Stroke Rehabilitation, Novel Technology and the Internet of Medical Things
Abstract
1. Introduction
Methods
2. The Internet of Medical Things
3. Sensors
3.1. Telemedicine and Diagnostic Use of Videography
3.2. Wearable Sensors
3.3. Sensors in Robotic Systems
4. Interventions
4.1. Non-Invasive Brain Stimulation
4.2. Functional Electrical Stimulation
4.3. Robotic Systems
5. Patient Interfaces
5.1. Telerehabilitation
5.2. Virtual Reality
5.3. Brain–Computer Interface
6. Data Processing
7. Case Studies of Integrated Systems
7.1. Telemedicine and Virtual Rehabilitation Networks
7.2. Closed-Loop Systems for Motor Recovery
7.3. Artificial Intelligence and Data-Driven Personalization
7.4. Synergistic Integration
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| BCIs | Brain–computer interfaces |
| ECG | Electrocardiogram |
| EEG | Electroencephalogram |
| EHR | Electronic health record |
| EMG | Electromyography |
| FES | Functional electrical stimulation |
| FHIR | Fast Healthcare Interoperability Resources |
| HL7 | Heath Level Seven International |
| IMU | Inertial measurement unit |
| IoMT | Internet of medical things |
| MCID | Minimal Clinically Important Difference |
| ML | Machine learning |
| NIBS | Non-invasive brain stimulation |
| RS-tDCS | Remotely supervised-transcranial direct current stimulation |
| tDCS | Transcranial direct current stimulation |
| rTMS | Repetitive transcranial magnetic stimulation |
| VR | Virtual reality |
References
- Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Shahid, J.; Kashif, A.; Shahid, M.K. A Comprehensive Review of Physical Therapy Interventions for Stroke Rehabilitation: Impairment-Based Approaches and Functional Goals. Brain Sci. 2023, 13, 717. [Google Scholar] [CrossRef]
- Health Level Seven International. HL7 FHIR Standard-FHIR Release 4 (R4) Specification, Version 2.5.1; Release 4, R2; Health Level Seven International: Ann Arbor, MI, USA, 2023. Available online: https://www.hl7.org/fhir/ (accessed on 2 December 2025).
- Bender, D.; Sartipi, K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, Porto, Portugal, 20–22 June 2013; pp. 326–331. [Google Scholar]
- Huang, C.; Wang, J.; Wang, S.; Zhang, Y. Internet of medical things: A systematic review. Neurocomputing 2023, 557, 18. [Google Scholar] [CrossRef]
- Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. J. Oral Biol. Craniofacial Res. 2022, 12, 302–318. [Google Scholar] [CrossRef]
- Gallo, G.D.; Micucci, D. Internet of Medical Things Systems Review: Insights into Non-Functional Factors. Sensors 2025, 25, 2795. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wu, Z. The Application of Wearable Sensors and Machine Learning Algorithms in Rehabilitation Training: A Systematic Review. Sensors 2023, 23, 7667. [Google Scholar] [CrossRef] [PubMed]
- Marín-Medina, D.S.; Arenas-Vargas, P.A.; Arias-Botero, J.C.; Gómez-Vásquez, M.; Jaramillo-López, M.F.; Gaspar-Toro, J.M. New approaches to recovery after stroke. Neurol. Sci. 2024, 45, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Ollinger, G.; Chua, K.S.G.; Ong, P.L.; Kuah, C.W.K.; Plunkett, T.K.; Ng, C.Y.; Khin, L.W.; Goh, K.H.; Chong, W.B.; Low, J.A.M.; et al. Telerehabilitation using a 2-D planar arm rehabilitation robot for hemiparetic stroke: A feasibility study of clinic-to-home exergaming therapy. J. Neuroeng. Rehabil. 2024, 21, 207. [Google Scholar] [CrossRef]
- Kim, S.; Park, S.W.; Jeong, T.; Kang, M.S.; Kim, D.Y. AI-driven cognitive telerehabilitation for stroke: A randomized controlled trial. Front. Neurol. 2025, 16, 1636017. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.; Zhang, G.; Zhang, Y.; Dong, J. A randomized controlled Trial of telerehabilitation intervention for acute ischemic stroke patients Post-Discharge. J. Clin. Neurosci. 2025, 136, 111245. [Google Scholar] [CrossRef]
- Contrada, M.; Arabia, G.; Vatrano, M.; Pucci, C.; Mantia, I.; Scarfone, F.; Torchia, G.; Quintieri, M.; Cerasa, A.; Pignolo, L. Multidomain Cognitive Tele-Neurorehabilitation Training in Long-Term Post-Stroke Patients: An RCT Study. Brain Sci. 2025, 15, 145. [Google Scholar] [CrossRef]
- Lam, W.W.T.; Tang, Y.M.; Fong, K.N.K. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. J. Neuroeng. Rehabil. 2023, 20, 57. [Google Scholar] [CrossRef]
- Ahmed, T.; Thopalli, K.; Rikakis, T.; Turaga, P.; Kelliher, A.; Huang, J.B.; Wolf, S.L. Automated Movement Assessment in Stroke Rehabilitation. Front. Neurol. 2021, 12, 720650. [Google Scholar] [CrossRef] [PubMed]
- Maceira-Elvira, P.; Popa, T.; Schmid, A.C.; Hummel, F.C. Wearable technology in stroke rehabilitation: Towards improved diagnosis and treatment of upper-limb motor impairment. J. Neuroeng. Rehabil. 2019, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- Adans-Dester, C.; Hankov, N.; O’Brien, A.; Vergara-Diaz, G.; Black-Schaffer, R.; Zafonte, R.; Dy, J.; Lee, S.I.; Bonato, P. Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. npj Digit. Med. 2020, 3, 121. [Google Scholar] [CrossRef]
- Karoulla, E.; Matsangidou, M.; Frangoudes, F.; Paspalides, P.; Neokleous, K.; Pattichis, C.S. Tracking Upper Limb Motion via Wearable Solutions: Systematic Review of Research From 2011 to 2023. J. Med. Internet Res. 2024, 26, e51994. [Google Scholar] [CrossRef]
- Rech, K.; da Cunha, M.J.; Salazar, A.P.; Almeida, R.D.R.; Pedrini Schuch, C.; Balbinot, G. Enhancing safety monitoring in post-stroke rehabilitation through wearable technologies. Clin. Rehabil. 2025, 39, 388–398. [Google Scholar] [CrossRef]
- Stock, R.; Gaarden, A.P.; Langørgen, E. The potential of wearable technology to support stroke survivors’ motivation for home exercise—Focus group discussions with stroke survivors and physiotherapists. Physiother. Theory Pract. 2024, 40, 1795–1806. [Google Scholar] [CrossRef]
- El Husseini, N.; Katzan, I.L.; Rost, N.S.; Blake, M.L.; Byun, E.; Pendlebury, S.T.; Aparicio, H.J.; Marquine, M.J.; Gottesman, R.F.; Smith, E.E. Cognitive Impairment After Ischemic and Hemorrhagic Stroke: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke 2023, 54, e272–e291. [Google Scholar] [CrossRef] [PubMed]
- Toh, S.F.M.; Gonzalez, P.C.; Fong, K.N.K. Usability of a wearable device for home-based upper limb telerehabilitation in persons with stroke: A mixed-methods study. Digit. Health 2023, 9, 20552076231153737. [Google Scholar] [CrossRef]
- Bishop, L.; Demers, M.; Rowe, J.; Zondervan, D.; Winstein, C.J. A Novel, Wearable Inertial Measurement Unit for Stroke Survivors: Validity, Acceptability, and Usability. Arch. Phys. Med. Rehabil. 2024, 105, 1142–1150. [Google Scholar] [CrossRef]
- Stuart, S.; de Kok, M.; O’Searcoid, B.; Morrisroe, H.; Serban, I.B.; Jagers, F.; Dulos, R.; Houben, S.; van de Peppel, L.; van den Brand, J. Critical Design Considerations for Longer-Term Wear and Comfort of On-Body Medical Devices. Bioengineering 2024, 11, 1058. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Sudheer, P.; Agarwal, A.; Nilima, N.; Srivastava, M.V.P.; Vishnu, V.Y. Minimal Clinically Important Difference of Scales Reported in Stroke Trials: A Review. Brain Sci. 2024, 14, 80. [Google Scholar] [CrossRef]
- Marek, K.; Górski, J.; Karolczyk, P.; Redlicka, J.; Zubrycki, I.; Miller, E. Feasibility of Wearable Devices for Motivating Post-Stroke Patients. Sensors 2025, 25, 5204. [Google Scholar] [CrossRef]
- Gassert, R.; Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: A neurophysiological perspective. J. Neuroeng. Rehabil. 2018, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Oña, E.D.; Cano-de la Cuerda, R.; Sánchez-Herrera, P.; Balaguer, C.; Jardón, A. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb. J. Healthc. Eng. 2018, 2018, 9758939. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, S.; He, R.; Wang, B.; Ding, M. A Home-based Dual-mode Upper Limb Rehabilitation System: Teleoperation Mode and Bilateral Mode with sEMG and IMU. IEEE J. Biomed. Health Inform. 2025, 29, 8140–8152. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Wong, T.W.; Ng, S.S.M.; Hu, X. Personalized robots for long-term telerehabilitation after stroke: A perspective on technological readiness and clinical translation. Front. Rehabil. Sci. 2023, 4, 1329927. [Google Scholar] [CrossRef]
- Wu, X.; Qiao, X.; Xie, Y.; Yang, Q.; An, W.; Xia, L.; Li, J.; Lu, X. Rehabilitation training robot using mirror therapy for the upper and lower limb after stroke: A prospective cohort study. J. Neuroeng. Rehabil. 2025, 22, 54. [Google Scholar] [CrossRef]
- Rithiely, B.; Shirahige, L.; Lima, P.; Souza, M.; Marques, D.; Brito, R.; Baltar, A.; Duarte-Moreira, R.J.; Barreto, G.; Andrade, R.; et al. Non-invasive brain stimulation for stroke-related motor impairment and disability: An umbrella review of systematic review and meta-analysis. Front. Neurosci. 2025, 19, 1633986. [Google Scholar] [CrossRef]
- Noguera Cundar, A.; Fotouhi, R.; Ochitwa, Z.; Obaid, H. Quantifying the Effects of Network Latency for a Teleoperated Robot. Sensors 2023, 23, 8438. [Google Scholar] [CrossRef]
- Karacan, I.; Topkara Arslan, B.; Karaoglu, A.; Aydin, T.; Gray, S.; Ungan, P.; Türker, K.S. Estimating and minimizing movement artifacts in surface electromyogram. J. Electromyogr. Kinesiol. 2023, 70, 102778. [Google Scholar] [CrossRef]
- Pan, J.; Wei, S. Accuracy and reliability of accelerometer-based pedometers in step counts during walking, running, and stair climbing in different locations of attachment. Sci. Rep. 2024, 14, 27761. [Google Scholar] [CrossRef]
- Alam, N.B.; Surani, M.; Das, C.K.; Giacco, D.; Singh, S.P.; Jilka, S. Challenges and standardisation strategies for sensor-based data collection for digital phenotyping. Commun. Med. 2025, 5, 360. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, A.F.; Schwamm, L.H.; Khera, R. Distributed Precision Stroke Care: Artificial Intelligence-Driven Stroke Management Using Multimodal Sensor Data. Stroke, 2025; Epub ahead of print. [Google Scholar] [CrossRef]
- Wright, J.; Macefield, V.G.; van Schaik, A.; Tapson, J.C. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems. Front. Neurosci. 2016, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Shin, U.; Shoaran, M. Closed-Loop Neural Prostheses With On-Chip Intelligence: A Review and a Low-Latency Machine Learning Model for Brain State Detection. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.; Krauth, R.; Reichert, C.; Perdikis, S.; Vogt, S.; Huchtemann, T.; Dürschmid, S.; Sickert, A.; Lamprecht, J.; Huremovic, A.; et al. Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery. Sci. Rep. 2024, 14, 18700. [Google Scholar] [CrossRef]
- Ibáñez, J.; Monge-Pereira, E.; Molina-Rueda, F.; Serrano, J.I.; Del Castillo, M.D.; Cuesta-Gómez, A.; Carratalá-Tejada, M.; Cano-de-la-Cuerda, R.; Alguacil-Diego, I.M.; Miangolarra-Page, J.C.; et al. Low Latency Estimation of Motor Intentions to Assist Reaching Movements along Multiple Sessions in Chronic Stroke Patients: A Feasibility Study. Front. Neurosci. 2017, 11, 126. [Google Scholar] [CrossRef]
- Barba, P.; Stramiello, J.; Funk, E.K.; Richter, F.; Yip, M.C.; Orosco, R.K. Remote telesurgery in humans: A systematic review. Surg. Endosc. 2022, 36, 2771–2777. [Google Scholar] [CrossRef]
- Küderle, A.; Roth, N.; Zlatanovic, J.; Zrenner, M.; Eskofier, B.; Kluge, F. The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking. PLoS ONE 2022, 17, e0269567. [Google Scholar] [CrossRef]
- Martins, D.; Lewerenz, S.; Carmo, A.; Martins, H. Interoperability of telemonitoring data in digital health solutions: A scoping review. Front. Digit. Health 2025, 7, 1502260. [Google Scholar] [CrossRef]
- Falkenhein, I.; Bernhardt, B.; Gradwohl, S.; Brandl, M.; Hussein, R.; Hanke, S. Wearable Device Health Data Mapping to Open mHealth and FHIR Data Formats. Stud. Health Technol. Inform. 2023, 305, 341–344. [Google Scholar] [CrossRef]
- Hofmeijer, J.; Ham, F.; Kwakkel, G. Evidence of rTMS for Motor or Cognitive Stroke Recovery: Hype or Hope? Stroke 2023, 54, 2500–2511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.Y.; Ang, J.; Saffari, S.E.; Tor, P.C.; Lo, Y.L.; Wan, K.R. Repetitive Transcranial Magnetic Stimulation for Motor Recovery After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials With Low Risk of Bias. Neuromodulation 2025, 28, 16–42. [Google Scholar] [CrossRef]
- Van Hoornweder, S.; Vanderzande, L.; Bloemers, E.; Verstraelen, S.; Depestele, S.; Cuypers, K.; Dun, K.V.; Strouwen, C.; Meesen, R. The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clin. Neurophysiol. 2021, 132, 1897–1918. [Google Scholar] [CrossRef]
- Edwards, J.D.; Dominguez-Vargas, A.U.; Rosso, C.; Branscheidt, M.; Sheehy, L.; Quandt, F.; Zamora, S.A.; Fleming, M.K.; Azzollini, V.; Mooney, R.A.; et al. A translational roadmap for transcranial magnetic and direct current stimulation in stroke rehabilitation: Consensus-based core recommendations from the third stroke recovery and rehabilitation roundtable. Neurorehabil. Neural Repair 2024, 38, 19–29. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Ekhtiari, H.; Antal, A.; Auvichayapat, P.; Baeken, C.; Benseñor, I.M.; Bikson, M.; Boggio, P.; Borroni, B.; Brighina, F.; et al. Digitalized transcranial electrical stimulation: A consensus statement. Clin. Neurophysiol. 2022, 143, 154–165. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.H.; Yoon, J.Y.; Jo, Y.J.; Son, M.N.; Kim, D.S.; Kim, G.W.; Won, Y.H.; Park, S.H.; Seo, J.H.; Kim, Y.H. Home-Based Transcranial Direct Current Stimulation to Enhance Cognition in Stroke: Randomized Controlled Trial. Stroke 2022, 53, 2992–3001. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.E.; Kasschau, M.; Datta, A.; Knotkova, H.; Stevens, M.C.; Alonzo, A.; Loo, C.; Krull, K.R.; Bikson, M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Front. Syst. Neurosci. 2015, 9, 26. [Google Scholar] [CrossRef]
- Kocahasan, M.; Stockbridge, M.D.; Stilling, J.; Utianski, R.L.; Sebastian, R.; Keser, Z. Remotely Supervised Transcranial Direct Current Stimulation in Post-Stroke Recovery: A Scoping Review. Medicina 2025, 61, 627. [Google Scholar] [CrossRef]
- Khan, M.A.; Fares, H.; Ghayvat, H.; Brunner, I.C.; Puthusserypady, S.; Razavi, B.; Lansberg, M.; Poon, A.; Meador, K.J. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front. Neurol. 2023, 14, 1272992. [Google Scholar] [CrossRef]
- Jaqueline da Cunha, M.; Rech, K.D.; Salazar, A.P.; Pagnussat, A.S. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2021, 64, 101388. [Google Scholar] [CrossRef] [PubMed]
- Biasiucci, A.; Leeb, R.; Iturrate, I.; Perdikis, S.; Al-Khodairy, A.; Corbet, T.; Schnider, A.; Schmidlin, T.; Zhang, H.; Bassolino, M.; et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 2018, 9, 2421. [Google Scholar] [CrossRef]
- Ren, C.; Li, X.; Gao, Q.; Pan, M.; Wang, J.; Yang, F.; Duan, Z.; Guo, P.; Zhang, Y. The effect of brain-computer interface controlled functional electrical stimulation training on rehabilitation of upper limb after stroke: A systematic review and meta-analysis. Front. Hum. Neurosci. 2024, 18, 1438095. [Google Scholar] [CrossRef]
- Eraifej, J.; Clark, W.; France, B.; Desando, S.; Moore, D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: A systematic review and meta-analysis. Syst. Rev. 2017, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, M.E.; Bucak, B.; Keser, Z. Advances in Stroke Neurorehabilitation. J. Clin. Med. 2023, 12, 6734. [Google Scholar] [CrossRef]
- Duncan, P.W.; Bernhardt, J. Telerehabilitation: Has Its Time Come? Stroke 2021, 52, 2694–2696. [Google Scholar] [CrossRef] [PubMed]
- Kayola, G.; Mataa, M.M.; Asukile, M.; Chishimba, L.; Chomba, M.; Mortel, D.; Nutakki, A.; Zimba, S.; Saylor, D. Stroke Rehabilitation in Low- and Middle-Income Countries: Challenges and Opportunities. Am. J. Phys. Med. Rehabil. 2023, 102, S24–S32. [Google Scholar] [CrossRef]
- Salgueiro, C.; Urrútia, G.; Cabanas-Valdés, R. Influence of Core-Stability Exercises Guided by a Telerehabilitation App on Trunk Performance, Balance and Gait Performance in Chronic Stroke Survivors: A Preliminary Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 5689. [Google Scholar] [CrossRef]
- Tosto-Mancuso, J.; Tabacof, L.; Herrera, J.E.; Breyman, E.; Dewil, S.; Cortes, M.; Correa-Esnard, L.; Kellner, C.P.; Dangayach, N.; Putrino, D. Gamified Neurorehabilitation Strategies for Post-stroke Motor Recovery: Challenges and Advantages. Curr. Neurol. Neurosci. Rep. 2022, 22, 183–195. [Google Scholar] [CrossRef]
- Saygili, F.; Guclu-Gunduz, A.; Eldemir, S.; Eldemir, K.; Ozkul, C.; Gursoy, G.T. Effects of modified-constraint induced movement therapy based telerehabilitation on upper extremity motor functions in stroke patients. Brain Behav. 2024, 14, e3569. [Google Scholar] [CrossRef]
- Cramer, S.C.; Young, B.M.; Schwarz, A.; Chang, T.Y.; Su, M. Telerehabilitation Following Stroke. Phys. Med. Rehabil. Clin. N. Am. 2024, 35, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Everard, G.; Declerck, L.; Detrembleur, C.; Leonard, S.; Bower, G.; Dehem, S.; Lejeune, T. New technologies promoting active upper limb rehabilitation after stroke: An overview and network meta-analysis. Eur. J. Phys. Rehabil. Med. 2022, 58, 530–548. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, R.; García-Ramos, B.R.; González-Mora, J.L.; Modroño, C. Virtual Reality Therapy for Upper Limb Motor Impairments in Patients With Stroke: A Systematic Review and Meta-Analysis. Physiother. Res. Int. 2025, 30, e70040. [Google Scholar] [CrossRef]
- Chen, Y.; Abel, K.T.; Janecek, J.T.; Chen, Y.; Zheng, K.; Cramer, S.C. Home-based technologies for stroke rehabilitation: A systematic review. Int. J. Med. Inform. 2019, 123, 11–22. [Google Scholar] [CrossRef]
- Hung, Y.X.; Huang, P.C.; Chen, K.T.; Chu, W.C. What Do Stroke Patients Look for in Game-Based Rehabilitation: A Survey Study. Medicine 2016, 95, e3032. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; He, Z.; Yu, X.; Remis, A. Comparison of immersive and non-immersive virtual reality for upper extremity functional recovery in patients with stroke: A systematic review and network meta-analysis. Neurol. Sci. 2023, 44, 2679–2697. [Google Scholar] [CrossRef]
- Lin, C.; Ren, Y.; Lu, A. The effectiveness of virtual reality games in improving cognition, mobility, and emotion in elderly post-stroke patients: A systematic review and meta-analysis. Neurosurg. Rev. 2023, 46, 167. [Google Scholar] [CrossRef]
- Park, Y.S.; An, C.S.; Lim, C.G. Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. Int. J. Environ. Res. Public Health 2021, 18, 5524. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Song, Y.; Qin, W.; Sun, G.; Liu, Y.; Bao, Y.; Liu, L.; Jin, L. Effects of brain-computer interface based training on post-stroke upper-limb rehabilitation: A meta-analysis. J. Neuroeng. Rehabil. 2025, 22, 44. [Google Scholar] [CrossRef]
- Zrenner, C.; Belardinelli, P.; Müller-Dahlhaus, F.; Ziemann, U. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops. Front. Cell Neurosci. 2016, 10, 92. [Google Scholar] [CrossRef]
- Ma, Y.N.; Karako, K.; Song, P.; Hu, X.; Xia, Y. Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke. Biosci. Trends 2025, 19, 243–251. [Google Scholar] [CrossRef]
- Wang, A.; Tian, X.; Jiang, D.; Yang, C.; Xu, Q.; Zhang, Y.; Zhao, S.; Zhang, X.; Jing, J.; Wei, N.; et al. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: A randomized controlled trial. Med 2024, 5, 559–569.e554. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Li, W.; Zhang, S.; Lv, P.; Yin, Y. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: A randomized controlled trial. BMC Neurol. 2023, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Cervera, M.A.; Soekadar, S.R.; Ushiba, J.; Millán, J.D.R.; Liu, M.; Birbaumer, N.; Garipelli, G. Brain-computer interfaces for post-stroke motor rehabilitation: A meta-analysis. Ann. Clin. Transl. Neurol. 2018, 5, 651–663. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.H.; Hong, H.; Jeong, Y.; Ryu, H.; Kim, H.; Lee, S.U. Deep learning model for classifying shoulder pain rehabilitation exercises using IMU sensor. J. Neuroeng. Rehabil. 2024, 21, 42. [Google Scholar] [CrossRef] [PubMed]
- Senadheera, I.; Hettiarachchi, P.; Haslam, B.; Nawaratne, R.; Sheehan, J.; Lockwood, K.J.; Alahakoon, D.; Carey, L.M. AI Applications in Adult Stroke Recovery and Rehabilitation: A Scoping Review Using AI. Sensors 2024, 24, 6585. [Google Scholar] [CrossRef]
- Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait Partitioning Methods: A Systematic Review. Sensors 2016, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Gorjan, D.; Gramann, K.; De Pauw, K.; Marusic, U. Removal of movement-induced EEG artifacts: Current state of the art and guidelines. J. Neural Eng. 2022, 19, 011004. [Google Scholar] [CrossRef]
- Lu, Z.; Signer, T.; Sylvester, R.; Gonzenbach, R.; von Wyl, V.; Haag, C. Implementation of Remote Activity Sensing to Support a Rehabilitation Aftercare Program: Observational Mixed Methods Study With Patients and Health Care Professionals. JMIR Mhealth Uhealth 2023, 11, e50729. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, G.S.; Picard, R.W.; Friend, S.H. Key Issues as Wearable Digital Health Technologies Enter Clinical Care. N. Engl. J. Med. 2024, 390, 1118–1127. [Google Scholar] [CrossRef]
- Bashiri, F.S.; Carey, K.A.; Martin, J.; Koyner, J.L.; Edelson, D.P.; Gilbert, E.R.; Mayampurath, A.; Afshar, M.; Churpek, M.M. Development and external validation of deep learning clinical prediction models using variable-length time series data. J. Am. Med. Inform. Assoc. 2024, 31, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Hossain, D.; Scott, S.H.; Cluff, T.; Dukelow, S.P. The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke. J. Neuroeng. Rehabil. 2023, 20, 15. [Google Scholar] [CrossRef]
- Jeter, R.; Greenfield, R.; Housley, S.N.; Belykh, I. Classifying Residual Stroke Severity Using Robotics-Assisted Stroke Rehabilitation: Machine Learning Approach. JMIR Biomed. Eng. 2024, 9, e56980. [Google Scholar] [CrossRef]
- van der Gun, G.J.; Meskers, C.G.M.; Andrinopoulou, E.R.; Grauwmeijer, E.; Hoogendam, L.; van Wegen, E.E.H.; Kwakkel, G.; Selles, R.W. Can machine learning improve on the early prediction of upper limb recovery after stroke? J. Neuroeng. Rehabil. 2025, 22, 223. [Google Scholar] [CrossRef]
- Rasoolinejad, M.; Say, I.; Wu, P.B.; Liu, X.; Zhou, Y.; Zhang, N.; Rosario, E.R.; Lu, D.C. Machine learning predicts improvement of functional outcomes in spinal cord injury patients after inpatient rehabilitation. Front. Rehabil. Sci. 2025, 6, 1594753. [Google Scholar] [CrossRef]
- Ma, J.; Xie, Y. Machine learning techniques for independent gait recovery prediction in acute anterior circulation ischemic stroke. J. Neuroeng. Rehabil. 2025, 22, 19. [Google Scholar] [CrossRef]
- Lanotte, F.; O’Brien, M.K.; Jayaraman, A. AI in Rehabilitation Medicine: Opportunities and Challenges. Ann. Rehabil. Med. 2023, 47, 444–458. [Google Scholar] [CrossRef]
- Soltanieh, S.; Khalvati, F.; Yeh, E.A. Federated Learning in Neurology: Bridging Data Privacy and Artificial Intelligence for Brain Health. In Seminars in Neurology; Thieme Medical Publishers, Inc.: New York, NY, USA, 2025. [Google Scholar] [CrossRef]
- Shuvra, S.M.; Gony, M.N. Explainability vs. Performance: Bridging the Trade-Off in Deep Learning Models. Int. J. Adv. Res. Comput. Sci. Technol. 2024, 7, 10931–10941. [Google Scholar] [CrossRef]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar] [CrossRef]
- Telerehabilitation In The Home After Stroke: A Randomized, Controlled, Assessor-Blind Clinical Trial. 2024. Available online: https://www.clinicaltrials.gov/study/NCT06682429 (accessed on 8 December 2025).
- Saywell, N.L.; Vandal, A.C.; Mudge, S.; Hale, L.; Brown, P.; Feigin, V.; Hanger, C.; Taylor, D. Telerehabilitation After Stroke Using Readily Available Technology: A Randomized Controlled Trial. Neurorehabil. Neural Repair 2021, 35, 88–97. [Google Scholar] [CrossRef]
- Dedo, R.; Jurga, T.; Barkham, J. VA Home Telehealth Program for Initiating and Optimizing Heart Failure Guideline-Directed Medical Therapy. Fed. Pract. 2023, 40, S16–S23. [Google Scholar] [CrossRef]
- Meyerowitz-Katz, G.; Ravi, S.; Arnolda, L.; Feng, X.; Maberly, G.; Astell-Burt, T. Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e20283. [Google Scholar] [CrossRef]
- Pedersen, D.H.; Mansourvar, M.; Sortsø, C.; Schmidt, T. Predicting Dropouts From an Electronic Health Platform for Lifestyle Interventions: Analysis of Methods and Predictors. J. Med. Internet Res. 2019, 21, e13617. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A. Mind-controlled robot arms show promise. Nature 2012. [Google Scholar] [CrossRef]
- Understanding and Restoring Speech Production Using an Intracortical Brain-Computer Interface. 2023. Available online: https://clinicaltrials.gov/study/NCT06094205 (accessed on 10 December 2025).
- Hochberg, L.R. BrainGate2: Feasibility Study of an Intracortical Neural Interface System for Persons With Tetraplegia; NCT00912041; National Library of Medicine: Bethesda, MD, USA, 2009.
- Chaudhary, U. Neurofeedback Basics and Applications. In Expanding Senses Using Neurotechnology: Volume 1—Foundation of Brain-Computer Interface Technology; Chaudhary, U., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 363–400. [Google Scholar]
- Perez-Marcos, D.; Chevalley, O.; Schmidlin, T.; Garipelli, G.; Serino, A.; Vuadens, P.; Tadi, T.; Blanke, O.; Millán, J.D.R. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: A pilot study. J. Neuroeng. Rehabil. 2017, 14, 119. [Google Scholar] [CrossRef] [PubMed]
- Mindmaze, S.A. The Use of Immersive Virtual Reality for Upper Limb Neurorehabilitation in Stroke Survivors; NCT03094650; National Library of Medicine: Bethesda, MD, USA, 2017.
- Maier, M.; Ballester, B.R.; Verschure, P. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front. Syst. Neurosci. 2019, 13, 74. [Google Scholar] [CrossRef]
- Universidad Miguel Hernandez de Elche. Integrating AI in Stroke Neurorehabilitation (AISN). 2025, NCT07138495. Available online: https://clinicaltrials.gov/study/NCT07138495 (accessed on 6 December 2025).
- Abbas, G.H.; Speksnijder, C.; Ramnarain, D.; Parmar, C.; Parmar, A.; Ahmad, S.; Pouwels, S. AI-Driven Rehabilitation Robotics: Advancements in and Impacts on Patient Recovery. Cureus 2025, 17, e94273. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shao, D.; Tarabini, M.; Moezi, S.A.; Li, K.; Saccomandi, P. Advancements in Sensor Technologies and Control Strategies for Lower-Limb Rehabilitation Exoskeletons: A Comprehensive Review. Micromachines 2024, 15, 489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, J.; Huang, Z.; Huang, D.; Yu, H.; Li, Z. Recent Progress in Wearable Brain-Computer Interface (BCI) Devices Based on Electroencephalogram (EEG) for Medical Applications: A Review. Health Data Sci. 2023, 3, 0096. [Google Scholar] [CrossRef]
- Bessler, J.; Prange-Lasonder, G.B.; Schulte, R.V.; Schaake, L.; Prinsen, E.C.; Buurke, J.H. Occurrence and Type of Adverse Events During the Use of Stationary Gait Robots-A Systematic Literature Review. Front. Robot. AI 2020, 7, 557606. [Google Scholar] [CrossRef]
- Liang, N.L.; Chung, T.K.; Vorp, D.A. The regulatory environment for artificial intelligence-enabled devices in the United States. Semin. Vasc. Surg. 2023, 36, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Adeleye, K.K.; Egbon, E.; Nwabuoku, U.S.; Clement David-Olawade, A.; Boussios, S.; Vanderbloemen, L. Enhancing home rehabilitation through AI-driven virtual assistants: A narrative review. Ann. Transl. Med. 2025, 13, 61. [Google Scholar] [CrossRef]
- Arbuckle, S.A.; Knill, A.S.; Chan-Cortés, M.H.; Rozanski, G.; Ford, A.E.; Derungs, L.T.; Krakauer, J.W.; Ejaz, N.; Putrino, D.; Tosto-Mancuso, J.; et al. A Resource-Efficient, High-Dose, Gamified Neurorehabilitation Program for Chronic Stroke at Home: Retrospective Real-World Analysis. JMIR Serious Games 2025, 13, e69335. [Google Scholar] [CrossRef]
- Norris, T.A.; Augenstein, T.E.; Rodriguez, K.M.; Claflin, E.S.; Krishnan, C. Shaping corticospinal pathways in virtual reality: Effects of task complexity and sensory feedback during mirror therapy in neurologically intact individuals. J. Neuroeng. Rehabil. 2024, 21, 154. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhu, X.; Qian, L.; Wu, C.; Yang, F.; Zhan, D.; Kang, Z.; Luo, K.; Meng, D.; Xu, G. Electroencephalogram-based adaptive closed-loop brain-computer interface in neurorehabilitation: A review. Front. Comput. Neurosci. 2024, 18, 1431815. [Google Scholar] [CrossRef]
- Faria, A.L.; Almeida, Y.; Branco, D.; Câmara, J.; Cameirão, M.; Ferreira, L.; Moreira, A.; Paulino, T.; Rodrigues, P.; Spinola, M.; et al. NeuroAIreh@b: An artificial intelligence-based methodology for personalized and adaptive neurorehabilitation. Front. Neurol. 2023, 14, 1258323. [Google Scholar] [CrossRef]
- Abedi, A.; Colella, T.J.F.; Pakosh, M.; Khan, S.S. Artificial intelligence-driven virtual rehabilitation for people living in the community: A scoping review. npj Digit. Med. 2024, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Rachakonda, S.; Moorthy, S.; Jain, A.; Bukharev, A.; Bucur, A.; Manni, F.; Quiterio, T.M.; Joosten, L.; Mendez, N.I. Privacy Enhancing and Scalable Federated Learning to Accelerate AI Implementation in Cross-Silo and IoMT Environments. IEEE J. Biomed. Health Inform. 2023, 27, 744–755. [Google Scholar] [CrossRef]
- Zhong, X. AI-assisted assessment and treatment of aphasia: A review. Front. Public Health 2024, 12, 1401240. [Google Scholar] [CrossRef] [PubMed]
- Liscano, Y.; Bernal, L.M.; Díaz Vallejo, J.A. Effectiveness of AI-Assisted Digital Therapies for Post-Stroke Aphasia Rehabilitation: A Systematic Review. Brain Sci. 2025, 15, 1007. [Google Scholar] [CrossRef]
- Ansari, R.A.; Senapati, S.G.; Ahluwalia, V.; Panjwani, G.A.R.; Kaur, A.; Yerrapragada, G.; Jayapradhaban Kala, J.; Elangovan, P.; Karuppiah, S.S.; Asadimanesh, N.; et al. Artificial Intelligence-Guided Neuromodulation in Heart Failure with Preserved and Reduced Ejection Fraction: Mechanisms, Evidence, and Future Directions. J. Cardiovasc. Dev. Dis. 2025, 12, 314. [Google Scholar] [CrossRef]
- Prunskis, J.V.; Masys, T.; Pyles, S.T.; Abd-Elsayed, A.; Deer, T.R.; Beall, D.P.; Gheith, R.; Patel, S.; Sayed, D.; Moten, H.; et al. The Application of Artificial Intelligence to Enhance Spinal Cord Stimulation Efficacy for Chronic Pain Management: Current Evidence and Future Directions. Curr. Pain Headache Rep. 2025, 29, 85. [Google Scholar] [CrossRef]
- Yang, G.; Peng, Z.; He, X. Data Collection Based on Opportunistic Node Connections in Wireless Sensor Networks. Sensors 2018, 18, 3697. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Albahri, A.S.; Albahri, O.S.; Alamoodi, A.H.; Abdulhussain, S.H.; Alzubaidi, L. A comprehensive review on key technologies toward smart healthcare systems based IoT: Technical aspects, challenges and future directions. Artif. Intell. Rev. 2025, 58, 343. [Google Scholar] [CrossRef]
- World Health Organization; I.T.U. Be Healthy, Be Mobile: A Handbook on How to Implement mAgeing; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Charvet, L.; Shaw, M.; Dobbs, B.; Frontario, A.; Sherman, K.; Bikson, M.; Datta, A.; Krupp, L.; Zeinapour, E.; Kasschau, M. Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation 2018, 21, 383–389. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Costa, A.; Schmalzried, E.; Tong, J.; Khanyan, B.; Wang, W.; Jin, Z.; Bergese, S.D. Stroke Rehabilitation, Novel Technology and the Internet of Medical Things. Brain Sci. 2026, 16, 124. https://doi.org/10.3390/brainsci16020124
Costa A, Schmalzried E, Tong J, Khanyan B, Wang W, Jin Z, Bergese SD. Stroke Rehabilitation, Novel Technology and the Internet of Medical Things. Brain Sciences. 2026; 16(2):124. https://doi.org/10.3390/brainsci16020124
Chicago/Turabian StyleCosta, Ana, Eric Schmalzried, Jing Tong, Brandon Khanyan, Weidong Wang, Zhaosheng Jin, and Sergio D. Bergese. 2026. "Stroke Rehabilitation, Novel Technology and the Internet of Medical Things" Brain Sciences 16, no. 2: 124. https://doi.org/10.3390/brainsci16020124
APA StyleCosta, A., Schmalzried, E., Tong, J., Khanyan, B., Wang, W., Jin, Z., & Bergese, S. D. (2026). Stroke Rehabilitation, Novel Technology and the Internet of Medical Things. Brain Sciences, 16(2), 124. https://doi.org/10.3390/brainsci16020124

