Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,603)

Search Parameters:
Keywords = hybrid activation function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 612 KB  
Article
A KNN-Based Bilingual Book Recommendation System with Gamification and Learning Analytics
by Aray Kassenkhan
Information 2026, 17(2), 120; https://doi.org/10.3390/info17020120 - 27 Jan 2026
Abstract
The article reports on a bilingual and interpretable book recommendation platform for schoolchildren. This platform uses a lightweight K-Nearest Neighbors algorithm combined with gamification and learning analytics. This application has been designed for a bilingual learning environment in Kazakhstan, supporting learning in Kazakh [...] Read more.
The article reports on a bilingual and interpretable book recommendation platform for schoolchildren. This platform uses a lightweight K-Nearest Neighbors algorithm combined with gamification and learning analytics. This application has been designed for a bilingual learning environment in Kazakhstan, supporting learning in Kazakh and Russian languages, and is intended to improve reading engagement through culturally adjusted personalization. The recommendation engine combines content and collaborative filtering in that it leverages structured book data (genres, target age ranges, authors, languages, and semantics) and learner attributes (language of instruction, preferences, and learner history). A hybrid ranking function combines the similarity to the user and the item similarity to produce top-N recommendations, whereas gamification elements (points, achievements, and reading challenges) are used to foster sustained activity.Teacher dashboards show learners’ overall reading activity and progress through real-time data visualization. The initial calibration of the model was carried out using an open-source book collection consisting of 5197 items. Thereafter, the model was modified for a curated bilingual collection of 600 books intended for use in educational institutions in the Kazakh and Russian languages. The validation experiment was carried out on a pilot test involving 156 children. The experimental outcome suggests a stable level of recommendation in terms of the Precision@10 and Recall@10 values of 0.71 and 0.63 respectively. The computational complexity remained low. Moreover, the bilingual normalization technique increased the relevance of recommendations of non-majority language items by 12.4%. In conclusion, the proposed approach presents a scalable and transparent framework for AI-assisted reading personalization in bilingual e-learning systems. Future research will focus on transparent recommendation interfaces and more adaptive learner modeling. Full article
(This article belongs to the Special Issue Trends in Artificial Intelligence-Supported E-Learning)
Show Figures

Graphical abstract

22 pages, 995 KB  
Review
Stroke Rehabilitation, Novel Technology and the Internet of Medical Things
by Ana Costa, Eric Schmalzried, Jing Tong, Brandon Khanyan, Weidong Wang, Zhaosheng Jin and Sergio D. Bergese
Brain Sci. 2026, 16(2), 124; https://doi.org/10.3390/brainsci16020124 - 24 Jan 2026
Viewed by 197
Abstract
Stroke continues to impose an enormous morbidity and mortality burden worldwide. Stroke survivors often incur debilitating consequences that impair motor function, independence in activities of daily living and quality of life. Rehabilitation is a pivotal intervention to minimize disability and promote functional recovery [...] Read more.
Stroke continues to impose an enormous morbidity and mortality burden worldwide. Stroke survivors often incur debilitating consequences that impair motor function, independence in activities of daily living and quality of life. Rehabilitation is a pivotal intervention to minimize disability and promote functional recovery following a stroke. The Internet of Medical Things, a network of connected medical devices, software and health systems that collect, store and analyze health data over the internet, is an emerging resource in neurorehabilitation for stroke survivors. Technologies such as asynchronous transmission to handle intermittent connectivity, edge computing to conserve bandwidth and lengthen device life, functional interoperability across platforms, security mechanisms scalable to resource constraints, and hybrid architectures that combine local processing with cloud synchronization help bridge the digital divide and infrastructure limitations in low-resource environments. This manuscript reviews emerging rehabilitation technologies such as robotic devices, virtual reality, brain–computer interfaces and telerehabilitation in the setting of neurorehabilitation for stroke patients. Full article
Show Figures

Figure 1

15 pages, 2003 KB  
Article
Synthesis of Vinyl-Containing MQ Copolymers in Active Medium
by Alina Khmelnitskaia, Aleksandra Kalinina, Ivan Meshkov, Ekaterina Ivanova, Sergey G. Vasil’ev, Alexander Buzin, Gagik Ghazaryan, Sergey Ponomarenko and Aziz Muzafarov
Polymers 2026, 18(3), 315; https://doi.org/10.3390/polym18030315 - 24 Jan 2026
Viewed by 201
Abstract
MQ copolymers, consisting of monofunctional (M) and tetrafunctional (Q) siloxane units, are versatile materials used as additives, adhesives, and in composite materials. Functional groups, such as vinyl substituents, in M-units allow for the tailoring of properties for specific applications. This study aimed to [...] Read more.
MQ copolymers, consisting of monofunctional (M) and tetrafunctional (Q) siloxane units, are versatile materials used as additives, adhesives, and in composite materials. Functional groups, such as vinyl substituents, in M-units allow for the tailoring of properties for specific applications. This study aimed to synthesize vinyl-containing MQ copolymers (MVinMQ) via a controlled, chlorine-free method to explore the regulation of their composition and properties. The results demonstrated precise control over the copolymer architecture, with hydroxyl content and molecular weight increasing alongside the Q-unit fraction. All obtained copolymers exhibited high thermal stability, with 5% mass loss occurring above 295 °C in air and 365 °C in argon. Fractionation data supported a molecular composite model consisting of an inorganic core and an organic shell. Polycondensation in an active medium is an effective method for the directed synthesis of structurally tunable MVinMQ copolymers, offering a versatile platform for developing functional hybrid materials, modifiers, and cross-linking agents. Full article
(This article belongs to the Special Issue Polymeric Composites: Manufacturing, Processing and Applications)
Show Figures

Graphical abstract

32 pages, 7306 KB  
Review
From Porphyrinic MOFs and COFs to Hybrid Architectures: Design Principles for Photocatalytic H2 Evolution
by Maria-Chrysanthi Kafentzi, Grigorios Papageorgiou and Kalliopi Ladomenou
Inorganics 2026, 14(2), 32; https://doi.org/10.3390/inorganics14020032 - 23 Jan 2026
Viewed by 239
Abstract
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light [...] Read more.
Solar-driven hydrogen production via photocatalytic water splitting represents a promising route toward sustainable and low-carbon energy systems. Among emerging photocatalysts, porphyrin-based framework materials, specifically porphyrinic metal–organic frameworks (PMOFs) and porphyrinic covalent organic frameworks (PCOFs), have attracted increasing attention owing to their strong visible-light absorption, tunable electronic structures, permanent porosity, and well-defined catalytic architectures. In these systems, porphyrins function as versatile photosensitizers whose photophysical properties can be precisely tailored through metalation, peripheral functionalization, and integration into ordered frameworks. This review provides a comprehensive, design-oriented overview of recent advances in PMOFs, PCOFs, and hybrid porphyrinic architectures for photocatalytic H2 evolution. We discuss key structure–activity relationships governing light harvesting, charge separation, and hydrogen evolution kinetics, with particular emphasis on the roles of porphyrin metal centers, secondary building units, linker functionalization, framework morphology, and cocatalyst integration. Furthermore, we highlight how heterojunction engineering through coupling porphyrinic frameworks with inorganic semiconductors, metal sulfides, or single-atom catalytic sites can overcome intrinsic limitations related to charge recombination and limited spectral response. Current challenges, including long-term stability, reliance on noble metals, and scalability, are critically assessed. Finally, future perspectives are outlined, emphasizing rational molecular design, earth-abundant catalytic motifs, advanced hybrid architectures, and data-driven approaches as key directions for translating porphyrinic frameworks into practical photocatalytic hydrogen-generation technologies. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

55 pages, 3083 KB  
Review
A Survey on Green Wireless Sensing: Energy-Efficient Sensing via WiFi CSI and Lightweight Learning
by Rod Koo, Xihao Liang, Deepak Mishra and Aruna Seneviratne
Energies 2026, 19(2), 573; https://doi.org/10.3390/en19020573 - 22 Jan 2026
Viewed by 75
Abstract
Conventional sensing expends energy at three stages: powering dedicated sensors, transmitting measurements, and executing computationally intensive inference. Wireless sensing re-purposes WiFi channel state information (CSI) inherent in every packet, eliminating extra sensors and uplink traffic, though reliance on deep neural networks (DNNs) often [...] Read more.
Conventional sensing expends energy at three stages: powering dedicated sensors, transmitting measurements, and executing computationally intensive inference. Wireless sensing re-purposes WiFi channel state information (CSI) inherent in every packet, eliminating extra sensors and uplink traffic, though reliance on deep neural networks (DNNs) often trained and run on graphics processing units (GPUs) can negate these gains. This review highlights two core energy efficiency levers in CSI-based wireless sensing. First ambient CSI harvesting cuts power use by an order of magnitude compared to radar and active Internet of Things (IoT) sensors. Second, integrated sensing and communication (ISAC) embeds sensing functionality into existing WiFi links, thereby reducing device count, battery waste, and carbon impact. We review conventional handcrafted and accuracy-first methods to set the stage for surveying green learning strategies and lightweight learning techniques, including compact hybrid neural architectures, pruning, knowledge distillation, quantisation, and semi-supervised training that preserve accuracy while reducing model size and memory footprint. We also discuss hardware co-design from low-power microcontrollers to edge application-specific integrated circuits (ASICs) and WiFi firmware extensions that align computation with platform constraints. Finally, we identify open challenges in domain-robust compression, multi-antenna calibration, energy-proportionate model scaling, and standardised joules per inference metrics. Our aim is a practical battery-friendly wireless sensing stack ready for smart home and 6G era deployments. Full article
Show Figures

Graphical abstract

16 pages, 1456 KB  
Article
Cell Density-Dependent Suppression of Perlecan and Biglycan Expression by Gold Nanocluster in Vascular Endothelial Cells
by Takato Hara, Misato Saeki, Misaki Shirai, Yuichi Negishi, Chika Yamamoto and Toshiyuki Kaji
Cells 2026, 15(2), 209; https://doi.org/10.3390/cells15020209 - 22 Jan 2026
Viewed by 171
Abstract
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and [...] Read more.
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and that organic–inorganic hybrid molecules, such as metal complexes and organometallic compounds, serve as useful tools to analyze proteoglycan synthesis mechanisms. However, the effects of metal compounds lacking electrophilicity on proteoglycan synthesis remain unclear. Au25(SG)18, a nanoscale gold cluster consisting of a metal core protected by gold–glutathione complexes, exhibits extremely low intramolecular polarity. In this study, we investigated the effect of Au25(SG)18 on proteoglycan synthesis in vascular endothelial cells. Au25(SG)18 accumulated significantly in vascular endothelial cells at low cell density and suppressed the expression of perlecan, a major heparan sulfate proteoglycan in cells, by inactivating ADP-ribosylation factor 6 (Arf6). Additionally, Au25(SG)18 reduced the expression of biglycan, a small dermatan sulfate proteoglycan, in vascular endothelial cells at low cell density; however, the underlying mechanisms remain unclear. Overall, our findings suggest that organic–inorganic hybrid molecules regulate the activity of Arf6-mediated protein transport to the extracellular space and that perlecan is regulated through this mechanism, highlighting the importance of Arf6-mediated extracellular transport for maintaining vascular homeostasis. Full article
(This article belongs to the Special Issue Molecular Signaling and Mechanism on Vascular Remodeling)
Show Figures

Graphical abstract

23 pages, 8070 KB  
Article
Synthesis of Folic Acid-Functionalized Hybrid Mesoporous Silica Nanoparticles and In Vitro Evaluation on MCF-7 Breast Cancer Cells
by Marta Slavkova, Yordan Yordanov, Christina Voycheva, Teodora Popova, Ivanka Spassova, Daniela Kovacheva, Virginia Tzankova and Borislav Tzankov
Int. J. Mol. Sci. 2026, 27(2), 1092; https://doi.org/10.3390/ijms27021092 - 22 Jan 2026
Viewed by 41
Abstract
Folate receptor alpha is expressed at low levels in normal tissues, but is elevated in aggressive breast cancer types and can be utilized for targeted nanoparticle delivery. Hence, we prepared a hybrid nanocarrier based on in-house synthesized mesoporous silica nanoparticles (MSNs) which were [...] Read more.
Folate receptor alpha is expressed at low levels in normal tissues, but is elevated in aggressive breast cancer types and can be utilized for targeted nanoparticle delivery. Hence, we prepared a hybrid nanocarrier based on in-house synthesized mesoporous silica nanoparticles (MSNs) which were further lipid-coated and reinforced with folic acid (FA). Thorough physicochemical evaluation was performed including dynamic light scattering (DLS), powder x-ray diffraction (PXRD), thermogravimetric analysis (TGA), and nitrogen physisorption. In vitro dissolution of the model drug doxorubicin was carried out in release media with pH 7.4 and pH 5.5. The cytotoxic potential and cellular uptake were investigated in MCF-7 breast cancer cells via the MTT assay, doxorubicin fluorescence measurement, and microscopy. The potential amelioration of doxorubicin’s cardiotoxicity was evaluated in vitro on the H9c2 cell line. The results showed MSNs with significant pore volume (1.38 cm3/g) and relatively small sizes (98.05 ± 1.34 nm). The lipid coat and FA attachment improved the physicochemical stability and sustained release pattern over 24 h. MSNs were non-toxic, while when doxorubicin-loaded, they caused moderate cytotoxicity. The highest cytotoxic activity was observed with folate-functionalized, doxorubicin-loaded nanoparticles (NPs). Even though non-loaded folate-functionalized NPs exhibited significant cytotoxicity, their physical mixture with doxorubicin was inferior in MCF-7 cytotoxicity as opposed to the corresponding loaded nanocarrier. Fluorescence-based quantification showed a higher intracellular accumulation of doxorubicin when delivered via NPs. These results demonstrate the potential to use folate-functionalized NPs as carriers for doxorubicin delivery in breast cancer cells. Its cardiotoxicity was significantly reduced in the case of loading onto the folic acid-functionalized lipid-coated MSNs. All these findings provide a promising proof-of-concept, although further experimental validation, particularly regarding targeting selectivity and safety, is required. Full article
(This article belongs to the Special Issue Nanotechnology in Targeted Drug Delivery 2.0)
Show Figures

Figure 1

15 pages, 3939 KB  
Article
Super-Hydrophobic Polyurethane/Activated Biochar Composites with Polydimethylsiloxane Coating for High-Efficiency Organic Liquid Uptake
by Rafik Elarslene Dra, Badra Mahida, Malika Medjahdi, Belaid Mechab, Nadia Ramdani and Dominique Baillis
Materials 2026, 19(2), 415; https://doi.org/10.3390/ma19020415 - 21 Jan 2026
Viewed by 112
Abstract
The aim of this work is to develop structurally enhanced and highly hydrophobic polyurethane (PU) foams for the efficient remediation of liquid organic pollutants. For this purpose, PU foams were modified with renewable activated biochar derived from marine algae (AC) and a hydrophobic [...] Read more.
The aim of this work is to develop structurally enhanced and highly hydrophobic polyurethane (PU) foams for the efficient remediation of liquid organic pollutants. For this purpose, PU foams were modified with renewable activated biochar derived from marine algae (AC) and a hydrophobic polydimethylsiloxane (PDMS) coating, producing four systems: pristine PU, PU-AC, PU/PDMS, and the hybrid PU-AC/PDMS composite. The study evaluates how AC incorporation and PDMS surface functionalization influence the microstructure, chemical composition, wettability, thermal stability, and sorption behavior of the foams. SEM images revealed progressive reductions in pore size from 420 ± 80 μm (PU) to 360 ± 85 μm (PU-AC/PDMS), with AC introducing heterogeneity while PDMS preserved open-cell morphology. FTIR confirmed the presence of urethane linkages, carbonaceous structures, and PDMS siloxane groups. Surface hydrophobicity increased markedly from 88.53° (PU) to 148.25° (PU-AC/PDMS). TGA results showed that PDMS improved thermal stability through silica-rich char formation, whereas AC slightly lowered degradation onset. Sorption tests using petroleum-derived oils and hydrophobic organic liquids demonstrated a consistent performance hierarchy (PU < PU/PDMS < PU-AC < PU-AC/PDMS). The ternary composite achieved the highest uptake capacities, reaching 44–56 g/g for oils and up to 35 g/g for hydrophobic solvents, while maintaining reusability. These findings demonstrate that combining activated biochar with PDMS significantly enhances the functional properties of PU foams, offering an efficient and sustainable material for oil–water separation and organic pollutant remediation. Full article
Show Figures

Graphical abstract

20 pages, 1579 KB  
Article
Phthalimide Derivatives as Anti-Inflammatory Agents: In Silico COX-2 Targeting and In Vitro Inhibition of PGE2 Production
by Héctor M. Heras Martínez, Blanca Sánchez-Ramírez, Linda-Lucila Landeros-Martínez, David Rodríguez-Guerrero, José C. Espinoza-Hicks, Gerardo Zaragoza-Galán, Alejandro Bugarin and David Chávez-Flores
Pharmaceutics 2026, 18(1), 129; https://doi.org/10.3390/pharmaceutics18010129 - 20 Jan 2026
Viewed by 222
Abstract
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top [...] Read more.
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top three candidates (6, 10, and 17) were synthesized and evaluated as selective COX-2 inhibitors of PGE-2 using an integrated in silico–in vitro approach. Methods: Molecular docking against COX-2 (PDB 5KIR) and COX-1 (PDB 6Y3C), supported by homology modeling and DFT geometry optimization (B3LYP/6-31G*), revealed that the phthalimide carbonyl groups and the 3,4,5-trimethoxyphenyl or geranyl-derived moieties establish key hydrogen bonds and hydrophobic contacts with Arg120, Tyr355, Tyr385, and Ser530 in the COX-2 active site, conferring predicted selectivity ΔGCOX−2 vs. COX−1 = −1.4 to −2.8 kcal/mol. Results: The compounds complied with Lipinski’s and Veber’s rules and displayed favorable ADMET profiles. In vitro assessment in LPS-stimulated J774A.1 murine macrophages confirmed potent inhibition of PGE2 production, 3.05 µg/mL, with compound 17 exhibiting the highest efficacy, 97.79 ± 5.02% inhibition at 50 µg/mL, and 10 showing 95.22 ± 6.03% inhibition at 50 µg/mL. Notably, all derivatives maintained >90% cell viability up to 250 µg/mL by resazurin assay and showed no evidence of cytotoxicity or mitosis potential in the tests at 24 h. Conclusions: These results demonstrate that strategic hybridization of phthalimide with natural and synthetic product-derived fragments yields highly potential PGE2 inhibitors. Therefore, compounds 6, 10, and 17 are promising lead candidates for the development of safer anti-inflammatory agents. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Graphical abstract

60 pages, 7234 KB  
Review
Cellular Allies Against Glioblastoma: Therapeutic Potential of Macrophages and Mesenchymal Stromal Cells
by Bruno Agustín Cesca, Kali Pellicer San Martin and Luis Exequiel Ibarra
Pharmaceutics 2026, 18(1), 124; https://doi.org/10.3390/pharmaceutics18010124 - 19 Jan 2026
Viewed by 222
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor in adults, with limited therapeutic options and poor prognosis despite maximal surgery, radiotherapy, and chemotherapy. The complex and immunosuppressive tumor microenvironment, pronounced intratumoral heterogeneity, and the presence of the blood–brain barrier (BBB) severely restrict the efficacy of conventional and emerging therapies. In this context, cell-based strategies leveraging macrophages, mesenchymal stromal cells (MSCs), and their derivatives have gained attention as “cellular allies” capable of modulating the GBM microenvironment and acting as targeted delivery platforms. Methods: This review systematically analyzes preclinical and early clinical literature on macrophage- and MSC-based therapeutic strategies in GBM, including engineered cells, extracellular vesicles (EVs), membrane-coated nanoparticles, and hybrid biomimetic systems. Studies were selected based on relevance to GBM biology, delivery across or bypass of the BBB, microenvironmental modulation, and translational potential. Evidence from in vitro models, orthotopic and syngeneic in vivo models, and available clinical trials was critically evaluated, with emphasis on efficacy endpoints, biodistribution, safety, and manufacturing considerations. Results: The reviewed evidence demonstrates that macrophages and MSCs can function as active therapeutic agents or delivery vehicles, enabling localized oncolysis, immune reprogramming, stromal and vascular remodeling, and enhanced delivery of viral, genetic, and nanotherapeutic payloads. EVs and membrane-based biomimetic platforms further extend these capabilities while reducing cellular risks. However, therapeutic efficacy is highly context-dependent, influenced by tumor heterogeneity, BBB integrity, delivery route, and microenvironmental dynamics. Clinical translation remains limited, with most approaches at preclinical or early-phase clinical stages. Conclusions: Cell-based and cell-derived platforms represent a promising but still evolving therapeutic paradigm for GBM. Their successful translation will require rigorous biomarker-driven patient selection, improved models that capture invasive GBM biology, scalable GMP-compliant manufacturing, and rational combination strategies to overcome adaptive resistance mechanisms. Full article
(This article belongs to the Special Issue Where Are We Now and Where Is Cell Therapy Headed? (2nd Edition))
Show Figures

Graphical abstract

35 pages, 3594 KB  
Article
Novel Carvacrol or trans-Cinnamaldehyde@ZnO/Natural Zeolite Ternary Nanohybrid for Poly-L-lactide/tri-ethyl Citrate Based Sustainable Active Packaging Films
by Areti A. Leontiou, Achilleas Kechagias, Eleni Kollia, Anna Kopsacheili, Andreas Giannakas, Ioanna Farmaki, Yelyzaveta K. Oliinychenko, Alexandros C. Stratakos, Charalampos Proestos and Aris E. Giannakas
Appl. Sci. 2026, 16(2), 999; https://doi.org/10.3390/app16020999 - 19 Jan 2026
Viewed by 156
Abstract
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce [...] Read more.
The shift toward sustainable packaging requires biodegradable, active alternatives. This study developed ternary nanohybrids by loading carvacrol (CV) or trans-cinnamaldehyde (tCN) onto zinc oxide/natural zeolite (ZnO/NZ) hybrids, which were incorporated into a poly-L-lactide/tri-ethyl citrate (PLA/TEC) matrix via melt extrusion to produce active films. A key finding was the distinct interaction mechanism: tCN underwent strong chemisorption with ZnO, creating a sustained-release reservoir, while CV was predominantly physisorbed, leading to rapid release. This interfacial divergence dictated functional performance. Antibacterial assessment of nanohybrids revealed that tCN@ZnO/NZ0.25 exhibited the highest inhibition zones against pathogens, correlating with its chemisorbed reservoir. In films, however, CV-based formulations (especially CV@ZnO/NZ0.25) showed superior immediate antioxidant activity (EC50, ~DPPH~ = 34.43 mg/mL) and an 82% reduction in oxygen permeability. In contrast, tCN-based films (especially tCN@ZnO/NZ1.0) demonstrated superior, sustained antibacterial efficacy. In a minced pork preservation study, both films delayed lipid oxidation and preserved heme iron, while the tCN-based film provided better long-term microbial control. This work demonstrates that engineering the nanocarrier–active compound interface enables precise tailoring of release kinetics, which can be optimized for either high immediate antioxidant power or long-term antimicrobial action, depending on specific food preservation requirements. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Sustainable Packaging)
Show Figures

Graphical abstract

23 pages, 13280 KB  
Article
Structural and Genomic Bases of Branching Traits in Spur-Type Apple: Insights from Morphology and Whole-Genome Resequencing
by Han Wang, Dongmei Chen, Guodong Zhao, Da Zhang, Xin Liu, Bowei Zhu, Linguang Jia, Tongsheng Zhao, Chaohong Zhang and Xinsheng Zhang
Genes 2026, 17(1), 96; https://doi.org/10.3390/genes17010096 - 18 Jan 2026
Viewed by 256
Abstract
Background: Plant architecture, particularly branching patterns, plays a crucial role in plant growth, photosynthetic performance, and yield. Spur-type apple, characterized by compact growth, early fruiting, high productivity, and manageable canopy structure, represent valuable germplasm for establishing dwarf and high-density apple orchards. While hybrid [...] Read more.
Background: Plant architecture, particularly branching patterns, plays a crucial role in plant growth, photosynthetic performance, and yield. Spur-type apple, characterized by compact growth, early fruiting, high productivity, and manageable canopy structure, represent valuable germplasm for establishing dwarf and high-density apple orchards. While hybrid breeding of spur-type varieties offers significant potential for genetic advancement, severe segregation of traits in hybrid progeny and the difficulty of combining multiple favorable traits still significantly limit breeding efficiency. Moreover, the genetic basis and molecular mechanisms of the spur-type trait remain poorly understood at the genomic level, hindering the development of precise molecular breeding approaches. Methods: To address this, we used the spur-type line ‘0301-13-14’ and the non-spur-type line ‘0301-50-32’ from hybrid progenies of the spur-type cultivars ‘Miyazaki Spur Fuji’ and ‘Starkrimson’ to elucidate the regulatory mechanisms underlying apple branch formation and spur-type trait development by characterizing their branching traits, performing whole-genome resequencing analysis, and identifying candidate genes using bioinformatics analyses. Results: Anatomical observations revealed that the spur-type line ‘0301-13-14’ possessed smaller cells with a more compact spatial arrangement compared to the non-spur-type line ‘0301-50-32’. Whole-genome resequencing generated 5,003,968 high-quality single-nucleotide polymorphisms (SNPs) and 577,886 high-quality insertions/deletions (InDels). We further identified 29,157 candidate genes harboring predicted deleterious mutations (classified as high or moderate impact). Gene Ontology (GO) enrichment analysis indicated that genes associated with the spur-type trait were mainly enriched in molecular function and biological process categories. Specifically, variant genes related to molecular function were enriched in transferase and catalytic activities, while those in biological process were mainly involved in phosphorylation and phosphorus metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that candidate genes were significantly enriched in environmental information processing and metabolic pathways. Conclusions: These results will provide a genomic foundation for identifying genes controlling spur-type branching traits and facilitate the genetic improvement of spur-type apple. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 - 17 Jan 2026
Viewed by 172
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

22 pages, 1591 KB  
Article
Color Change of Polymerized Smart Bioactive Resin Luting Agents: A Spectrophotometric Analysis Through Varying Nano-Ceramic Hybrid CAD/CAM Composite Thicknesses
by Hanin E. Yeslam and Alaa Turkistani
Processes 2026, 14(2), 314; https://doi.org/10.3390/pr14020314 - 15 Jan 2026
Viewed by 263
Abstract
Using multifunctional dual-cure smart bioactive resin luting agents (DRLs) offers benefits in adhesive dentistry, but their optical stability remains a concern. Their pre-cured form is a shear-thinning structure with thixotropic gel-like behavior. The effect of their hydrophilicity and different thicknesses of nanoceramic hybrid [...] Read more.
Using multifunctional dual-cure smart bioactive resin luting agents (DRLs) offers benefits in adhesive dentistry, but their optical stability remains a concern. Their pre-cured form is a shear-thinning structure with thixotropic gel-like behavior. The effect of their hydrophilicity and different thicknesses of nanoceramic hybrid on the final shade of milled esthetic restorations needs further investigation. This study examined how the optical function deterioration of dual-cure smart bioactive resin luting agents used to bond a CAD/CAM nano-ceramic hybrid composite would influence the restoration’s final shade at three different thicknesses. A nanoceramic hybrid composite (GD) was cut into blocks and grouped by thickness (0.8, 1.0, 1.5 mm). Ten blocks from each group were assigned to subgroups based on the DRL type: Panavia SA Universal (PN), Predicta Bioactive (PR), and ACTIVA BioACTIVE (AC). Color and whiteness changes after a 24 h/day (24 days) coffee immersion were analyzed using statistical methods (ANOVA and Tukey’s HSD for ΔE00; Welch’s ANOVA and Games-Howell for ΔWID and ΔL*). DRL type significantly affected ΔE00, ΔWID, and ΔL* (p < 0.001). All materials showed the least color change and optical function deterioration at a restoration thickness of 1.5 mm, which was below the acceptability threshold (AT). Despite PR’s bioactive functionality, it maintained its primary optical function with the least color change at GD thicknesses of 1.0 and 1.5 mm (p < 0.001). AC exhibited the greatest ΔE00 above AT, especially at a thickness of 0.8 mm (p < 0.001). ΔL*, ΔE00, and ΔWID varied significantly based on DRL type, GD thickness, and the interaction between DRL and thickness (p < 0.05). This suggests that although dual-cure smart DRLs containing bioactive glasses are advantageous, their optical function shifts may become more noticeable in thin, translucent restorations. Increasing the restoration thickness can help mitigate this by altering the optical pathway. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

30 pages, 8636 KB  
Article
Bio-Derived Cellulose Nanofibers for the Development Under Environmentally Assessed Conditions of Cellulose/ZnO Nanohybrids with Enhanced Biocompatibility and Antimicrobial Properties
by Kyriaki Marina Lyra, Aggeliki Papavasiliou, Caroline Piffet, Lara Gumusboga, Jean-Michel Thomassin, Yana Marie, Alexandre Hoareau, Vincent Moulès, Javier Alcodori, Pau Camilleri Lledó, Albany Milena Lozano Násner, Jose Gallego, Elias Sakellis, Fotios K. Katsaros, Dimitris Tsiourvas and Zili Sideratou
Materials 2026, 19(2), 346; https://doi.org/10.3390/ma19020346 - 15 Jan 2026
Viewed by 293
Abstract
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical [...] Read more.
The development of eco-friendly antimicrobial materials is essential for addressing antibiotic resistance, while reducing environmental impact. In this study, bio-derived anionic and cationic cellulose nanofibers (a-CNF and c-CNF) were employed as templating matrices for the in situ hydrothermal synthesis of cellulose/ZnO nanohybrids. Physicochemical characterization confirmed efficient cellulose functionalization and high-quality nanofibrillation, as well as the formation of uniformly dispersed ZnO nanoparticles (≈10–20 nm) strongly integrated within the cellulose network. The ZnO content was 30 and 20 wt. % for a-CNF/ZnO and c-CNF/ZnO, respectively. Antibacterial evaluation against Escherichia coli and Staphylococcus aureus revealed enhanced activity for both hybrids, with c-CNF/ZnO displaying the lowest MIC/MBC values (50/100 μg/mL). Antiviral assays revealed complete feline calicivirus inactivation at 100 μg/mL for c-CNF/ZnO, while moderate activity was observed against bovine coronavirus, highlighting the role of surface charge. Cytotoxicity assays on mammalian cells demonstrated high biocompatibility at antimicrobial concentrations. Life cycle assessment showed that c-CNF/ZnO exhibits a lower overall environmental burden than a-CNF/ZnO, with electricity demand being the main contributor, indicating clear opportunities for further reductions through process optimization and scale-up. Overall, these results demonstrate that CNF/ZnO nanohybrids effectively combine renewable biopolymers with ZnO antimicrobial functionality, offering a sustainable and safe platform for biomedical and environmental applications. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop