Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (530)

Search Parameters:
Keywords = hybrid DC–DC converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4451 KiB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 (registering DOI) - 3 Aug 2025
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 196
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

14 pages, 2878 KiB  
Article
A Peak Current Mode Boost DC-DC Converter with Hybrid Spread Spectrum
by Xing Zhong, Jianhai Yu, Yongkang Shen and Jinghu Li
Micromachines 2025, 16(8), 862; https://doi.org/10.3390/mi16080862 - 26 Jul 2025
Viewed by 273
Abstract
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. [...] Read more.
The stable operation of micromachine systems relies on reliable power management, where DC-DC converters provide energy with high efficiency to extend operational endurance. However, these converters also constitute significant electromagnetic interference (EMI) sources that may interfere with the normal functioning of micro-electromechanical systems. This paper proposes a boost converter utilizing Pulse Width Modulation (PWM) with peak current mode control to address the EMI issues inherent in the switching operation of DC-DC converters. The converter incorporates a Hybrid Spread Spectrum (HSS) technique to effectively mitigate EMI noise. The HSS combines a 1.2 MHz pseudo-random spread spectrum with a 9.4 kHz triangular periodic spread spectrum. At a standard switching frequency of 2 MHz, the spread spectrum range is set to ±7.8%. Simulations conducted using a 0.5 μm Bipolar Complementary Metal-Oxide-Semiconductor Double-diffused Metal-Oxide-Semiconductor (BCD) process demonstrate that the HSS technique reduces EMI around the switching frequency by 12.29 dBμV, while the converter’s efficiency decreases by less than 1%. Full article
Show Figures

Figure 1

21 pages, 3892 KiB  
Article
Quantitative Analysis of the Fault Ride-Through Current and Control Parameters in Hybrid Modular Multilevel Converters
by Yi Xu and Bowen Tang
Appl. Sci. 2025, 15(15), 8331; https://doi.org/10.3390/app15158331 - 26 Jul 2025
Viewed by 221
Abstract
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations [...] Read more.
A quantitative analysis of the fault transient is critical for system resilience assessment and protection coordination. Focusing on hybrid modular multilevel converter (MMC)-based HVDC architecture with enhanced fault ride-through (FRT) capability, this study develops a mathematical calculation framework to quantify how controller configurations influence fault current profiles. Unlike conventional static topologies (e.g., RLC or fixed-voltage RL circuits), the proposed model integrates an RL network with a time-variant controlled voltage source, which can emulate closed-loop control response during the FRT transient. Then, the quantitative relationship is established to map the parameters of DC controllers to the fault current across diverse FRT strategies, including scenarios where control saturation dominates the transient response. Simulation studies conducted on a two-terminal MMC-HVDC architecture substantiate the efficacy and precision of the developed methodology. The proposed method enables the evaluation of DC fault behavior for hybrid MMCs, concurrently appraising FRT control strategies. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Research on Adaptive Bidirectional Droop Control Strategy for Hybrid AC-DC Microgrid in Islanding Mode
by Can Ding, Ruihua Zhao, Hongrong Zhang and Wenhui Chen
Appl. Sci. 2025, 15(15), 8248; https://doi.org/10.3390/app15158248 - 24 Jul 2025
Viewed by 159
Abstract
The interlinking converter, an important device in a hybrid AC-DC microgrid, undertakes the task of power distribution between the AC sub-microgrid and DC sub-microgrid. To address the limitations of traditional bidirectional droop control in islanding mode, particularly the lack of consideration for regulation [...] Read more.
The interlinking converter, an important device in a hybrid AC-DC microgrid, undertakes the task of power distribution between the AC sub-microgrid and DC sub-microgrid. To address the limitations of traditional bidirectional droop control in islanding mode, particularly the lack of consideration for regulation priority between AC frequency and DC voltage, this paper proposes an adaptive bidirectional droop control strategy. By introducing an adaptive weight coefficient based on normalized AC frequency and DC voltage, the strategy prioritizes regulating larger deviations in AC frequency or DC voltage. Interlinking converter action thresholds are set to avoid unnecessary frequent starts and stops. Finally, a hybrid AC-DC microgrid system in islanding mode is established in the Matlab/Simulink R2020a simulation platform to verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

19 pages, 3865 KiB  
Article
The Voltage Regulation of Boost Converters via a Hybrid DQN-PI Control Strategy Under Large-Signal Disturbances
by Pengqiang Nie, Yanxia Wu, Zhenlin Wang, Song Xu, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2025, 13(7), 2229; https://doi.org/10.3390/pr13072229 - 12 Jul 2025
Viewed by 349
Abstract
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control [...] Read more.
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control strategy that integrates proportional–integral (PI) control with a deep Q-network (DQN). The proposed framework leverages the advantages of PI control in terms of steady-state regulation and a fast transient response, while also exploiting the capabilities of the DQN agent to learn optimal control policies in dynamic and uncertain environments. To validate the effectiveness and robustness of the proposed hybrid control framework, a detailed boost converter model was developed in the MATLAB 2024/Simulink environment. The simulation results demonstrate that the proposed framework exhibits a significantly faster transient response and enhanced robustness against nonlinear disturbances compared to the conventional PI and fuzzy controllers. Moreover, by incorporating PI-based fine-tuning in the steady-state phase, the framework effectively compensates for the control precision limitations caused by the discrete action space of the DQN algorithm, thereby achieving high-accuracy voltage regulation without relying on an explicit system model. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

25 pages, 9813 KiB  
Article
Digital Twin Approach for Fault Diagnosis in Photovoltaic Plant DC–DC Converters
by Pablo José Hueros-Barrios, Francisco Javier Rodríguez Sánchez, Pedro Martín Sánchez, Carlos Santos-Pérez, Ariya Sangwongwanich, Mateja Novak and Frede Blaabjerg
Sensors 2025, 25(14), 4323; https://doi.org/10.3390/s25144323 - 10 Jul 2025
Viewed by 352
Abstract
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar [...] Read more.
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar transistors (IGBTs) and diodes and sensor-level false data injection attacks (FDIAs). A five-dimensional DT architecture is employed, where a virtual entity implemented using FMI-compliant FMUs interacts with a real-time emulated physical plant. Fault detection is performed by comparing the real-time system behaviour with DT predictions, using dynamic thresholds based on power, voltage, and current sensors errors. Once a discrepancy is flagged, a second step classifier processes normalized time-series windows to identify the specific fault type. Synthetic training data are generated using emulation models under normal and faulty conditions, and feature vectors are constructed using a compact, interpretable set of statistical and spectral descriptors. The model was validated using OPAL-RT Hardware in the Loop emulations. The results show high classification accuracy, robustness to environmental fluctuations, and transferability across system configurations. The framework also demonstrates compatibility with low-cost deployment hardware, confirming its practical applicability for fault diagnosis in real-world PV systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 4500 KiB  
Article
Analysis and Performance Evaluation of CLCC Applications in Key Power Transmission Channels
by Kang Liu, Baohong Li and Qin Jiang
Energies 2025, 18(13), 3514; https://doi.org/10.3390/en18133514 - 3 Jul 2025
Viewed by 298
Abstract
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ [...] Read more.
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ DC transmission project at the receiving end, replacing the traditional LCCs to mitigate commutation failures during AC system faults. The main innovation lies in the development of a hybrid electromechanical–electromagnetic simulation model based on actual engineering parameters that provides a comprehensive analysis of the CLCC’s electromagnetic characteristics and system-level behavior under fault conditions. This is a significant advancement over previous research, which mainly focused on discrete electromagnetic modeling in ideal or simplified scenarios without considering the full complexity of real-world regional power grids. The research demonstrates that integrating CLCCs into the regional power grid not only prevents commutation failures but also enhances the overall reliability of the transmission system. The results show that CLCCs significantly improve fault tolerance, stabilize power transmission during faults, reduce power fluctuations in neighboring transmission lines, and enhance grid stability. Furthermore, this study confirms that the CLCC-based YZ-ZJ DC project outperforms the traditional LCC system, maintaining stable power transmission even under fault conditions. In conclusion, this study validates the feasibility of CLCCs in resisting commutation failures when integrated into a large power grid and reveals their positive impact on the regional grid. Full article
Show Figures

Figure 1

9 pages, 3096 KiB  
Proceeding Paper
Development of AC-DC Converter for Hybrid PV Integrated Microgrid System
by Ramabadran Ramaprabha, Sakthivel Sangeetha, Raghunathan Akshitha Blessy, Ravichandran Lekhashree and Pachaiyappan Meenakshi
Eng. Proc. 2025, 93(1), 10; https://doi.org/10.3390/engproc2025093010 - 30 Jun 2025
Viewed by 137
Abstract
The amount of energy consumed worldwide is raising at a startling rate. This has led to a global energy crisis and a hike in fuel prices and has caused environmental jeopardy. Renewable energy resources offer a promising solution to the above situation. Solar [...] Read more.
The amount of energy consumed worldwide is raising at a startling rate. This has led to a global energy crisis and a hike in fuel prices and has caused environmental jeopardy. Renewable energy resources offer a promising solution to the above situation. Solar energy is examined to be the most liberal source of renewable energy. The efficiency of solar PV cells show nonlinear characteristics and deliver poor performance. Consequently, it is imperative to use the maximum power point tracking (MPPT) technique to extract the optimum amount of energy from photovoltaic (PV) cells. Perturb and Observe (P&O) and Incremental Conductance (INC) are examples of MPPT algorithms. The performance of MPPT schemes below varying climatic ambience should be predominantly considered. The workings of these schemes under various load conditions becomes critical to analyze. This work deals with this issue and compares the conventional P&O MPPT and INC MPPT schemes for various solar irradiation and load conditions and designing solar panels optimized for maximum power generation. The designed MPPT scheme is carried out in the control circuit of a boost converter, evaluating and designing a converter to convert solar panel DC power into grid-compatible AC power. By analyzing different methods for managing and tracking PV power, this method proves to be fast and gives better results under changes in solar insolation. Full article
Show Figures

Figure 1

37 pages, 16852 KiB  
Review
Advances in Interface Circuits for Self-Powered Piezoelectric Energy Harvesting Systems: A Comprehensive Review
by Abdallah Al Ghazi, Achour Ouslimani and Abed-Elhak Kasbari
Sensors 2025, 25(13), 4029; https://doi.org/10.3390/s25134029 - 28 Jun 2025
Viewed by 637
Abstract
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed [...] Read more.
This paper presents a comprehensive summary of recent advances in circuit topologies for piezoelectric energy harvesting, leading to self-powered systems (SPSs), covering the full-bridge rectifier (FBR) and half-bridge rectifier (HBR), AC-DC converters, and maximum power point tracking (MPPT) techniques. These approaches are analyzed with respect to their advantages, limitations, and overall impact on energy harvesting efficiency. Th work explores alternative methods that leverage phase shifting between voltage and current waveform components to enhance conversion performance. Additionally, it provides detailed insights into advanced design strategies, including adaptive power management algorithms, low-power control techniques, and complex impedance matching. The paper also addresses the fundamental principles and challenges of converting mechanical vibrations into electrical energy. Experimental results and performance metrics are reviewed, particularly in relation to hybrid approaches, load impedance, vibration frequency, and power conditioning requirements in energy harvesting systems. This review aims to provide researchers and engineers with a critical understanding of the current state of the art, key challenges, and emerging opportunities in piezoelectric energy harvesting. By examining recent developments, it offers valuable insights into optimizing interface circuit design for the development of efficient and self-sustaining piezoelectric energy harvesting systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 2795 KiB  
Article
Coordinated Control Strategy-Based Energy Management of a Hybrid AC-DC Microgrid Using a Battery–Supercapacitor
by Zineb Cabrane, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 245; https://doi.org/10.3390/batteries11070245 - 25 Jun 2025
Cited by 1 | Viewed by 671
Abstract
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with [...] Read more.
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with a hybrid energy storage system (HESS) can create a standalone MG. This paper presents an MG that uses photovoltaic energy as a principal source. An HESS is required, combining batteries and supercapacitors. This MG responds “insure” both alternating current (AC) and direct current (DC) loads. The batteries and supercapacitors have separate parallel connections to the DC bus through bidirectional converters. The DC loads are directly connected to the DC bus where the AC loads use a DC-AC inverter. A control strategy is implemented to manage the fluctuation of solar irradiation and the load variation. This strategy was implemented with a new logic control based on Boolean analysis. The logic analysis was implemented for analyzing binary data by using Boolean functions (‘0’ or ‘1’). The methodology presented in this paper reduces the stress and the faults of analyzing a flowchart and does not require a large concentration. It is used in this paper in order to simplify the control of the EMS. It permits the flowchart to be translated to a real application. This analysis is based on logic functions: “Or” corresponds to the addition and “And” corresponds to the multiplication. The simulation tests were executed at Tau  =  6 s of the low-pass filter and conducted in 60 s. The DC bus voltage was 400 V. It demonstrates that the proposed management strategy can respond to the AC and DC loads. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

37 pages, 1546 KiB  
Article
Fractional-Order Swarming Intelligence Heuristics for Nonlinear Sliding-Mode Control System Design in Fuel Cell Hybrid Electric Vehicles
by Nabeeha Qayyum, Laiq Khan, Mudasir Wahab, Sidra Mumtaz, Naghmash Ali and Babar Sattar Khan
World Electr. Veh. J. 2025, 16(7), 351; https://doi.org/10.3390/wevj16070351 - 24 Jun 2025
Viewed by 297
Abstract
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and [...] Read more.
Due to climate change, the electric vehicle (EV) industry is rapidly growing and drawing researchers interest. Driving conditions like mountainous roads, slick surfaces, and rough terrains illuminate the vehicles inherent nonlinearities. Under such scenarios, the behavior of power sources (fuel cell, battery, and super-capacitor), power processing units (converters), and power consuming units (traction motors) deviates from nominal operation. The increasing demand for FCHEVs necessitates control systems capable of handling nonlinear dynamics, while ensuring robust, precise energy distribution among fuel cells, batteries, and super-capacitors. This paper presents a DSMC strategy enhanced with Robust Uniform Exact Differentiators for FCHEV energy management. To optimally tune DSMC parameters, reduce chattering, and address the limitations of conventional methods, a hybrid metaheuristic framework is proposed. This framework integrates moth flame optimization (MFO) with the gravitational search algorithm (GSA) and Fractal Heritage Evolution, implemented through three spiral-based variants: MFOGSAPSO-A (Archimedean), MFOGSAPSO-H (Hyperbolic), and MFOGSAPSO-L (Logarithmic). Control laws are optimized using the Integral of Time-weighted Absolute Error (ITAE) criterion. Among the variants, MFOGSAPSO-L shows the best overall performance with the lowest ITAE for the fuel cell (56.38), battery (57.48), super-capacitor (62.83), and DC bus voltage (4741.60). MFOGSAPSO-A offers the most accurate transient response with minimum RMSE and MAE FC (0.005712, 0.000602), battery (0.004879, 0.000488), SC (0.002145, 0.000623), DC voltage (0.232815, 0.058991), and speed (0.030990, 0.010998)—outperforming MFOGSAPSO, GSA, and PSO. MFOGSAPSO-L further reduces the ITAE for fuel cell tracking by up to 29% over GSA and improves control smoothness. PSO performs moderately but lags under transient conditions. Simulation results conducted under EUDC validate the effectiveness of the MFOGSAPSO-based DSMC framework, confirming its superior tracking, faster convergence, and stable voltage control under transients making it a robust and high-performance solution for FCHEV. Full article
(This article belongs to the Special Issue Vehicle Control and Drive Systems for Electric Vehicles)
Show Figures

Figure 1

17 pages, 4822 KiB  
Article
Black-Start Strategy for Offshore Wind Power Delivery System Based on Series-Connected DRU-MMC Hybrid Converter
by Feng Li, Danqing Chen, Honglin Chen, Shuxin Luo, Hao Yu, Tian Hou, Guoteng Wang and Ying Huang
Electronics 2025, 14(13), 2543; https://doi.org/10.3390/electronics14132543 - 23 Jun 2025
Viewed by 260
Abstract
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore [...] Read more.
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore MMC during black-start operations. To overcome these challenges, a four-stage black-start strategy utilizing an auxiliary step-down transformer connected to the onshore MMC is proposed. The proposed strategy operates as follows: The onshore MMC first lowers its valve-side voltage via an auxiliary transformer, enabling reduced DC-side voltage. With the DRU bypassed, the offshore MMC draws startup power through the DC link, then switches to V/f mode with wind turbine curtailment to reduce DC current below the DRU bypass threshold. After stable, low-power operation, the DRU is integrated. The onshore MMC then restores rated DC voltage and disconnects the transformer, allowing gradual wind turbine reconnection to complete black-start. The simulation results confirm the approach’s feasibility under conditions where all wind turbines operate in grid-following mode. Full article
Show Figures

Figure 1

29 pages, 8083 KiB  
Article
DC-Link Voltage Stabilization and Capacitor Size Reduction in Active Neutral-Point-Clamped Inverters Using an Advanced Control Method
by Ahmet Yuksel, Ibrahim Sefa and Necmi Altin
Energies 2025, 18(12), 3143; https://doi.org/10.3390/en18123143 - 15 Jun 2025
Viewed by 621
Abstract
This study examines the impact of midpoint voltage fluctuations on the performance of multilevel converters and proposes an advanced control strategy to reduce the required DC bus capacitance while maintaining system stability. The research demonstrates that active voltage imbalance control in active neutral-point-clamped [...] Read more.
This study examines the impact of midpoint voltage fluctuations on the performance of multilevel converters and proposes an advanced control strategy to reduce the required DC bus capacitance while maintaining system stability. The research demonstrates that active voltage imbalance control in active neutral-point-clamped (ANPC) topologies allows for stable operation with significantly reduced capacitor values. A hybrid control approach, combining fuzzy logic control and third-harmonic injection PWM (THIPWM), is developed to enhance voltage balancing, and modulation techniques are systematically optimized. Both simulation and experimental analyses confirm the efficacy of the proposed method, which achieves superior voltage regulation compared to conventional PI-based control schemes. Specifically, experimental results show a reduction in peak-to-peak DC-link voltage fluctuation from 116 V to just 4 V, and the phase current THD is reduced from 3.6% to 0.8%. The results indicate a substantial reduction in voltage fluctuations, contributing to a total harmonic distortion (THD) as low as 0.8%. Furthermore, the proposed strategy facilitates an approximate 26-fold decrease in DC bus capacitor size without compromising system stability. The reduction in capacitance not only lowers the overall system costs and hardware complexity but also improves reliability. The inverter was tested at a rated power of 62.5 kW using 0.3 mF capacitors instead of the theoretically required 7.8 mF. This work advances power electronics by presenting an efficient voltage balancing methodology, offering a cost-effective and robust solution for multilevel converter applications. The findings are validated through comprehensive simulations and experimental tests, ensuring practical applicability. Full article
Show Figures

Figure 1

25 pages, 2792 KiB  
Article
Coupling Characteristic Analysis and Coordinated Planning Strategies for AC/DC Hybrid Transmission Systems with Multi-Infeed HVDC
by Hui Cai, Mingxin Yan, Song Gao, Ting Zhou, Guoteng Wang and Ying Huang
Electronics 2025, 14(11), 2294; https://doi.org/10.3390/electronics14112294 - 4 Jun 2025
Viewed by 420
Abstract
With the increasing penetration of renewable energy, the scale of AC/DC hybrid transmission systems continues to grow, intensifying risks such as line overloads under N-1 contingencies, short-circuit current violations, and operational stability challenges arising from multi-DC coupling. This paper explores the complex coupling [...] Read more.
With the increasing penetration of renewable energy, the scale of AC/DC hybrid transmission systems continues to grow, intensifying risks such as line overloads under N-1 contingencies, short-circuit current violations, and operational stability challenges arising from multi-DC coupling. This paper explores the complex coupling characteristics between AC/DC and multi-DC systems in hybrid configurations, proposing innovative evaluation indicators for coupling properties and a comprehensive assessment scheme for multi-DC coupling degrees. To enhance system stability, coordinated planning strategies are proposed for AC/DC hybrid transmission systems with multi-infeed High-voltage direct-current (HVDC) based on the AC/DC strong–weak balance principle. Specifically, planning schemes are developed for determining the locations, capacities, and converter configurations of newly added DC lines. Furthermore, to mitigate multi-DC simultaneous commutation failure risks, we propose an AC-to-DC conversion planning scheme and a strategy for adjusting the DC system technology route based on a through comprehensive multi-DC coupling strength assessment, yielding coordinated planning strategies applicable to the AC/DC hybrid transmission systems with multi-infeed HVDC. Finally, simulation studies on the IEEE two-area four-machine system validate the feasibility of the proposed hybrid transmission grid planning strategies. The results demonstrate its effectiveness in coordinating multi-DC coupling interactions, providing critical technical support for future hybrid grid development under scenarios with high renewable energy penetration. Full article
Show Figures

Figure 1

Back to TopTop