article
(This article belongs to the Special Issue Power Electronics and Motor Control)
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Performance Evaluation of a Hybrid Power System for Unmanned Aerial Vehicles Applications
by Tiberius-Florian Frigioescu, Gabriel-Petre Badea, Mădălin Dombrovschi and Maria Căldărar
Electronics 2025, 14(14), 2873; https://doi.org/10.3390/electronics14142873 - 18 Jul 2025
Viewed by 177
Abstract
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, [...] Read more.
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, but limitations in control stability and output power constrained their practical implementation. This study aimed to finalize the design and experimental validation of an optimized hybrid power system featuring a micro-turboprop engine mechanically coupled to an upgraded electric generator. A fuzzy logic-based control algorithm was implemented on a single-board computer to enable autonomous voltage regulation. The test bench architecture was reinforced and instrumented to allow stable multi-stage testing across increasing power levels. Results demonstrated stable voltage control at 48 VDC and electrical power outputs up to 3 kW, with an estimated maximum of 3.5 kW at full throttle. Efficiency was calculated at approximately 67%, and analysis of the generator’s KV constant revealed that using a lower KV variant (KV80) could reduce required rotational speed (RPM) and improve performance. These findings underscore the value of adaptive hybridization in UAVs and suggest that tuning generator electromechanical parameters can significantly enhance overall energy efficiency and platform autonomy. Full article
Show Figures

Figure 1

31 pages, 3874 KiB  
Review
Vertical-Axis Wind Turbines in Emerging Energy Applications (1979–2025): Global Trends and Technological Gaps Revealed by a Bibliometric Analysis and Review
by Beatriz Salvador-Gutierrez, Lozano Sanchez-Cortez, Monica Hinojosa-Manrique, Adolfo Lozada-Pedraza, Mario Ninaquispe-Soto, Jorge Montaño-Pisfil, Ricardo Gutiérrez-Tirado, Wilmer Chávez-Sánchez, Luis Romero-Goytendia, Julio Díaz-Aliaga and Abner Vigo-Roldán
Energies 2025, 18(14), 3810; https://doi.org/10.3390/en18143810 - 17 Jul 2025
Viewed by 500
Abstract
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to [...] Read more.
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to map global research trends, and a parallel mini-review distilled recent advances into five thematic areas: aerodynamic strategies, advanced materials, urban integration, hybrid systems, and floating offshore platforms. The results reveal that VAWT research output has surged since 2006, led by China with strong contributions from Europe and North America, and is concentrated in leading renewable energy journals. Dominant topics include computational fluid dynamics (CFD) simulations, performance optimization, wind–solar hybrid integration, and adaptation to turbulent urban environments. Technologically, active and passive aerodynamic innovations have boosted performance albeit with added complexity, remaining mostly at moderate technology readiness (TRL 3–5), while advanced composite materials are improving durability and fatigue life. Emerging applications in microgrids, building-integrated systems, and offshore floating platforms leverage VAWTs’ omnidirectional, low-noise operation, although challenges persist in scaling up, control integration, and long-term field validation. Overall, VAWTs are gaining relevance as a complement to conventional turbines in the sustainable energy transition, and this study’s integrated approach identifies critical gaps and high-priority research directions to accelerate VAWT development and help transition these turbines from niche prototypes to mainstream renewable solutions. Full article
Show Figures

Figure 1

27 pages, 1555 KiB  
Review
State-of-the-Art Review of Structural Vibration Control: Overview and Research Gaps
by Neethu B. Dharmajan and Mohammad AlHamaydeh
Appl. Sci. 2025, 15(14), 7966; https://doi.org/10.3390/app15147966 - 17 Jul 2025
Viewed by 172
Abstract
This paper comprehensively reviews structural vibration control systems for earthquake mitigation in civil engineering structures. Structural vibration control is vital for enhancing the resilience and safety of infrastructure subjected to seismic activity. This study examines various control strategies, including passive, active, and hybrid [...] Read more.
This paper comprehensively reviews structural vibration control systems for earthquake mitigation in civil engineering structures. Structural vibration control is vital for enhancing the resilience and safety of infrastructure subjected to seismic activity. This study examines various control strategies, including passive, active, and hybrid methods, with a focus on the advantages of semi-active systems, which offer a balance of energy efficiency and adaptive capabilities. Semi-active devices, such as magnetorheological dampers, are highlighted for their ability to offer adaptive control without the high energy demands of fully active systems. The review discusses challenges like time delays, sensor placement, and model uncertainties that can impact the practical implementation of these systems. Experimental studies and real-world applications demonstrate the effectiveness of semi-active systems in reducing seismic responses. This paper emphasizes the need for further research into optimizing control algorithms and addressing practical challenges to enhance the reliability and robustness of these systems. It concludes that semi-active control systems are a promising solution for enhancing structural resilience in earthquake-prone areas, offering a practical alternative that strikes a balance between performance and energy requirements. Full article
(This article belongs to the Special Issue Vibration Monitoring and Control of the Built Environment)
Show Figures

Figure 1

Back to TopTop