Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = humic acid application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 2688 KiB  
Article
Effect of Biostimulant Applications on Eco-Physiological Traits, Yield, and Fruit Quality of Two Raspberry Cultivars
by Francesco Giovanelli, Cristian Silvestri and Valerio Cristofori
Horticulturae 2025, 11(8), 906; https://doi.org/10.3390/horticulturae11080906 (registering DOI) - 4 Aug 2025
Viewed by 51
Abstract
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 [...] Read more.
Enhancing the yield and qualitative traits of horticultural crops without further hampering the environment constitutes an urgent challenge that could be addressed by implementing innovative agronomic tools, such as plant biostimulants. This study investigated the effects of three commercial biostimulants—BIO1 (fulvic/humic acids), BIO2 (leonardite-humic acids), and BIO3 (plant-based extracts)—on leaf ecophysiology, yield, and fruit quality in two raspberry cultivars, ‘Autumn Bliss’ (AB) and ‘Zeva’ (Z), grown in an open-field context, to assess their effectiveness in raspberry cultivation. Experimental activities involved two Research Years (RYs), namely, year 2023 (RY 1) and 2024 (RY 2). Leaf parameters such as chlorophyll, flavonols, anthocyanins, and the Nitrogen Balance Index (NBI) were predominantly influenced by the interaction between Treatment, Year and Cultivar factors, indicating context-dependent responses rather than direct biostimulant effects. BIO2 showed a tendency to increase yield (g plant−1) and berry number plant−1, particularly in RY 2 (417.50 g plant−1, +33.93% vs. control). Fruit quality responses were cultivar and time-specific: BIO3 improved soluble solid content in AB (12.8 °Brix, RY 2, Intermediate Harvest) and Z (11.43 °Brix, +13.91% vs. BIO2). BIO2 reduced titratable acidity in AB (3.12 g L−1) and increased pH in Z (3.02, RY 2) but also decreased °Brix in Z. These findings highlight the potential of biostimulants to modulate raspberry physiology and productivity but underscore the critical role of cultivar, environmental conditions, and specific biostimulant composition in determining the outcomes, which were found to critically depend on tailored application strategies. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 292
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

22 pages, 1326 KiB  
Review
Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review
by Gonzalo Almendros and José A. González-Pérez
Sustainability 2025, 17(15), 6689; https://doi.org/10.3390/su17156689 - 22 Jul 2025
Viewed by 382
Abstract
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies [...] Read more.
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies have established a causal relationship between aromatic structures and the stability of soil humus (traditional hypotheses regarding lignin and aromatic microbial metabolites as primary precursors for soil organic matter). However, further evidence has emerged that underscores the significance of humification mechanisms based solely on aliphatics. The precursors may be carbohydrates, which may be transformed by the effects of fire or catalytic dehydration reactions in soil. Furthermore, humic-type structures may be formed through the condensation of unsaturated fatty acids or the alteration of aliphatic biomacromolecules, such as cutins, suberins, and non-hydrolysable plant polyesters. In addition to the intrinsic value of understanding the potential for carbon sequestration in diverse soil types, biogeochemical models of the carbon cycle necessitate the assessment of the total quantity, nature, provenance, and resilience of the sequestered organic matter. This emphasises the necessity of applying specific techniques to gain insights into their molecular structures. The application of appropriate analytical techniques to soil organic matter, including sequential chemolysis or thermal degradation combined with isotopic analysis and high-resolution mass spectrometry, derivative spectroscopy (visible and infrared), or 13C magnetic resonance after selective degradation, enables the simultaneous assessment of the concurrent biophysicochemical stabilisation mechanisms of C in soils. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

13 pages, 1121 KiB  
Article
Optimizing Nitrogen Use Efficiency and Reducing Nutrient Losses in Maize Using Controlled-Release Coated Fertilizers
by Jong-Hyeong Lee and Hyun-Hwoi Ku
Agrochemicals 2025, 4(3), 10; https://doi.org/10.3390/agrochemicals4030010 - 30 Jun 2025
Viewed by 390
Abstract
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining [...] Read more.
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining yield comparable to conventional fertilization practices. A two-year field experiment (2017–2018) was conducted to assess CRCF formulations composed of urea, MAP, and potassium sulfate encapsulated in LDPE/EVA coatings with talc, humic acid, and starch additives. Treatments included various nitrogen application rates (33–90 kg N ha−1) using CRCF and a conventional NPK fertilizer (150 kg N ha−1). Measurements included fresh ear yield, aboveground biomass, NUE, and concentrations of total N (TN), nitrate N (NO3–N), and total P (TP) in surface runoff. Statistical analyses were performed using linear and quadratic regression models to determine yield responses and agronomic optimal N rate. CRCF treatments produced yields comparable to or exceeding those of conventional fertilization while using less than half the recommended N input. The modeled agronomic optimum N rate was 88.4 kg N ha−1, which closely matched the maximum observed yield. CRCF application significantly reduced TN, NO3–N, and TP runoff in 2017 and improved NUE up to 71.2%. Subsurface placement and sigmoidal nutrient release contributed to reduced nutrient losses. CRCFs can maintain maize yield while reducing N input by approximately 40%, aligning with climate-smart agriculture principles. This strategy enhances NUE, reduces environmental risks, and offers economic benefits by enabling single basal application. Further multi-site studies are recommended to validate these findings under diverse agroecological conditions. Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
Show Figures

Figure 1

19 pages, 7296 KiB  
Article
The Impact of Fulvic Acid on the Growth Physiology, Yield, and Quality of Tomatoes Under Drought Conditions
by Hongxia Song, Weilong Zhu, Ziqing Guo, Tianyue Song, Jiayu Wang, Chongzhen Gao, Hongtao Zhang and Ruixue Shen
Agronomy 2025, 15(7), 1528; https://doi.org/10.3390/agronomy15071528 - 24 Jun 2025
Viewed by 487
Abstract
Increased global drought severity threatens crop yield and quality. Fulvic acid (FA), a humic acid compound, enhances crop stress tolerance. This study investigated FA application on drought-stressed tomato ‘Provence’ during the seedling and fruiting stages. Seedling-stage drought severely inhibited growth, physiology, biochemistry, and [...] Read more.
Increased global drought severity threatens crop yield and quality. Fulvic acid (FA), a humic acid compound, enhances crop stress tolerance. This study investigated FA application on drought-stressed tomato ‘Provence’ during the seedling and fruiting stages. Seedling-stage drought severely inhibited growth, physiology, biochemistry, and photosynthesis, reducing seedling quality. Subsequent fruiting-stage drought further significantly decreased photosynthetic efficiency and assimilate synthesis, drastically lowering fruit yield and quality. FA application mitigated drought damage, with 400 mg·L−1 being optimal. At this concentration, under seedling drought, Seedling strength index (Si), Photosynthetic efficiency (Pn), and Instantaneous water use efficiency (IWUE) increased significantly by 76.54%, 67.46%, and 36.97%, respectively, with no adverse morphological effects by flowering. Post-drought FA spraying later significantly enhanced leaf photosynthetic enzyme activity and WUE (by 89.16%, 98.48%, 42.20%, and 40%), boosting Pn, promoting assimilate accumulation and transport to fruits. This resulted in significantly improved fruit yield and comprehensive quality. In conclusion, spraying 400 mg·L−1 FA significantly enhances tomato drought tolerance and water use efficiency in arid/semi-arid regions, offering an effective strategy for saving irrigation water and improving crop productivity in water-scarce areas. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 4076 KiB  
Article
Combination of Membrane-Based Pre-Treatment Techniques and Heterogeneous Photocatalysis to Obtain High-Quality Effluents from Produced Water
by Greta Brocchetto, Iván Sciscenko, Marco Minella, Lorenzo Craveri, Erica Bertozzi, Marco Malaguti, Marco Coha, Alberto Tiraferri and Davide Vione
Molecules 2025, 30(12), 2532; https://doi.org/10.3390/molecules30122532 - 10 Jun 2025
Viewed by 616
Abstract
Produced water is the waste aqueous phase from petroleum extraction. As it contains salts, a high organic load, and toxic organic compounds, it should be treated before disposal or reuse. In this research, the combination of membrane processes (microfiltration or membrane distillation) with [...] Read more.
Produced water is the waste aqueous phase from petroleum extraction. As it contains salts, a high organic load, and toxic organic compounds, it should be treated before disposal or reuse. In this research, the combination of membrane processes (microfiltration or membrane distillation) with TiO2-based heterogeneous photocatalysis was assessed to treat synthetic produced water. Pre-treatment with both microfiltration and membrane distillation removed the majority (90–98%) of large organic compounds (humic acids) from produced water. Moreover, membrane distillation also eliminated salt (sodium chloride). However, membrane processes only removed 10–50% of phenol, used here as proxy for low-molecular-weight toxic organic compounds. For this reason, membrane permeates, from microfiltration and membrane distillation, underwent a further photocatalytic treatment aimed at phenol degradation. The application of TiO2 photocatalysis to membrane distillation permeates was successful (100% phenol removal in 5 min), while the high chloride concentration of microfiltration permeates acted as inhibitor of the photocatalytic process. Overall, good-quality water may be obtained from the combination of membrane distillation and heterogeneous photocatalysis, which performed much better than the two techniques used separately. Indeed, while membrane distillation was not able to remove phenol, produced water was too complex a matrix to be effectively treated with TiO2/UV photocatalysis alone. Full article
Show Figures

Figure 1

22 pages, 6428 KiB  
Article
Integrated Effects of Warming Irrigation, Aeration, and Humic Acid on Yield, Quality, and GHG Emissions in Processing Tomatoes in Xinjiang
by Chubo Wang, Yuhang Lu, Libing Song, Jingcheng Wang, Yan Zhu, Jiaying Ma and Jiliang Zheng
Agronomy 2025, 15(6), 1353; https://doi.org/10.3390/agronomy15061353 - 31 May 2025
Viewed by 493
Abstract
Agricultural greenhouse gas emissions continue to rise year after year, contributing significantly to global warming—an escalating crisis that demands urgent attention. In order to address this issue, it is crucial to investigate the relationship between greenhouse gas emissions from farmland and crop yield [...] Read more.
Agricultural greenhouse gas emissions continue to rise year after year, contributing significantly to global warming—an escalating crisis that demands urgent attention. In order to address this issue, it is crucial to investigate the relationship between greenhouse gas emissions from farmland and crop yield and quality through comprehensive regulation of the soil micro-environment by inputting water, fertilizer, gas, and heat. Therefore, we conducted field experiments in 2024 to examine the effects of different water, fertilizer, gas, and heat conditions on the yield, quality, greenhouse gas emissions, net global warming potential (NGWP), and greenhouse gas emission intensity (GHGI) of processing tomatoes in Xinjiang, China. This study established two irrigation water temperatures (T0: the local irrigation water temperature, approximately 10–15 °C; and T1: warming irrigation, 20–25 °C), two humic acid application rates (H0: 0% and H1: 0.5%, % as a percentage of total fertilizer application), and three aeration methods (A0: no aeration, A1: Venturi aerated, and A2: micro–nano aerated) during the growth period. The results showed that the number of fruits per hectare (NP), vitamin C (VC) content, titratable acidity and lycopene content were all significantly increased with increasing temperature, application of 0.5% humic acid, and aeration. Warming has little effect on GHGI, while humic acid application and aeration have significant and extremely significant effects on GHGI. The GHGI of humic acid treatment was 7.70% lower than that of H0, and the GHGI of micro–nano aeration and Venturi aeration treatment was 18.95% and 6.85% lower than that of A0, respectively. We employed a comprehensive evaluation model that focused on overall differences to assess yield, quality, economic benefits, and environmental impact (GHGI, global warming potential). The optimal strategy identified comprised 20–25 °C irrigation, micro–nano aeration, and 0.5% humic acid, which collectively achieved the highest scores in yield, quality, and emission reduction. This study establishes a theoretical and technical foundation for the sustainable and efficient production of tomatoes in the arid regions of Northern Xinjiang. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 4494 KiB  
Article
Remediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soil Using Microwave-Activated Persulfate Oxidation System
by Yuanming Guo, Zhen Wang, Chenglin Hou, Hongrui Li, Wenhao Chen, Hongchao Li, Haoming Chen and Lin Shi
Sustainability 2025, 17(11), 4897; https://doi.org/10.3390/su17114897 - 26 May 2025
Viewed by 490
Abstract
Intensive industrial activities have led to severe polycyclic aromatic hydrocarbon (PAH) contamination of adjacent lands. Remediating such contaminated soil is crucial for maintaining long-term ecological health and sustainable development. This study systematically assessed the performance of a microwave-activated persulfate (MW/PS) oxidation method in [...] Read more.
Intensive industrial activities have led to severe polycyclic aromatic hydrocarbon (PAH) contamination of adjacent lands. Remediating such contaminated soil is crucial for maintaining long-term ecological health and sustainable development. This study systematically assessed the performance of a microwave-activated persulfate (MW/PS) oxidation method in remediating pyrene-contaminated soil. Under conditions of 80 °C and a persulfate concentration of 23.8 mg/g, this system achieved 85.3% pyrene degradation within 30 min, significantly outperforming both single microwave and thermal-activated persulfate (TH/PS) systems. Key factors influencing the oxidation efficiency included the temperature, persulfate and pyrene concentrations, moisture, and humic acid content. An electron paramagnetic resonance analysis confirmed the generation of reactive oxygen species, including OH, SO4•− and 1O2, in the MW/PS system, while O2•− was exclusive to the TH/PS system. However, further experiments revealed that 1O2 had a negligible impact on pyrene degradation, suggesting that its role may have been overestimated in previous studies. The high MW/PS performance was attributed to the synergistic effects of both thermal and non-thermal (molecular vibration) mechanisms. Based on these findings, the pathways of pyrene degradation were proposed, with intermediate products exhibiting reduced toxicity and bioaccumulation potential. This study provides valuable insights into the application of MW/PS systems in the remediation of PAH-contaminated soils. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Graphical abstract

16 pages, 5740 KiB  
Article
Nitrate Nitrogen Quantification via Ultraviolet Absorbance: A Case Study in Agricultural and Horticultural Regions in Central China
by Yiheng Zang, Jing Chen, Muhammad Awais, Mukhtar Iderawumi Abdulraheem, Moshood Abiodun Yusuff, Kuan Geng, Yongqi Chen, Yani Xiong, Linze Li, Yanyan Zhang, Vijaya Raghavan, Jiandong Hu, Junfeng Wu and Guoqing Zhao
Agriculture 2025, 15(11), 1131; https://doi.org/10.3390/agriculture15111131 - 23 May 2025
Viewed by 629
Abstract
Soil nitrate nitrogen (NO3-N) is a key indicator of agricultural non-point source pollution. The ultraviolet (UV) dual-wavelength method is widely used for NO3-N detection, but interference from complex soil organic matter affects its accuracy. This study investigated [...] Read more.
Soil nitrate nitrogen (NO3-N) is a key indicator of agricultural non-point source pollution. The ultraviolet (UV) dual-wavelength method is widely used for NO3-N detection, but interference from complex soil organic matter affects its accuracy. This study investigated how organic matter influences NO3-N detection by optimizing UV dual-wavelength combinations. Density functional theory (DFT) calculations showed slight spectral broadening of fulvic and humic acids in the presence of NO3-N under UV spectrum. Standard solutions and soil samples were used to compare the detection performance of different wavelength pairs. The findings indicated that the dual-wavelength combination of 235 nm/275 nm is optimal rather than 220 nm/275 nm for measuring soil samples at NO3-N concentrations exceeding 5 mg·L−1. The 235/275 nm method gave an average calibration coefficient of 1.57. Compared to the national standard and flow analysis methods, the average relative errors were 19.7% and 22.3% (p < 0.001), respectively, indicating its suitability for practical soil applications. These results demonstrate the method’s potential for rapid and accurate NO3-N detection in real soil samples, supporting its application in environmental monitoring and agricultural management. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 4911 KiB  
Article
Tannic Acid/Lysozyme-Assembled Loose Nanofiltration Membrane with Outstanding Antifouling Properties for Efficient Dye/Salt Separation
by Jianmao Yang, Xuzhao Yan, Shuai Liu, Mengchen Shi, Ying Huang, Fang Li and Xiaofeng Fang
Separations 2025, 12(5), 129; https://doi.org/10.3390/separations12050129 - 16 May 2025
Viewed by 503
Abstract
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and [...] Read more.
Precise separation and antifouling capabilities are critical for the application of membrane separation technology. In this work, we developed a multiplayer layer-by-layer assembly strategy to sequentially deposit tannic acid (TA) and lysozyme (Lys) onto polyethersulfone/iron (PES/Fe) ultrafiltration membrane substrates, enabling the simple and efficient fabrication of a biofouling-resistant loose nanofiltration (LNF) membrane with superior dye/salt separation performance. This approach fully leverages the multifunctionality of TA by exploiting its coordination with Fe3⁺ and non-covalent interactions with Lys. The obtained PES/Fe-TA-Lys LNF membrane exhibits a pure water flux of 57.5 L·m−2·h−1, along with exceptional dye rejection rates (98.3% for Congo Red (CR), 99.2% for Methyl Blue (MB), 98.4% for Eriochrome Black T (EBT), and 67.6% for Acid Orange 74 (AO74)) while maintaining minimal salt retention (8.2% for Na2SO4, 4.3% for MgSO4, 3.5% for NaCl, and 2.4% for MgCl2). The PES/Fe-TA-Lys LNF membrane also displays outstanding antifouling performance against bovine serum albumin (BSA), humic acid (HA), and CR, along with strong biofouling resistance against Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) via synergistic anti-adhesion and biofilm inhibiting effects. This work presents a novel and scalable approach to fabricating biofouling-resistant LNF membranes, offering great potential for dye/salt separation in textile wastewater treatment. Full article
Show Figures

Figure 1

16 pages, 5131 KiB  
Article
Study on Photocatalytic Performance of Bi2O3-TiO2/Powdered Activated Carbon Composite Catalyst for Malachite Green Degradation
by Yajun Chen, Man Cai, Junfeng Li and Wenshuo Zhang
Water 2025, 17(10), 1452; https://doi.org/10.3390/w17101452 - 12 May 2025
Viewed by 506
Abstract
In this study, a Bi2O3-TiO2/PAC ternary composite photocatalyst was successfully synthesized via a hydrothermal method, employing powdered activated carbon (PAC) as the support and using bismuth nitrate and tetrabutyl titanate as raw materials. The external morphology, microstructure, [...] Read more.
In this study, a Bi2O3-TiO2/PAC ternary composite photocatalyst was successfully synthesized via a hydrothermal method, employing powdered activated carbon (PAC) as the support and using bismuth nitrate and tetrabutyl titanate as raw materials. The external morphology, microstructure, elemental composition, and optoelectronic properties of the catalyst were characterized by XRD, SEM, TEM, XPS, UV-Vis DRS, and BET analyses. The photocatalytic activity of the composite toward the degradation of malachite green (MG) was systematically evaluated under various conditions. The results revealed that the composite exhibited excellent photocatalytic activity, achieving a degradation efficiency of up to 99%. Apart from extremely acidic or alkaline conditions, MG removal efficiency increased with a rising solution pH. Moreover, the photocatalyst exhibited excellent adaptability and stability in the presence of coexisting inorganic anions and humic substances, indicating its broad potential for practical applications. Reactive-species-trapping experiments indicated that superoxide radicals (·O2) were the primary active species in the degradation process, with hydroxyl radicals (·OH) and photogenerated holes (h+) acting synergistically. Moreover, the catalyst maintained over 90% removal efficiency after five consecutive cycles, demonstrating its excellent stability and reusability. This work provides a promising strategy and theoretical foundation for the efficient photocatalytic treatment of MG-contaminated wastewater. Full article
(This article belongs to the Special Issue Innovative Nanomaterials and Surfaces for Water Treatment)
Show Figures

Figure 1

30 pages, 17629 KiB  
Article
Aerobic Composting of Auricularia auricula (L.) Residues: Investigating Nutrient Dynamics and Microbial Interactions with Different Substrate Compositions
by Qian Liu, Yuxin Tian, Pengbing Wu, Junyan Zheng, Yuhe Xing, Ying Qu, Xingchi Guo and Xu Zhang
Diversity 2025, 17(4), 279; https://doi.org/10.3390/d17040279 - 16 Apr 2025
Viewed by 474
Abstract
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic [...] Read more.
Auricularia auricula (L.) is a widely cultivated edible mushroom, and the resource utilization of its residues offers significant opportunities for sustainable waste management and nutrient recovery. This study investigated the effects of substrate composition on nutrient dynamics and microbial diversity during the aerobic composting of Auricularia auricula (L.) residues. Two treatments were established: composting of Auricularia auricula (L.) residues alone (CR) and composting supplemented with green grass (CRG) over a 49-day period. The results showed that both treatments achieved compost maturity, characterized by a slightly alkaline pH, a germination index (GI) above 80%, and an electrical conductivity below 4 mS/cm. Both composts were odorless, insect-free, and dark brown. Compared to CR, the CRG treatment exhibited higher total organic carbon (TOC) degradation, cumulative total phosphorus (TP) and potassium (TK) levels, as well as enhanced urease, cellulase, and β-glucosidase activities. In contrast, CR retained higher total nitrogen (TN), humic carbon (HEC), fulvic acid carbon (FAC), humic acid carbon (HAC), and a greater humic-to-fulvic acid (HA/FA) ratio. Microbial community analysis revealed diverse bacterial and fungal taxa, with certain species positively correlated with nutrient cycling. Notably, specific substrate compositions promoted beneficial microbial proliferation, essential for efficient composting and nutrient mineralization. These findings not only provide a scientific basis for optimizing composting strategies of mushroom residues but also offer a practical pathway to convert agricultural waste into high-quality organic fertilizers. By enhancing soil fertility, reducing reliance on synthetic fertilizers, and promoting circular bioeconomy practices, this study contributes directly to sustainable agricultural development. CR and CRG treatments, respectively, support either nutrient retention or release, allowing tailored application based on crop demand and soil condition. This study underscores the potential of Auricularia auricula (L.) residues in composting systems, contributing to waste reduction and soil fertility enhancement through tailored substrate management, and offers practical insights into optimizing composting strategies for Auricularia farming by-products. Full article
Show Figures

Graphical abstract

24 pages, 1863 KiB  
Review
A Review of Eco-Corona Formation on Micro/Nanoplastics and Its Effects on Stability, Bioavailability, and Toxicity
by Haohan Yang, Zhuoyu Chen, Linghui Kong, Hao Xing, Qihang Yang and Jun Wu
Water 2025, 17(8), 1124; https://doi.org/10.3390/w17081124 - 10 Apr 2025
Cited by 1 | Viewed by 1092
Abstract
Micro/nanoplastics (M/NPs) have become prevalent in aquatic environments due to their widespread applications. Likewise, ubiquitous ecological macromolecules can adsorb onto M/NPs to form an “eco-corona”, which significantly alters their environmental behaviors including aggregation dynamics, adsorption/desorption, and bioavailability. Therefore, it is necessary to analyze [...] Read more.
Micro/nanoplastics (M/NPs) have become prevalent in aquatic environments due to their widespread applications. Likewise, ubiquitous ecological macromolecules can adsorb onto M/NPs to form an “eco-corona”, which significantly alters their environmental behaviors including aggregation dynamics, adsorption/desorption, and bioavailability. Therefore, it is necessary to analyze the role of eco-corona in assessing the environmental risks of M/NPs. This review systematically summarizes the formation mechanisms of eco-corona and evaluates its regulatory effects on the stability and ecotoxicity of M/NPs. Compared with other ecological macromolecules (e.g., natural organic matter and extracellular polymeric substances), humic acid (HA) tightly binds to M/NPs through electrostatic and hydrophobic interactions, significantly affecting their hetero-aggregation behavior and colloidal stability. In terms of bioavailability, the various functional groups on the HA surface can regulate the surface charge and hydrophobicity of M/NPs, thereby affecting their bioaccumulation and “Trojan horse” effect. Notably, the HA corona alleviates M/NPs-induced growth inhibition and oxidative stress. Genotoxicity assessment further showed that HA corona can regulate the expression of genes related to oxidative stress response and detoxification pathways. Future studies should focus on the synergistic effects between eco-corona and co-existing pollutants in complex aquatic environments to elucidate the long-term ecological risks associated with eco-corona formation. Full article
(This article belongs to the Special Issue Environmental Fate and Transport of Organic Pollutants in Water)
Show Figures

Figure 1

Back to TopTop