Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (324)

Search Parameters:
Keywords = human remains recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12693 KiB  
Article
Upscaling Soil Salinization in Keriya Oasis Using Bayesian Belief Networks
by Hong Chen, Jumeniyaz Seydehmet and Xiangyu Li
Sustainability 2025, 17(15), 7082; https://doi.org/10.3390/su17157082 - 5 Aug 2025
Abstract
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a [...] Read more.
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a spatial probabilistic model of salinization. A Bayesian Belief Network is integrated with spline interpolation in ArcGIS to map the likelihood of salinization, while Partial Least Squares Structural Equation Modeling (PLS-SEM) is applied to analyze the interactions among multiple drivers. The test results of this model indicate that its average sensitivity exceeds 80%, confirming its robustness. Salinization risk is categorized into degradation (35–79% probability), stability (0–58%), and improvement (0–48%) classes. Notably, 58.27% of the 1836.28 km2 Keriya Oasis is found to have a 50–79% chance of degradation, whereas only 1.41% (25.91 km2) exceeds a 50% probability of remaining stable, and improvement probabilities are never observed to surpass 50%. Slope gradient and soil organic matter are identified by PLS-SEM as the strongest positive drivers of degradation, while higher population density and coarser soil textures are found to counteract this process. Spatially explicit probability maps are generated to provide critical spatiotemporal insights for sustainable oasis management, revealing the complex controls and limited recovery potential of soil salinization. Full article
Show Figures

Figure 1

19 pages, 1760 KiB  
Review
An Insight into Current and Novel Treatment Practices for Refractory Full-Thickness Macular Hole
by Chin Sheng Teoh
J. Clin. Transl. Ophthalmol. 2025, 3(3), 15; https://doi.org/10.3390/jcto3030015 - 1 Aug 2025
Viewed by 172
Abstract
Refractory full-thickness macular holes (rFTMHs) present a significant challenge in vitreoretinal surgery, with reported incidence rates of 4.2–11.2% following standard vitrectomy with internal limiting membrane (ILM) peeling and gas tamponade. Risk factors include large hole size (>400 µm), chronicity (>6 months), high myopia, [...] Read more.
Refractory full-thickness macular holes (rFTMHs) present a significant challenge in vitreoretinal surgery, with reported incidence rates of 4.2–11.2% following standard vitrectomy with internal limiting membrane (ILM) peeling and gas tamponade. Risk factors include large hole size (>400 µm), chronicity (>6 months), high myopia, incomplete ILM peeling, and post-operative noncompliance. Multiple surgical techniques exist, though comparative evidence remains limited. Current options include the inverted ILM flap technique, autologous ILM transplantation (free flap or plug), lens capsular flap transplantation (autologous or allogenic), preserved human amniotic membrane transplantation, macular subretinal fluid injection, macular fibrin plug with autologous platelet concentrates, and autologous retinal transplantation. Closure rates range from 57.1% to 100%, with selection depending on hole size, residual ILM, patient posturing ability, etc. For non-posturing patients, fibrin plugs are preferred. Residual ILM cases may benefit from extended peeling or flap techniques, while large holes often require scaffold-based (lens capsule, amniotic membrane) or fibrin plug approaches. Pseudophakic patients should avoid posterior capsular flaps due to lower success rates. Despite promising outcomes, the lack of randomized trials necessitates further research to establish evidence-based guidelines. Personalized surgical planning, considering anatomical and functional goals, remains crucial in optimizing visual recovery in rFTMHs. Full article
Show Figures

Figure 1

14 pages, 872 KiB  
Article
Beyond Pain Management: Skin-to-Skin Contact as a Humanization Strategy in Cesarean Delivery: A Randomized Controlled Trial
by José Miguel Pérez-Jiménez, Rocío de-Diego-Cordero, Álvaro Borrallo-Riego, Manuel Luque-Oliveros, Domingo de-Pedro-Jimenez, Manuel Coheña-Jimenez, Patricia Bonilla Sierra and María Dolores Guerra-Martín
Healthcare 2025, 13(15), 1866; https://doi.org/10.3390/healthcare13151866 - 30 Jul 2025
Viewed by 210
Abstract
Background: Postoperative pain management after a cesarean section remains a significant challenge, as inadequate control can delay maternal recovery and hinder early bonding and breastfeeding. While multimodal analgesia is the standard approach, non–pharmacological strategies like immediate skin–to–skin contact (SSC) are often underused despite [...] Read more.
Background: Postoperative pain management after a cesarean section remains a significant challenge, as inadequate control can delay maternal recovery and hinder early bonding and breastfeeding. While multimodal analgesia is the standard approach, non–pharmacological strategies like immediate skin–to–skin contact (SSC) are often underused despite their potential benefits in reducing pain, improving uterine contractions, and increasing maternal satisfaction. Objective: To evaluate the effects of immediate SSC on postoperative pain perception, uterine contraction quality, and maternal satisfaction, and to explore ways to incorporate SSC into routine post–cesarean care to promote recovery and humanized care. Method: A randomized clinical trial was conducted with 80 women undergoing elective cesarean sections, divided into two groups: SSC (40 women) and control (40 women). Postoperative pain was measured using the Visual Analog Scale (VAS) at various intervals, while uterine contraction quality and maternal satisfaction were assessed through clinical observation and a Likert scale, respectively. Results: We found that women in the SSC group experienced significantly lower pain scores (VAS2 and VAS3, p < 0.001), stronger infraumbilical uterine contractions (92.5%, p < 0.001), and higher satisfaction levels (average 9.98 vs. 6.50, p < 0.001). An inverse correlation was observed between pain intensity and satisfaction, indicating that SSC enhances both physiological and psychological recovery. Conclusions: Immediate SSC after cesarean is an effective, humanizing intervention that reduces pain, supports uterine contractions, and boosts maternal satisfaction. These findings advocate for integrating SSC into standard postoperative care, aligning with ethical principles of beneficence and autonomy. Further research with larger samples is necessary to confirm these benefits and facilitate widespread adoption in maternity protocols. Full article
Show Figures

Figure 1

16 pages, 1795 KiB  
Article
Hospital Coordination and Protocols Using Serum and Peripheral Blood Cells from Patients and Healthy Donors in a Longitudinal Study of Guillain–Barré Syndrome
by Raquel Díaz, Javier Blanco-García, Javier Rodríguez-Gómez, Eduardo Vargas-Baquero, Carmen Fernández-Alarcón, José Rafael Terán-Tinedo, Lorenzo Romero-Ramírez, Jörg Mey, José de la Fuente, Margarita Villar, Angela Beneitez, María del Carmen Muñoz-Turrillas, María Zurdo-López, Miriam Sagredo del Río, María del Carmen Lorenzo-Lozano, Carlos Marsal-Alonso, Maria Isabel Morales-Casado, Javier Parra-Serrano and Ernesto Doncel-Pérez
Diagnostics 2025, 15(15), 1900; https://doi.org/10.3390/diagnostics15151900 - 29 Jul 2025
Viewed by 217
Abstract
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per [...] Read more.
Background/Objectives: Guillain–Barré syndrome (GBS) is a rare autoimmune peripheral neuropathy that affects both the myelin sheaths and axons of the peripheral nervous system. It is the leading cause of acute neuromuscular paralysis worldwide, with an annual incidence of less than two cases per 100,000 people. Although most patients recover, a small proportion do not regain mobility and even remain dependent on mechanical ventilation. In this study, we refer to the analysis of samples collected from GBS patients at different defined time points during hospital recovery and performed by a medical or research group. Methods: The conditions for whole blood collection, peripheral blood mononuclear cell isolation, and serum collection from GBS patients and volunteer donors are explained. Aliquots of these human samples have been used for red blood cell phenotyping, transcriptomic and proteomic analyses, and serum biochemical parameter studies. Results: The initial sporadic preservation of human samples from GBS patients and control volunteers enabled the creation of a biobank collection for current and future studies related to the diagnosis and treatment of GBS. Conclusions: In this article, we describe the laboratory procedures and the integration of a GBS biobank collection, local medical services, and academic institutions collaborating in its respective field. The report establishes the intra-disciplinary and inter-institutional network to conduct long-term longitudinal studies on GBS. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

20 pages, 9955 KiB  
Article
Dual-Branch Occlusion-Aware Semantic Part-Features Extraction Network for Occluded Person Re-Identification
by Bo Sun, Yulong Zhang, Jianan Wang and Chunmao Jiang
Mathematics 2025, 13(15), 2432; https://doi.org/10.3390/math13152432 - 28 Jul 2025
Viewed by 162
Abstract
Occlusion remains a major challenge in person re-identification, as it often leads to incomplete or misleading visual cues. To address this issue, we propose a dual-branch occlusion-aware network (DOAN), which explicitly and implicitly enhances the model’s capability to perceive and handle occlusions. The [...] Read more.
Occlusion remains a major challenge in person re-identification, as it often leads to incomplete or misleading visual cues. To address this issue, we propose a dual-branch occlusion-aware network (DOAN), which explicitly and implicitly enhances the model’s capability to perceive and handle occlusions. The proposed DOAN framework comprises two synergistic branches. In the first branch, we introduce an Occlusion-Aware Semantic Attention (OASA) module to extract semantic part features, incorporating a parallel channel and spatial attention (PCSA) block to precisely distinguish between pedestrian body regions and occlusion noise. We also generate occlusion-aware parsing labels by combining external human parsing annotations with occluder masks, providing structural supervision to guide the model in focusing on visible regions. In the second branch, we develop an occlusion-aware recovery (OAR) module that reconstructs occluded pedestrians to their original, unoccluded form, enabling the model to recover missing semantic information and enhance occlusion robustness. Extensive experiments on occluded, partial, and holistic benchmark datasets demonstrate that DOAN consistently outperforms existing state-of-the-art methods. Full article
Show Figures

Figure 1

9 pages, 234 KiB  
Review
Endovascular Treatment of Stroke and Anesthesia Technique: What Is the Best Approach, According to the Literature?
by Federica Arturi, Gabriele Melegari, Fabio Gazzotti, Elisabetta Bertellini and Alberto Barbieri
Neurol. Int. 2025, 17(8), 115; https://doi.org/10.3390/neurolint17080115 - 25 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Endovascular thrombectomy has become a mainstay in the treatment of acute ischemic stroke caused by large vessel occlusion. Among the multiple factors that influence outcomes, the choice of anesthetic technique—general anesthesia (GA), conscious sedation (CS), or local anesthesia (LA)—remains controversial. This narrative [...] Read more.
Background/Objectives: Endovascular thrombectomy has become a mainstay in the treatment of acute ischemic stroke caused by large vessel occlusion. Among the multiple factors that influence outcomes, the choice of anesthetic technique—general anesthesia (GA), conscious sedation (CS), or local anesthesia (LA)—remains controversial. This narrative review aims to critically examine and synthesize current evidence comparing the efficacy and safety of different anesthetic strategies in endovascular stroke treatment. Methods: A structured search of the PubMed® database was conducted using the terms “stroke treatment”, “endovascular stroke treatment”, “anesthesia”, “general anesthesia”, “conscious sedation”, and “local anesthesia”. The search focused on clinical trials involving human subjects published in English. Studies were included if they compared at least two anesthetic techniques during thrombectomy and reported outcomes such as neurological recovery, mortality, or complication rates. Reviews, case reports, and animal studies were excluded. Results: Several randomized controlled trials and observational studies show comparable functional outcomes between GA and CS, though CS may confer advantages in early neurological recovery and reduced complications. Local anesthesia, though less studied, may offer favorable outcomes in selected patients. General anesthesia appears to be associated with greater hemodynamic variability and a higher risk of post-procedural infections, particularly in unsuccessful interventions. Maintaining stable blood pressure and minimizing ventilation duration are crucial to improving patient prognosis. Conclusions: While both GA and CS are viable options during thrombectomy, CS and LA may provide a safer profile in selected patients by preserving hemodynamic stability and reducing infectious risk. Personalized anesthetic strategies and further high-quality trials are warranted. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Graphical abstract

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 316
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

19 pages, 2890 KiB  
Article
Prospective Neuropsychological and Plasma Biomarker Changes in Treatment-Naïve People Living with HIV After Antiretroviral Treatment Initiation
by Charalampos D. Moschopoulos, Evangelia Stanitsa, Konstantinos Protopapas, Akrivi Vatsi, Irene Galani, Henrik Zetterberg, Ion Beratis, Paraskevi C. Fragkou, Sotirios Tsiodras, Dimitra Kavatha, Antonios Papadopoulos, Sokratis G. Papageorgiou and Anastasia Antoniadou
Biomedicines 2025, 13(7), 1704; https://doi.org/10.3390/biomedicines13071704 - 12 Jul 2025
Viewed by 447
Abstract
Introduction: Human immunodeficiency virus (HIV)-associated neurocognitive impairment (NCI) remains a concern despite combination antiretroviral therapy (cART), with cognitive problems often persisting even after viral suppression. The mechanisms underlying neurocognitive deterioration in people living with HIV (PLWH) and the role of plasma biomarkers [...] Read more.
Introduction: Human immunodeficiency virus (HIV)-associated neurocognitive impairment (NCI) remains a concern despite combination antiretroviral therapy (cART), with cognitive problems often persisting even after viral suppression. The mechanisms underlying neurocognitive deterioration in people living with HIV (PLWH) and the role of plasma biomarkers remain unclear. This study aims to evaluate neurocognitive trajectories and biomarker changes in a real-world cohort of newly diagnosed PLWH initiating cART in Greece. Methods: This prospective, single-center study assessed neuropsychological performance and plasma biomarkers in treatment-naïve PLWH at baseline and 18 months after cART initiation. HIV-associated neurocognitive disorder (HAND) was classified using the Frascati criteria, and plasma biomarkers of inflammation and monocyte activation were measured. Correlations between biomarkers and cognitive performance were analyzed. Results: A total of 39 treatment-naïve PLWH were enrolled in this study. At baseline, 45.7% of participants met criteria for HAND, predominantly, asymptomatic neurocognitive impairment (ANI). Over 18 months, neurocognitive function improved, particularly in speed of information processing, executive function, and visuospatial ability, while verbal fluency, fine motor dexterity, and attention/working memory remained unchanged. Biomarkers of inflammation and monocyte activation decreased following cART, except for neopterin, which increased (10.6 vs. 13 ng/mL, p = 0.002), and plasma NFL (7.5 vs. 7.2 pg/mL, p = 0.54), which remained stable. A negative correlation between monocyte activation markers and cognitive performance was observed only at follow-up, suggesting that systemic inflammation may mask these associations in untreated PLWH. Conclusions: Early cART initiation supports neurocognitive recovery and reduces immune activation in PLWH. The observed correlation between cognitive performance and monocyte activation markers after viral suppression highlights the potential utility of plasma biomarkers in predicting cognitive impairment. Full article
(This article belongs to the Special Issue Progress in Antiretroviral Research)
Show Figures

Figure 1

16 pages, 4139 KiB  
Article
Engineering Hierarchical CuO/WO3 Hollow Spheres with Flower-like Morphology for Ultra-Sensitive H2S Detection at ppb Level
by Peishuo Wang and Xueli Yang
Chemosensors 2025, 13(7), 250; https://doi.org/10.3390/chemosensors13070250 - 11 Jul 2025
Viewed by 363
Abstract
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery [...] Read more.
Highly sensitive real-time detection of hydrogen sulfide (H2S) is important for human health and environmental protection due to its highly toxic properties. The development of high-performance H2S sensors remains challenging for poor selectivity, high limit detection and slow recovery from irreversible sulfidation. To solve these problems, we strategically prepared a layered structure of CuO-sensitized WO3 flower-like hollow spheres with CuO as the sensitizing component. A 15 wt% CuO/WO3 exhibits an ultra-high response (Ra/Rg = 571) to 10 ppm H2S (131-times of pure WO3), excellent selectivity (97-times higher than 100 ppm interference gas), and a low detection limit (100 ppb). Notably, its fast response (4 s) is accompanied by full recovery within 236 s. After 30 days of continuous testing, the response of 15 wt% CuO/WO3 decreased slightly but maintained the initial response of 90.5%. The improved performance is attributed to (1) the p-n heterojunction formed between CuO and WO3 optimizes the energy band structure and enriches the chemisorption sites for H2S; (2) the reaction of H2S with CuO generates highly conductive CuS, which significantly reduces the interfacial resistance; and (3) the hierarchical flowery hollow microsphere structure, heterojunction, and oxygen vacancy synergistically promote the desorption. This work provides a high-performance H2S gas sensor that balances response, selectivity, and response/recovery kinetics. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Graphical abstract

13 pages, 624 KiB  
Review
Microgravity Therapy as Treatment for Decelerated Aging and Successful Longevity
by Nadine Mozalbat, Lital Sharvit and Gil Atzmon
Int. J. Mol. Sci. 2025, 26(13), 6544; https://doi.org/10.3390/ijms26136544 - 7 Jul 2025
Viewed by 1054
Abstract
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review [...] Read more.
Aging is a complex biological process marked by a progressive decline in cellular function, leading to age-related diseases such as neurodegenerative disorders, cancer, and cardiovascular diseases. Despite significant advancements in aging research, finding effective interventions to decelerate aging remains a challenge. This review explores microgravity as a novel therapeutic approach to combat aging and promote healthy longevity. The hallmarks of aging, including genomic instability, telomere shortening, and cellular senescence, form the basis for understanding the molecular mechanisms behind aging. Interestingly, microgravity has been shown to accelerate aging-like processes in model organisms and human tissues, making it an ideal environment for studying aging mechanisms in an accelerated manner. Spaceflight studies, such as NASA’s Twins Study and experiments aboard the International Space Station (ISS), reveal striking parallels between the physiological changes induced by microgravity and those observed in aging populations, including muscle atrophy, bone density loss, cardiovascular deconditioning, and immune system decline in a microgravity environment. However, upon microgravity recovery, cellular behavior, gene expression, and tissue regeneration were seen, providing vital insights into aging mechanisms and prospective therapeutic approaches. This review examines the potential of microgravity-based technologies to pioneer novel strategies for decelerating aging and enhancing healthspan under natural gravity, paving the way for breakthroughs in longevity therapies. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

20 pages, 1654 KiB  
Article
Circulating Antimicrobial Peptides as Biomarkers of Inflammation and Airway Dysfunction After Marathon Running
by Marie-Therese Lingitz, Hannes Kühtreiber, Lisa Auer, Michael Mildner, Claus G. Krenn, Clemens Aigner, Bernhard Moser, Christine Bekos and Hendrik Jan Ankersmit
Biology 2025, 14(7), 825; https://doi.org/10.3390/biology14070825 - 7 Jul 2025
Viewed by 335
Abstract
Marathon running exerts physical stress and may lead to transient immune dysregulation, increasing susceptibility to airway inflammation and exercise-induced bronchoconstriction (EIB). This study investigated systemic levels of antimicrobial peptides in athletes and their association with EIB. Serum concentrations of angiogenin, human beta-defensin 2 [...] Read more.
Marathon running exerts physical stress and may lead to transient immune dysregulation, increasing susceptibility to airway inflammation and exercise-induced bronchoconstriction (EIB). This study investigated systemic levels of antimicrobial peptides in athletes and their association with EIB. Serum concentrations of angiogenin, human beta-defensin 2 (hBD-2), major basic protein (MBP), S100A8, and S100A8/A9 were measured in 34 marathoners and 36 half-marathoners at baseline, immediately after a race, and seven days postrace using enzyme-linked immunosorbent assays and compared with 30 sedentary controls. Lung function was assessed by spirometry to identify bronchoconstriction. Levels of hBD-2 and S100A8/A9 were significantly elevated postrace in runners compared to baseline and controls, returning to baseline during recovery. During recovery, S100A8 levels remained slightly elevated in marathoners with EIB. Similarly, human beta-defensin 2 was modestly increased in runners who developed bronchoconstriction. Notably, S100A8 levels correlated negatively with lung function parameters, including forced expiratory volume and mid-expiratory flows. These findings suggest that endurance running induces systemic inflammatory responses and modulates innate immune peptides, particularly in individuals prone to bronchoconstriction. These peptides may serve as biomarkers of respiratory stress and help guide personalized strategies in endurance sports. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

22 pages, 2174 KiB  
Review
The Role of Autophagy in HIV Infection and Immunological Recovery of ART-Treated PLWH
by Mayara Sabino Leite de Oliveira Duarte, Wlisses Henrique Veloso de Carvalho-Silva and Rafael Lima Guimarães
Viruses 2025, 17(7), 884; https://doi.org/10.3390/v17070884 - 23 Jun 2025
Viewed by 613
Abstract
Human immunodeficiency virus (HIV) is responsible for acquired immunodeficiency syndrome (AIDS), a condition characterized by the depletion of CD4+ T lymphocytes, which predisposes individuals to opportunistic infections and, ultimately, death. Although antiretroviral therapy (ART) has substantially improved clinical outcomes, certain limitations persist. Notably, [...] Read more.
Human immunodeficiency virus (HIV) is responsible for acquired immunodeficiency syndrome (AIDS), a condition characterized by the depletion of CD4+ T lymphocytes, which predisposes individuals to opportunistic infections and, ultimately, death. Although antiretroviral therapy (ART) has substantially improved clinical outcomes, certain limitations persist. Notably, 15–30% of individuals undergoing ART achieve viral suppression but fail to restore adequate CD4+ T cell counts, being defined as immunological non-responders (INR) and remaining at increased risk of disease progression to AIDS. The impaired immune recovery in INRs is attributed to insufficient production and/or excessive destruction of CD4+ T lymphocytes, which can be modulated by autophagy process. This evolutionarily conserved mechanism is fundamental to lymphocyte development and activation as well as to programmed cell death pathways such as apoptosis, necroptosis, ferroptosis, and pyroptosis. These pathways are essential for understanding the impaired immune reconstitution observed in people living with HIV, whose inability to maintain immune homeostasis contributes to accelerated disease progression. This review explores the interplay between autophagy, HIV, and cell death mechanisms, highlighting its relevance in immunological recovery under ART and its potential as a therapeutic target. Full article
Show Figures

Figure 1

15 pages, 2142 KiB  
Article
DNA Damage Response Regulation Alleviates Neuroinflammation in a Mouse Model of α-Synucleinopathy
by Sazzad Khan, Himanshi Singh, Jianfeng Xiao and Mohammad Moshahid Khan
Biomolecules 2025, 15(7), 907; https://doi.org/10.3390/biom15070907 - 20 Jun 2025
Cited by 1 | Viewed by 626
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression remain incompletely understood, emerging evidence suggests that the buildup of nuclear DNA damage, especially DNA double-strand breaks (DDSBs), plays a key role in contributing neurodegeneration, promoting senescence and neuroinflammation. Despite the pathogenic role for DDSB in neurodegenerative disease, targeting DNA repair mechanisms in PD is largely unexplored as a therapeutic approach. Ataxia telangiectasia mutated (ATM), a key kinase in the DNA damage response (DDR), plays a crucial role in neurodegeneration. In this study, we evaluated the therapeutic potential of AZD1390, a highly selective and brain-penetrant ATM inhibitor, in reducing neuroinflammation and improving behavioral outcomes in a mouse model of α-synucleinopathy. Four-month-old C57BL/6J mice were unilaterally injected with either an empty AAV1/2 vector (control) or AAV1/2 expressing human A53T α-synuclein to the substantia nigra, followed by daily AZD1390 treatment for six weeks. In AZD1390-treated α-synuclein mice, we observed a significant reduction in the protein level of γ-H2AX, a DDSB marker, along with downregulation of senescence-associated markers, such as p53, Cdkn1a, and NF-κB, suggesting improved genomic integrity and attenuation of cellular senescence, indicating enhanced genomic stability and reduced cellular aging. AZD1390 also significantly dampened neuroinflammatory responses, evidenced by decreased expression of key pro-inflammatory cytokines and chemokines. Interestingly, mice treated with AZD1390 showed significant improvements in behavioral asymmetry and motor deficits, indicating functional recovery. Overall, these results suggest that targeting the DDR via ATM inhibition reduces genotoxic stress, suppresses neuroinflammation, and improves behavioral outcomes in a mouse model of α-synucleinopathy. These findings underscore the therapeutic potential of DDR modulation in PD and related synucleinopathy. Full article
Show Figures

Figure 1

12 pages, 2177 KiB  
Article
Effect of Freeze-Dried Porcine Platelet Lysate on Wound Healing in Rats
by Winson Min-Teng Low, Yi-Ho Hsieh, Yi-Chieh Chu, Jui-Ting Hsiao, Yi-Ting Shu, Hung-Maan Lee and Ming-Fa Hsieh
Medicina 2025, 61(6), 1098; https://doi.org/10.3390/medicina61061098 - 17 Jun 2025
Viewed by 605
Abstract
Background and Objectives: Complications in wound healing present significant challenges in clinical settings. While platelet-rich plasma from human sources has been extensively used to aid wound recovery, allogeneic or xenogeneic platelet-derived products remain in the research phase. This study aimed to assess both [...] Read more.
Background and Objectives: Complications in wound healing present significant challenges in clinical settings. While platelet-rich plasma from human sources has been extensively used to aid wound recovery, allogeneic or xenogeneic platelet-derived products remain in the research phase. This study aimed to assess both the immunogenicity and therapeutic potential of xenogeneic porcine platelet lysate (pPL) in wound healing, using a rat model. Materials and Methods: Porcine platelet lysates with undetectable levels of antigens, including blood cells and complement factors, were engineered. Rat models simulating wound conditions were employed to investigate the effects of xenogeneic pPL on injured skin tissues. Histological assessments, including re-epithelialization, angiogenesis, and inflammatory cell response, were comprehensively conducted to evaluate the healing process. Results: The application of xenogeneic pPL on rat skin incisions significantly expedited the wound healing process. No rejection reaction was observed. Histological examinations of the xenogeneic pPL-treated wounds revealed enhanced re-epithelialization and angiogenesis compared to the wounds in control groups. Conclusions: These findings support the clinical promise of xenogeneic pPL as a feasible and effective agent for wound repair and tissue regeneration. This study suggests that its potential application in in vivo regeneration appears viable and promising. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

25 pages, 1626 KiB  
Review
From Fish Oil to Resolution: A Narrative Review on the Potential of SPM-Enriched Marine Oil for Exercise-Induced Muscle Damage Recovery
by Leticia C. de Souza, Jose M. Moris, Paul M. Gordon, Jeffery L. Heileson and LesLee K. Funderburk
Nutrients 2025, 17(12), 2014; https://doi.org/10.3390/nu17122014 - 16 Jun 2025
Viewed by 1617
Abstract
Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids [...] Read more.
Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), facilitate the resolution of inflammation without causing immunosuppression. Evidence from preclinical studies indicates that SPM administration accelerates muscle repair and functional recovery by enhancing the clearance of apoptotic cells, suppressing pro-inflammatory signaling and modulating macrophage polarization. However, translation to human applications remains limited as commercially available SPM-enriched marine oils do not contain active SPMs but rather their monohydroxylated precursors, including 14-Hydroxy-Docosahexaenoic Acid (14-HDHA), 17-Hydroxy-Docosahexaenoic Acid (17-HDHA), and 18-Hydroxy-Eicosapentaenoic Acid (18-HEPE) in addition to low doses of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Furthermore, the variable increases in circulating SPM concentrations as a result of dietary intake of EPA and DHA, whether from fish or fish oil supplements, and the wide diversity of SPM molecules (many of which remain under investigation), highlight the complexity of their structural and functional networks. While advances in lipidomics have identified SPMs and their pathway intermediates in human biological samples, further research is needed to determine optimal dosing strategies, delivery mechanisms, and the real impact of SPM-enriched marine oil on athletic performance and recovery. This narrative review examines the biological rationale and current evidence surrounding SPM-enriched marine oil supplementation and its potential to enhance muscle recovery following EIMD. By synthesizing findings from preclinical and human studies, the potential of SPM-enriched supplementation as a novel tool for optimizing performance recovery in athletic populations is reviewed to inform future research directions. Full article
Show Figures

Figure 1

Back to TopTop