Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,325)

Search Parameters:
Keywords = human health impacts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1032 KB  
Review
Effects of Cannabidiol on Bone Health: A Comprehensive Scoping Review
by Shabbir Adnan Shakir and Kok-Yong Chin
Biomedicines 2026, 14(1), 208; https://doi.org/10.3390/biomedicines14010208 (registering DOI) - 18 Jan 2026
Abstract
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current [...] Read more.
Background/objectives: Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa, which has potential skeletal benefits through modulation of bone cell function and inflammatory signalling. However, evidence of its effects and mechanisms in bone health remains fragmented. This scoping review summarised the current findings on the impact of CBD on bone outcomes and its mechanisms of action. Methods: A systematic search of PubMed, Scopus, and Web of Science was conducted in October 2025 for original studies published in English, with the primary objective of examining the effects of CBD on bone health, regardless of study design. After applying inclusion and exclusion criteria, 24 primary studies were included. Data on model design, CBD formulation, treatment parameters, bone-related outcomes, and proposed mechanisms were extracted and analysed descriptively. Results: Among the studies included, eleven demonstrated beneficial effects of CBD on bone formation, mineralisation, callus quality, or strength; eleven showed mixed outcomes; and two demonstrated no apparent benefit. Previous studies have shown that CBD suppresses bone resorption by reducing osteoclast differentiation and activity while promoting osteoblast proliferation and matrix deposition. Mechanistically, CBD’s effects involve activation of cannabinoid receptor 2, modulation of the receptor activator of nuclear factor-κB ligand/osteoprotegerin pathway, and regulation of osteoblastogenic and osteoclastogenic signalling through bone morphogenetic protein, Wnt, mitogen-activated protein kinase, nuclear factor-κB, and peroxisome proliferator-activated receptor signalling. The anti-inflammatory and antioxidant actions of CBD further contribute to a favourable bone microenvironment. Conclusions: Preclinical evidence suggests that CBD has a bone-protective role through multifaceted pathways that enhance osteoblast function and suppress osteoclast activity. Nevertheless, robust human trials are necessary to confirm its efficacy, determine its optimal dosing, and clarify its long-term safety. Full article
Show Figures

Graphical abstract

14 pages, 250 KB  
Article
Exploring an AI-First Healthcare System
by Ali Gates, Asif Ali, Scott Conard and Patrick Dunn
Bioengineering 2026, 13(1), 112; https://doi.org/10.3390/bioengineering13010112 (registering DOI) - 17 Jan 2026
Abstract
Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look [...] Read more.
Artificial intelligence (AI) is now embedded across many aspects of healthcare, yet most implementations remain fragmented, task-specific, and layered onto legacy workflows. This paper does not review AI applications in healthcare per se; instead, it examines what an AI-first healthcare system would look like, one in which AI functions as a foundational organizing principle of care delivery rather than an adjunct technology. We synthesize evidence across ambulatory, inpatient, diagnostic, post-acute, and population health settings to assess where AI capabilities are sufficiently mature to support system-level integration and where critical gaps remain. Across domains, the literature demonstrates strong performance for narrowly defined tasks such as imaging interpretation, documentation support, predictive surveillance, and remote monitoring. However, evidence for longitudinal orchestration, cross-setting integration, and sustained impact on outcomes, costs, and equity remains limited. Key barriers include data fragmentation, workflow misalignment, algorithmic bias, insufficient governance, and lack of prospective, multi-site evaluations. We argue that advancing toward AI-first healthcare requires shifting evaluation from accuracy-centric metrics to system-level outcomes, emphasizing human-enabled AI, interoperability, continuous learning, and equity-aware design. Using hypertension management and patient journey exemplars, we illustrate how AI-first systems can enable proactive risk stratification, coordinated intervention, and continuous support across the care continuum. We further outline architectural and governance requirements, including cloud-enabled infrastructure, interoperability, operational machine learning practices, and accountability frameworks—necessary to operationalize AI-first care safely and at scale, subject to prospective validation, regulatory oversight, and post-deployment surveillance. This review contributes a system-level framework for understanding AI-first healthcare, identifies priority research and implementation gaps, and offers practical considerations for clinicians, health systems, researchers, and policymakers. By reframing AI as infrastructure rather than isolated tools, the AI-first approach provides a pathway toward more proactive, coordinated, and equitable healthcare delivery while preserving the central role of human judgment and trust. Full article
(This article belongs to the Special Issue AI and Data Science in Bioengineering: Innovations and Applications)
15 pages, 1191 KB  
Article
Protective Effects of Neutral Lipids from Phaeodactylum tricornutum on Palmitate-Induced Lipid Accumulation in HepG2 Cells: An In Vitro Model of Non-Alcoholic Fatty Liver Disease
by Marion Peyras, Rose-Marie Orhant, Giuliana Parisi, Cecilia Faraloni, Graziella Chini Zittelli, Vincent Blanckaert and Virginie Mimouni
Molecules 2026, 31(2), 323; https://doi.org/10.3390/molecules31020323 (registering DOI) - 17 Jan 2026
Abstract
Non-alcoholic fatty liver disease (NAFLD), often associated with obesity, has become a serious public health matter. NAFLD is characterized by an excessive lipid accumulation in hepatocytes, mainly stored as triglycerides. The marine microalga Phaeodactylum tricornutum is well known for its richness of bioactive [...] Read more.
Non-alcoholic fatty liver disease (NAFLD), often associated with obesity, has become a serious public health matter. NAFLD is characterized by an excessive lipid accumulation in hepatocytes, mainly stored as triglycerides. The marine microalga Phaeodactylum tricornutum is well known for its richness of bioactive compounds, particularly lipids. Therefore, different natural lipid extracts from P. tricornutum are deciphered to jugulate or prevent obesity leading to NAFLD. In this study, the main focus was on the effects of purified neutral and polar lipid extracts from P. tricornutum in a cellular model of NAFLD. Human HepG2 cells were used and exposed for 24 h to 250 μM palmitate to induce NAFLD with or without microalgal lipid extracts. Data showed that neutral lipid extract presented lower viability and cytotoxic activities on HepG2 at 75 µg/mL. The impact on apoptosis was around 5% and below the threshold. Nevertheless, the use of neutral lipid at 50 µg/mL induced a decrease in the number and size of lipid droplets, and so, preventing NAFLD. On the contrary, the polar lipid extract had no effect on the accumulation of triglycerides in HepG2 cells. To conclude, neutral lipid extract seemed to be a good candidate to prevent NAFLD. Full article
Show Figures

Figure 1

16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

30 pages, 751 KB  
Hypothesis
Bonded Green Exercise: A One Health Framework for Shared Nature-Based Physical Activity in the Human–Dog Dyad
by Krista B. Halling, Mark Bowden, Jules Pretty and Jennifer Ogeer
Animals 2026, 16(2), 291; https://doi.org/10.3390/ani16020291 (registering DOI) - 16 Jan 2026
Viewed by 37
Abstract
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal [...] Read more.
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal bond (HAB) each enhance physical, mental, and social well-being, yet these domains have rarely been examined together as an integrated therapeutic triad. We introduce a new conceptual framework of bonded green exercise, defined as shared physical activity between a bonded human and dog in natural environments. Synthesizing existing evidence across human and canine sciences into a testable conceptual integration, we posit that bonded green exercise may plausibly activate evolutionarily conserved, synergistic mechanisms of physiological, behavioural, and affective co-regulation. Four testable hypotheses are proposed: (H1) triadic synergy: combined domains produce greater benefits than additive effects; (H2) heterospecific benefit: parallel health gains occur in both species; (H3) behavioural amplification: dogs acts as catalysts to drive human participation in nature-based activity; and (H4) scalable health promotion: bonded green exercise represents a low-cost, accessible, One Health approach with population-level potential. This framework highlights how intentional, shared physical activity in nature may potentially offer a novel low-cost and accessible model for enhancing health, lifespan, welfare, and ecological stewardship across species. Full article
(This article belongs to the Special Issue Second Edition: Research on the Human–Companion Animal Relationship)
16 pages, 548 KB  
Review
Analogue Play in the Age of AI: A Scoping Review of Non-Digital Games as Active Learning Strategies in Higher Education
by Elaine Conway and Ruth Smith
Behav. Sci. 2026, 16(1), 133; https://doi.org/10.3390/bs16010133 - 16 Jan 2026
Viewed by 28
Abstract
Non-digital traditional games such as board and card formats are increasingly recognised as valuable tools for active learning in higher education. These analogue approaches promote engagement, collaboration, and conceptual understanding through embodied and social interaction. This scoping review mapped research on the use [...] Read more.
Non-digital traditional games such as board and card formats are increasingly recognised as valuable tools for active learning in higher education. These analogue approaches promote engagement, collaboration, and conceptual understanding through embodied and social interaction. This scoping review mapped research on the use of traditional, non-digital games as active learning strategies in tertiary education and examined whether the rise in generative artificial intelligence (GenAI) since 2022 has influenced their pedagogical role. Following the PRISMA-ScR framework, a systematic search of Scopus (October 2025) identified 2480 records; after screening, 26 studies met all inclusion criteria (explicitly using card and/or board games). Whilst this was a scoping, not a systematic review, some bias due to using only one database and evidence could have missed some studies. Results analysed the use and impacts of the games and whether AI was a specific driver in its use. Studies spanned STEM, business, health, and social sciences, with board and card games most frequently employed to support engagement, understanding, and collaboration. Most reported positive learning outcomes. Post-2023 publications suggest renewed interest in analogue pedagogies as authentic, human-centred responses to AI-mediated education. While none directly investigated GenAI, its emergence appears to have acted as an indirect catalyst, highlighting the continuing importance of tactile, cooperative learning experiences. Analogue games therefore remain a resilient, adaptable form of active learning that complements technological innovation and sustains the human dimensions of higher-education practice. Full article
(This article belongs to the Special Issue Benefits of Game-Based Learning)
20 pages, 491 KB  
Article
Comparative Molecular and Antimicrobial Analysis of Lactococcus garvieae and Lactococcus petauri from Marine and Freshwater Fish Farms in the Mediterranean
by Daniel González-Martín, María Ubieto, Silvia del Caso, Elena Planas, Imanol Ruiz-Zarzuela, Celia Sanz and José Luis Arnal
Animals 2026, 16(2), 277; https://doi.org/10.3390/ani16020277 - 16 Jan 2026
Viewed by 45
Abstract
Piscine lactococcosis is an emerging bacterial disease that threatens freshwater and marine aquaculture in the Mediterranean region. This study characterized isolates of Lactococcus garvieae and Lactococcus petauri from farmed fish through molecular identification, genomic typing and antimicrobial susceptibility testing. A total of 39 [...] Read more.
Piscine lactococcosis is an emerging bacterial disease that threatens freshwater and marine aquaculture in the Mediterranean region. This study characterized isolates of Lactococcus garvieae and Lactococcus petauri from farmed fish through molecular identification, genomic typing and antimicrobial susceptibility testing. A total of 39 bacterial strains were analyzed using species-specific real-time PCR assays, multilocus sequence typing and broth microdilution to determine minimum inhibitory concentrations. Results suggest a temporal shift in freshwater systems, where L. garvieae predominated in earlier isolates (mainly ST13, CC4), while L. petauri (ST14, CC14) appears as the dominant species in recent years. In marine fish, only L. garvieae was detected, mainly ST95 (CC95), a lineage previously reported in Europe. Molecular variability was found in both species with lineages capable of infecting livestock and humans. Amoxicillin displayed promising results; florfenicol showed moderate activity, while flumequine exhibited no inhibitory effect. Oxytetracycline and trimethoprim–sulfamethoxazole showed variable results requiring prudent use. These region-specific susceptibility profiles provide updated baseline data to guide empirical antimicrobial therapy while awaiting laboratory confirmation, highlighting the evolution of lactococcosis in aquaculture and emphasizing the need for molecular surveillance, antimicrobial stewardship, and vaccine updates within a One Health framework to mitigate impacts on Mediterranean aquaculture and public health. Full article
(This article belongs to the Special Issue Lactococcosis: A Single Disease for Multiple Lactococcus Species)
Show Figures

Figure 1

17 pages, 2257 KB  
Article
The Effect of Fuel Bed Edges on Fire Dynamics
by Luis Reis, Jorge Raposo, Hugo Raposo and André Rodrigues
Forests 2026, 17(1), 124; https://doi.org/10.3390/f17010124 - 16 Jan 2026
Viewed by 174
Abstract
Wildfires are among the most frequent and destructive natural hazards in Europe, particularly in Portugal. They have severe impacts on forests, ecosystems, human health, and infrastructure, leading to substantial socio-economic losses due to firefighting efforts and post-fire recovery costs. Moreover, wildfires cause numerous [...] Read more.
Wildfires are among the most frequent and destructive natural hazards in Europe, particularly in Portugal. They have severe impacts on forests, ecosystems, human health, and infrastructure, leading to substantial socio-economic losses due to firefighting efforts and post-fire recovery costs. Moreover, wildfires cause numerous casualties each year, highlighting the need for a deeper understanding of fire behaviour to support effective firefighting strategies and ensure the safety of both responders and communities. This study examines the influence of wind flow velocity variation on fire behaviour, both in the presence and absence of an edge wall in the fuel bed, aiming to replicate the characteristics of real wildfire fronts at a laboratory scale. Experimental tests were conducted at the Combustion Laboratory of the University of Coimbra using a shrub mixture, composed of Ulex europaeus, Baccharis trimera, and Caralluma adscendens, representing one of the most common fine fuels in Portuguese forested landscapes. This research provides novel insights by experimentally analyzing the combined effect of wind velocity variation and fuel bed edge presence on fire behaviour, paving the way for future comparisons with numerical simulations and real wildfire fronts. As expected, increasing wind velocity and the presence of fuel bed edges resulted in higher values of rate of spread, fireline intensity, and fire intensity. Full article
(This article belongs to the Special Issue Forest Fire: Landscape Patterns, Risk Prediction and Fuels Management)
Show Figures

Figure 1

26 pages, 4591 KB  
Article
Environmental Impact Assessment of New Cement Production Blending Calcareous Green Algae and Fly Ash
by Hafiz M. Irfan, Chi-Yun Wu, Muhammad Saddam Hussain and Wei Wu
Processes 2026, 14(2), 299; https://doi.org/10.3390/pr14020299 - 14 Jan 2026
Viewed by 112
Abstract
To improve traditional cement manufacturing, which generates a large amount of greenhouse gases, blending calcareous green algae and fly ash as cement replacement materials is expected to achieve nearly zero carbon emissions. As a calcareous green alga, Halimeda macroloba is a significant producer [...] Read more.
To improve traditional cement manufacturing, which generates a large amount of greenhouse gases, blending calcareous green algae and fly ash as cement replacement materials is expected to achieve nearly zero carbon emissions. As a calcareous green alga, Halimeda macroloba is a significant producer of biogenic calcium carbonate (CaCO3), sequestering approximately 440 kg of carbon dioxide (CO2) per 1000 kg of CaCO3, with CaCO3 production reported in relation to algal biomass. To assess the new low-carbon/low-waste cement production process, the proposed scenarios (2 and 3) are validated via Python-based modeling (Python 3.12) and Aspen Plus® simulation (Aspen V14). The core technology is the pre-calcination of algae-derived CaCO3 and fly ash from coal combustion, which are added to a rotary kiln to enhance the proportions of tricalcium silicate (C3S) and dicalcium silicate (C2S) for forming the desired silicate phases in clinker. Through the lifecycle assessment (LCA) of all scenarios using SimaPro® (SimaPro 10.2.0.3), the proposed Scenario 2 achieves the GWP at approximately 0.906 kg CO2-eq/kg clinker, lower than the conventional cement production process (Scenario 1) by 47%. If coal combustion is replaced by natural gas combustion, the fly ash additive is reduced by 74.5% in the cement replacement materials, but the proposed Scenario 3 achieves the GWP at approximately 0.753 kg CO2-eq/kg clinker, lower than Scenario 2 by 16.9%. Moreover, the LCA indicators show that Scenario 3 has lower environmental impacts on human health, ecosystem, and resources than Scenario 1 by 24.5%, 60.0% and 68.6%, respectively. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

32 pages, 2513 KB  
Review
Therapeutic Effects of the Most Common Polyphenols Found in Sorbus domestica L. Fruits on Bone Health
by Noemi Penzes, Radoslav Omelka, Anna Sarocka, Roman Biro, Veronika Kovacova, Vladimira Mondockova and Monika Martiniakova
Nutrients 2026, 18(2), 267; https://doi.org/10.3390/nu18020267 - 14 Jan 2026
Viewed by 195
Abstract
The service tree (Sorbus domestica L.) fruits are rich in polyphenols, which exhibit promising therapeutic effects on bone health. This review summarizes the potential benefits of polyphenols identified in Sorbus domestica L. fruits, such as chlorogenic acid (CGA), protocatechuic acid (PCA), rutin, [...] Read more.
The service tree (Sorbus domestica L.) fruits are rich in polyphenols, which exhibit promising therapeutic effects on bone health. This review summarizes the potential benefits of polyphenols identified in Sorbus domestica L. fruits, such as chlorogenic acid (CGA), protocatechuic acid (PCA), rutin, epicatechin, and naringin on bone biology and on bone-related diseases, including osteoporosis and diabetes mellitus. Current evidence suggests that the aforementioned polyphenols may modulate osteoblast and osteoclast activity, enhance mineralization, mitigate oxidative stress and inflammation, thereby supporting overall bone health. Specific studies highlight the anabolic and anti-resorptive effects of CGA, the osteoprotective potential of PCA, and the ability of rutin, epicatechin, and naringin to promote osteogenic differentiation and inhibit osteoclastogenesis. Although the exact mechanisms are still unclear, it is believed that these bioactive metabolites can act through a variety of signalling pathways and epigenetic mechanisms. Despite existing preclinical evidence, there is a significant gap in clinical trials evaluating the direct impact of polyphenols mentioned above on bone health in humans. Therefore, further research is needed to confirm their effectiveness in clinical settings. The therapeutic potential of the most common polyphenols from Sorbus domestica L. fruits has been evaluated by available in vitro and in vivo studies, which highlight their promising potential as dietary interventions to prevent bone loss and improve skeletal integrity in metabolic bone diseases. Based on available information, maximum health benefits may be achieved if mature Sorbus domestica L. fruits are consumed approximately two weeks after harvest or as unripe fruit-based fermented products. Full article
Show Figures

Figure 1

21 pages, 1231 KB  
Article
Undervalued Contribution of OVOCs to Atmospheric Activity: A Case Study in Beijing
by Kaitao Chen, Ziyan Chen, Fang Yang, Xingru Li and Fangkun Wu
Toxics 2026, 14(1), 77; https://doi.org/10.3390/toxics14010077 - 14 Jan 2026
Viewed by 103
Abstract
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed [...] Read more.
VOCs are significant precursors for the formation of O3 and SOA, directly impacting human health. This study employs multiple approaches to analyzing atmospheric VOCs by focusing on OVOCs including aldehydes, ketones, and phenols, with a case study in Beijing, China. We analyzed the concentration levels and compositions of VOCs and their atmospheric activities, offering a new perspective on VOCs. This analysis was conducted through offline measurements of volatile phenols and carbonyl compounds, complemented by online VOC observations during the summer period of high O3 levels. The total atmospheric VOCs concentration was found to be 51.29 ± 10.01 ppbv, with phenols contributing the most (38.87 ± 11.57%), followed by carbonyls (34.91 ± 6.85%), and aromatics (2.70 ± 1.03%, each compound is assigned to only one category based on its primary functional group, with no double counting). Carbonyls were the largest contributors to the OFP at 59.03 ± 14.69%, followed by phenols (19.94 ± 4.27%). The contribution of phenols to the SOAFP (43.37 ± 9.53%) and the LOH (67.74 ± 16.72%) is dominant. Among all quantified VOC species, phenol and formaldehyde exhibited the highest species-level contributions to atmospheric reactivity metrics, including LOH, OFP and SOAFP, owing to their combination of elevated concentrations and large kinetic or MIR coefficients. Using the PMF model for source analysis, six main sources of volatile organic compounds were identified. Solvent use and organic chemicals production were found to be the primary contributors, accounting for 31.76% of the total VOCs emissions, followed by diesel vehicle exhaust (17.80%) and biogenic sources (15.51%). This study introduces important OVOCs such as phenols, re-evaluates the importance of OVOCs and their role in atmospheric chemical processes, and provides new insights into atmospheric VOCs. These findings are crucial for developing effective air pollution control strategies and improving air quality. This study emphasizes the importance of OVOCs, especially aldehydes and phenols, in the mechanism of summer O3 generation. Full article
Show Figures

Graphical abstract

13 pages, 606 KB  
Article
Associations of Fecal Microplastics with Oxidative Damage and Cardiopulmonary Function: Evidence from a Pilot Study
by Lili Xiao, Wenfeng Lu, Lan Qiu, Shuguang Wang, Jiayi Li, Jiayi Lai, Zhixuan Ji, Xiaoliang Li and Yun Zhou
Toxics 2026, 14(1), 75; https://doi.org/10.3390/toxics14010075 - 14 Jan 2026
Viewed by 93
Abstract
The ubiquity of microplastics (MPs) in the environment has raised significant concerns, yet their potential impacts on human health are not fully elucidated. This study aimed to quantify human exposure to MPs in feces and evaluate their associations with oxidative stress and cardiopulmonary [...] Read more.
The ubiquity of microplastics (MPs) in the environment has raised significant concerns, yet their potential impacts on human health are not fully elucidated. This study aimed to quantify human exposure to MPs in feces and evaluate their associations with oxidative stress and cardiopulmonary function. A panel study was conducted in 16 male college students with three-round visits. Fecal MPs were quantified using infrared micro-spectroscopy, and health effects were assessed through urinary biomarkers of oxidative damage (MDA and 8-OHdG) and cardiopulmonary function tests. Associations between MP exposure and health outcomes were analyzed using linear mixed-effect models. We found that fecal MP amount across 48 samples from 16 participants showed high intra-individual variation and poor reproducibility (ICCs < 0.4). MPs in feces were predominantly identified as sheets and fragments in the 100–200 μm size range, with polyamide (PA), polyester, polyethylene (PE), and polypropylene as the primary polymer types. Significant relationships were observed between fecal MP amount and oxidative damage biomarkers. Each one-unit increase in MPs corresponded to a 0.827 increase in MDA (95% CI: 0.116, 1.54) and a 1.11 increase in 8-OHdG (95% CI: 0.235, 1.98), with fibrous shapes and specific polymers (PE and PA) being the primary drivers. No significant associations were found between MP exposure and lung function or blood pressure. These findings indicated that MP exposure was significantly linked to increased oxidative damage, highlighting a pressing public health concern regarding their subclinical biological effects. Full article
(This article belongs to the Special Issue Identification of Emerging Pollutants and Human Exposure)
Show Figures

Graphical abstract

14 pages, 2197 KB  
Article
Innovative Application of Chatbots in Clinical Nutrition Education: The E+DIEting_Lab Experience in University Students
by Iñaki Elío, Kilian Tutusaus, Imanol Eguren-García, Álvaro Lasarte-García, Arturo Ortega-Mansilla, Thomas A. Prola and Sandra Sumalla-Cano
Nutrients 2026, 18(2), 257; https://doi.org/10.3390/nu18020257 - 14 Jan 2026
Viewed by 164
Abstract
Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding [...] Read more.
Background/Objectives: The growing integration of Artificial Intelligence (AI) and chatbots in health professional education offers innovative methods to enhance learning and clinical preparedness. This study aimed to evaluate the educational impact and perceptions in university students of Human Nutrition and Dietetics, regarding the utility, usability, and design of the E+DIEting_Lab chatbot platform when implemented in clinical nutrition training. Methods: The platform was piloted from December 2023 to April 2025 involving 475 students from multiple European universities. While all 475 students completed the initial survey, 305 finished the follow-up evaluation, representing a 36% attrition rate. Participants completed surveys before and after interacting with the chatbots, assessing prior experience, knowledge, skills, and attitudes. Data were analyzed using descriptive statistics and independent samples t-tests to compare pre- and post-intervention perceptions. Results: A total of 475 university students completed the initial survey and 305 the final evaluation. Most university students were females (75.4%), with representation from six languages and diverse institutions. Students reported clear perceived learning gains: 79.7% reported updated practical skills in clinical dietetics and communication were improved, 90% felt that new digital tools improved classroom practice, and 73.9% reported enhanced interpersonal skills. Self-rated competence in using chatbots as learning tools increased significantly, with mean knowledge scores rising from 2.32 to 2.66 and skills from 2.39 to 2.79 on a 0–5 Likert scale (p < 0.001 for both). Perceived effectiveness and usefulness of chatbots as self-learning tools remained positive but showed a small decline after use (effectiveness from 3.63 to 3.42; usefulness from 3.63 to 3.45), suggesting that hands-on experience refined, but did not diminish, students’ overall favorable views of the platform. Conclusions: The implementation and pilot evaluation of the E+DIEting_Lab self-learning virtual patient chatbot platform demonstrate that structured digital simulation tools can significantly improve perceived clinical nutrition competences. These findings support chatbot adoption in dietetics curricula and inform future digital education innovations. Full article
Show Figures

Figure 1

20 pages, 1066 KB  
Article
Characterization of Children with Intellectual Disabilities and Relevance of Mushroom Hericium Biomass Supplement to Neurocognitive Behavior
by Plamen Dimitrov, Alexandra Petrova, Victoria Bell and Tito Fernandes
Nutrients 2026, 18(2), 248; https://doi.org/10.3390/nu18020248 - 13 Jan 2026
Viewed by 219
Abstract
Background: The interplay between neuronutrition, physical activity, and mental health for enhancing brain resilience to stress and overall human health is widely recognized. The use of brain mapping via quantitative-EEG (qEEG) comparative analysis enables researchers to identify deviations or abnormalities and track the [...] Read more.
Background: The interplay between neuronutrition, physical activity, and mental health for enhancing brain resilience to stress and overall human health is widely recognized. The use of brain mapping via quantitative-EEG (qEEG) comparative analysis enables researchers to identify deviations or abnormalities and track the changes in neurological patterns when a targeted drug or specific nutrition is administered over time. High-functioning mild-to-borderline intellectual disorders (MBID) and autism spectrum disorder (ASD) constitute leading global public health challenges due to their high prevalence, chronicity, and profound cognitive and functional impact. Objective: The objectives of the present study were twofold: first, to characterize an extremely vulnerable group of children with functioning autism symptoms, disclosing their overall pattern of cognitive abilities and areas of difficulty, and second, to investigate the relevance of the effects of a mushroom (Hericium erinaceus) biomass dietary supplement on improvement on neurocognitive behavior. Methods: This study used qEEG to compare raw data with a normative database to track the changes in neurological brain patterns in 147 children with high-functioning autistic attributes when mushroom H. erinaceus biomass supplement was consumed over 6 and 12 months. Conclusions: H. erinaceus biomass in children with pervasive developmental disorders significantly improved the maturation of the CNS after 6 to 12 months of oral use, decreased the dominant slow-wave activity, and converted slow-wave activity to optimal beta1 frequency. Therefore, despite the lack of randomization, blinding, and risk of bias, due to a limited number of observations, it may be concluded that the H. erinaceus biomass may generate a complex effect on the deficits of the autism spectrum when applied to high-functioning MBID children, representing a safe and effective adjunctive strategy for supporting neurodevelopment in children. Full article
Show Figures

Figure 1

30 pages, 1179 KB  
Review
The Use of Nutritional Interventions to Enhance Genomic Stability in Mice and Delay Aging
by Ivar van Galen, Jan H. J. Hoeijmakers and Wilbert P. Vermeij
Nutrients 2026, 18(2), 246; https://doi.org/10.3390/nu18020246 - 13 Jan 2026
Viewed by 149
Abstract
Background/Objectives: Metabolism is fundamental to all living organisms. It comprises a highly complex network of fine-tuned chemical reactions that sustain life but also generate by-products that damage cellular biomolecules, including DNA, thereby contributing to aging and disease. As metabolism can be largely modified [...] Read more.
Background/Objectives: Metabolism is fundamental to all living organisms. It comprises a highly complex network of fine-tuned chemical reactions that sustain life but also generate by-products that damage cellular biomolecules, including DNA, thereby contributing to aging and disease. As metabolism can be largely modified by dietary alterations, it has the potential to positively or negatively affect health and disease. Interestingly, many aging-associated illnesses known to be influenced by diet also show a causal relation with DNA damage. As DNA keeps all instructions for life, and DNA lesions, if unrepaired, interfere with vital processes such as DNA replication and transcription, DNA damage may be an important mediator of the impact of nutrition on health and aging. Methods: Here, we discuss the genome-protective effects of various oral interventions in mice, aiming to elucidate which nutritional alterations lower DNA damage and promote overall health. Results: Our analysis covers a wide range of interventions with reported positive impacts on genomic stability, including modified diets (e.g., dietary restriction, probiotics, micronutrients, fatty acids, and hormones), NAD+ precursors (e.g., nicotinamide riboside), plant derivatives, and synthetic drugs. Among these, caloric and dietary restriction emerge as the most potent, generic modulators of DNA damage and repair processes, enhancing aspects of repair efficiency through metabolic recalibration and improved cellular resilience. Other interventions, like NAD+ precursors, activate partly similar pathways without necessitating reduced food intake. Conclusions: While many interventions show promise, their effects are often less pronounced or are process-specific compared to caloric or dietary restriction. Additionally, many substances lack comprehensive exploration of their genome-protective effects in mice, with often only a small number of studies examining their impact on genome stability. Moreover, the heterogeneity between studies limits direct comparison. However, the observed overlap in mechanistic effects between treatments lends credibility to their potential efficacy. Ultimately, a deeper understanding of these mechanisms could pave the way for translating these findings into, e.g., combination treatments to promote healthy aging in humans. Full article
(This article belongs to the Special Issue The Role of Healthy Eating and Physical Activity in Longevity)
Show Figures

Figure 1

Back to TopTop