Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,250)

Search Parameters:
Keywords = human gut microbiome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1802 KiB  
Article
Longitudinal Profiling of the Human Milk Microbiome from Birth to 12 Months Reveals Overall Stability and Selective Taxa-Level Variation
by Ruomei Xu, Zoya Gridneva, Matthew S. Payne, Mark P. Nicol, Ali S. Cheema, Donna T. Geddes and Lisa F. Stinson
Microorganisms 2025, 13(8), 1830; https://doi.org/10.3390/microorganisms13081830 - 5 Aug 2025
Abstract
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months [...] Read more.
Human milk bacteria contribute to gut microbiome establishment in breastfed infants. Although breastfeeding is recommended throughout infancy, temporal variation in the milk microbiome—particularly beyond solid food introduction—remains understudied. We analyzed 539 milk samples from 83 mother–infant dyads between 1 week and 12 months postpartum using full-length 16S rRNA gene sequencing. The microbiota was dominated by Streptococcus (34%), Cutibacterium (12%), and Staphylococcus (9%), with marked inter-individual variation. Microbiome profiles remained largely stable across lactation, with only six taxa showing temporal fluctuations, including increases in typical oral bacteria such as Streptococcus salivarius, Streptococcus lactarius, Rothia mucilaginosa, and Granulicatella adiacens. Richness and evenness were higher at 1 week compared to 1 month postpartum (p = 0.00003 and p = 0.007, respectively), then stabilized. Beta diversity also remained stable over time. Maternal pre-pregnancy BMI was positively associated with Gemella haemolysans (p = 0.016), while Haemophilus parainfluenzae was more abundant in milk from mothers with allergies (p = 0.003) and those who gave birth in autumn or winter (p = 0.006). The introduction of solid food was linked to minor taxonomic shifts. Overall, the milk microbiome remained robustly stable over the first year of lactation, with limited but notable fluctuations in specific taxa. This study supports the role of human milk as a consistent microbial source for infants and identifies maternal BMI, allergy status, and birth season as key variables warranting further investigation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 3390 KiB  
Article
Effects of cRG-I Prebiotic Treatment on Gut Microbiota Composition and Metabolic Activity in Dogs In Vitro
by Sue McKay, Helen Churchill, Matthew R. Hayward, Brian A. Klein, Lieven Van Meulebroek, Jonas Ghyselinck and Massimo Marzorati
Microorganisms 2025, 13(8), 1825; https://doi.org/10.3390/microorganisms13081825 - 5 Aug 2025
Abstract
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), [...] Read more.
Low-dose carrot rhamnogalacturonan-I (cRG-I) has shown consistent modulatory effects on the gut microbiota and immune function in humans. In this study we investigated its effects on the microbial composition and metabolite production of the gut microbiota of small (5–10 kg), medium-sized (10–27 kg), and large (27–45 kg) dogs, using inulin and xanthan as comparators. Fecal samples from six dogs of each size group were evaluated. Overall microbiome composition, assessed using metagenomic sequencing, was shown to be driven mostly by dog size and not treatment. There was a clear segregation in the metabolic profile of the gut microbiota of small dogs versus medium-sized and large dogs. The fermentation of cRG-I specifically increased the levels of acetate/propionate-producing Phocaeicola vulgatus. cRG-I and inulin were fermented by all donors, while xanthan fermentation was donor-dependent. cRG-I and inulin increased acetate and propionate levels. The responses of the gut microbiota of different sized dogs to cRG-I were generally consistent across donors, and interindividual differences were reduced. This, together with the significant increase in P. vulgatus during fermentation in both this study and an earlier human ex vivo study, suggests that this abundant and prevalent commensal species has a core capacity to selectively utilize cRG-I. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

26 pages, 13311 KiB  
Article
A Spatiotemporal Atlas of the Gut Microbiota in Macaca mulatta brevicaudus: Implications for Health and Environment
by Jingli Yuan, Zewen Sun, Ruiping Sun, Jun Wang, Chengfeng Wu, Baozhen Liu, Xinyuan Zhao, Qiang Li, Jianguo Zhao and Keqi Cai
Biology 2025, 14(8), 980; https://doi.org/10.3390/biology14080980 (registering DOI) - 1 Aug 2025
Viewed by 202
Abstract
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into [...] Read more.
The gut microbiota of macaques, highly homologous to humans in biological characteristics and metabolic functions, serves as an ideal model for studying the mechanisms of human intestinal diseases and therapeutic approaches. A comprehensive characterization of the macaque gut microbiota provides unique insights into human health and disease. This study employs metagenomic sequencing to assess the gut microbiota of wild M. mulatta brevicaudus across various ages, sexes, and physiological states. The results revealed that the dominant bacterial species in various age groups included Segatella copri and Bifidobacterium adolescentis. The predominant bacterial species in various sexes included Alistipes senegalensis and Parabacteroides (specifically Parabacteroides merdae, Parabacteroides johnsonii, and Parabacteroides sp. CT06). The dominant species during lactation and non-lactation periods were identified as Alistipes indistinctus and Capnocytophaga haemolytica. Functional analysis revealed significant enrichment in pathways such as global and overview maps, carbohydrate metabolism and amino acid metabolism. This study enhances our understanding of how age, sex, and physiological states shape the gut microbiota in M. mulatta brevicaudus, offering a foundation for future research on (1) host–microbiome interactions in primate evolution, and (2) translational applications in human health, such as microbiome-based therapies for metabolic or immune-related disorders. Full article
Show Figures

Figure 1

18 pages, 3360 KiB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 - 1 Aug 2025
Viewed by 108
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 514
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

23 pages, 2527 KiB  
Article
Investigating the Cellular Responses to Combined Nisin and Urolithin B Treatment (7:3) in HKB-11 Lymphoma Cells
by Ahmad K. Al-Khazaleh, Muhammad A. Alsherbiny, Dennis Chang, Gerald Münch and Deep Jyoti Bhuyan
Int. J. Mol. Sci. 2025, 26(15), 7369; https://doi.org/10.3390/ijms26157369 - 30 Jul 2025
Viewed by 225
Abstract
Lymphoma continues to pose a serious challenge to global health, underscoring the urgent need for new therapeutic strategies. Recently, the gut microbiome has been shown to play a potential role in regulating immune responses and influencing cancer progression. However, its molecular mechanisms of [...] Read more.
Lymphoma continues to pose a serious challenge to global health, underscoring the urgent need for new therapeutic strategies. Recently, the gut microbiome has been shown to play a potential role in regulating immune responses and influencing cancer progression. However, its molecular mechanisms of action in lymphoma remain poorly understood. This study investigates the antiproliferative and apoptotic activities of gut microbiota-derived metabolites, specifically nisin (N) and urolithin B (UB), individually and in combination 7:3 (5750 μM), against the human lymphoma cell line HKB-11. Comprehensive evaluations were performed using Alamar Blue viability assays, combination index (CI) analyses, reactive oxygen species (ROS) quantification, flow cytometry for apoptosis detection, and advanced bottom-up proteomics analyses. N and UB exhibited potent antiproliferative activity, with the 7:3 combination demonstrating strong synergistic effects (CI < 1), significantly enhancing apoptosis (p < 0.01) and ROS production (p < 0.0001) compared to the untreated control. Proteomics analyses revealed substantial alterations in proteins crucial to ribosomal biogenesis, mitochondrial function, cell cycle control, and apoptosis regulation, including a marked downregulation of ribosomal proteins (RPS27; Log2FC = −3.47) and UBE2N (Log2FC = −0.60). These findings highlight the potential of N and UB combinations as a novel and practical therapeutic approach for lymphoma treatment, warranting further in vivo exploration and clinical validation. Full article
(This article belongs to the Special Issue Innovative Biological Molecules for Cancer Therapy)
Show Figures

Figure 1

17 pages, 1908 KiB  
Article
BDE-47 Disrupts Gut Microbiota and Exacerbates Prediabetic Conditions in Mice: Therapeutic Potential of Grape Exosomes and Antioxidants
by Zaoling Liu, Fang Cao, Aerna Qiayimaerdan, Nilupaer Aisikaer, Zulipiya Zunong, Xiaodie Ma and Yale Yu
Toxics 2025, 13(8), 640; https://doi.org/10.3390/toxics13080640 - 29 Jul 2025
Viewed by 205
Abstract
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions [...] Read more.
Background: BDE-47, a pervasive environmental pollutant detected in >90% of human serum samples, is increasingly linked to metabolic disorders. This study investigates the specific impact of BDE-47 exposure on the gut microbiota in prediabetic mice and evaluates the efficacy of therapeutic interventions in mitigating these effects. Objectives: To determine whether BDE-47 exposure induces diabetogenic dysbiosis in prediabetic mice and to assess whether dietary interventions, such as grape exosomes and an antioxidant cocktail, can restore a healthy microbiota composition and mitigate diabetes risk. Methods: In this study, a prediabetic mouse model was established in 54 male SPF-grade C57BL/6J mice through a combination of high-sugar and high-fat diet feeding with streptozotocin injection. Oral glucose tolerance tests (OGTT) were conducted on day 7 and day 21 post-modeling to assess the establishment of the model. The criteria for successful model induction were defined as fasting blood glucose levels below 7.8 mmol/L and 2 h postprandial glucose levels between 7.8 and 11.1 mmol/L. Following confirmation of model success, a 3 × 3 factorial design was applied to allocate the experimental animals into groups based on two independent factors: BDE-47 exposure and exosome intervention. The BDE-47 exposure factor consisted of three dose levels—none, high-dose, and medium-dose—while the exosome intervention factor included three modalities—none, Antioxidant Nutrients Intervention, and Grape Exosomes Intervention. Fresh fecal samples were collected from mice two days prior to sacrifice. Cecal contents and segments of the small intestine were collected and transferred into 1.5 mL cryotubes. All sequences were clustered into operational taxonomic units (OTUs) based on defined similarity thresholds. To compare means across multiple groups, a two-way analysis of variance (ANOVA) was employed. The significance level was predefined at α = 0.05, and p-values < 0.05 were considered statistically significant. Bar charts and line graphs were generated using GraphPad Prism version 9.0 software, while statistical analyses were performed using SPSS version 20.0 software. Results: The results of 16S rDNA sequencing analysis of the microbiome showed that there was no difference in the α diversity of the intestinal microbiota in each group of mice (p > 0.05), but there was a difference in the Beta diversity (p < 0.05). At the gate level, the abundances of Proteobacteria, Campylobacterota, Desulfobacterota, and Fusobacteriota in the medium-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Patellar bacteria was lower than that of the model control group (p < 0.05). The abundances of Proteobacteria and Campylobacterota in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Planctomycetota and Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Campylobacterota in the grape exosome group was higher than that of the model control group (p < 0.05). The abundance of Patescibacteria was lower than that of the model control group (p < 0.05), while the abundance of Firmicutes and Fusobacteriota in the antioxidant nutrient group was higher than that of the model control group (p < 0.05). However, the abundance of Verrucomicrobiota and Patescibacteria was lower than that of the model control group (p < 0.05). At the genus level, the abundances of Bacteroides and unclassified Lachnospiraceae in the high-dose BDE-7 group were higher than those in the model control group (p < 0.05). The abundance of Lachnospiraceae NK4A136_group and Lactobacillus was lower than that of the model control group (p < 0.05). The abundance of Veillonella and Helicobacter in the medium-dose BDE-7 group was higher than that in the model control group (p < 0.05), while the abundance of Lactobacillus was lower (p < 0.05). The abundance of genera such as Lentilactobacillus and Faecalibacterium in the grape exosome group was higher than that in the model control group (p < 0.05). The abundance of Alloprevotella and Bacteroides was lower than that of the model control group (p < 0.05). In the antioxidant nutrient group, the abundance of Lachnospiraceae and Hydrogenophaga was higher than that in the model control group (p < 0.05). However, the abundance of Akkermansia and Coriobacteriaceae UCG-002 was significantly lower than that of the model control group (p < 0.05). Conclusions: BDE-47 induces diabetogenic dysbiosis in prediabetic mice, which is reversible by dietary interventions. These findings suggest that microbiota-targeted strategies may effectively mitigate the diabetes risk associated with environmental pollutant exposure. Future studies should further explore the mechanisms underlying these microbiota changes and the long-term health benefits of such interventions. Full article
Show Figures

Figure 1

18 pages, 344 KiB  
Review
Intestinal Microbiota and Fecal Transplantation in Patients with Inflammatory Bowel Disease and Clostridioides difficile: An Updated Literature Review
by Chloe Lahoud, Toni Habib, Daniel Kalta, Reem Dimachkie, Suzanne El Sayegh and Liliane Deeb
J. Clin. Med. 2025, 14(15), 5260; https://doi.org/10.3390/jcm14155260 - 25 Jul 2025
Viewed by 449
Abstract
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript [...] Read more.
Background/Objectives: Inflammatory bowel disease (IBD) is characterized by chronic relapsing and remitting inflammation of the gastrointestinal tract. Fecal microbiota transplantation (FMT) has emerged as an FDA-approved treatment for recurrent Clostridioides difficile infections (CDIs), with promising potential in patients with IBD. This manuscript aimed to provide a comprehensive and updated review of the available literature on fecal microbiota transplantation, its clinical use in IBD in general, as well as in patients with IBD and CDI. Methods: An extensive literature search was performed from October 2024 to March 2025. All publications available within PubMed, Medline, Embase, Google Scholar, and Cochrane databases were reviewed. All original articles, case reports, review articles, systematic reviews, and meta-analyses were included. Qualitative and quantitative data were both extracted. Discussion: Intestinal microbiota is an integral part of the human body, and dysbiosis (an imbalance in the gut’s microbial community) has been linked with several pathologies. Dysbiosis in IBD is marked by reduced beneficial bacteria and increased pro-inflammatory pathogens, contributing to mucosal damage and immune dysregulation. FMT has emerged as a solution to dysbiosis, with the first case recorded in 1917. FMT has been successful in treating patients with CDI. The diagnostic value of the gut microbiome is currently being explored as a possible therapeutic approach to IBD. Several studies have assessed FMT in patients with IBD and CDI with promising results in both ulcerative colitis (UC) and Crohn’s disease (CD) but varying efficacy based on administration routes, donor selection, and processing methods. In the context of recurrent CDI in patients with IBD, FMT demonstrates a high cure rate and potential benefit in concurrently improving IBD activity. However, risks such as IBD flare-ups post-FMT remain a concern. Conclusions: FMT holds promising potential in the management of CDI in patients with IBD. By restoring microbial diversity and correcting dysbiosis, FMT offers a novel, microbiota-targeted alternative to conventional therapies. While data support its efficacy in improving disease remission, variability in outcomes underscores the need for standardized protocols and additional large-scale, controlled studies. Continued research efforts into donor selection, treatment regimens, and long-term safety will be critical to optimizing FMT’s role in IBD and CDI care as well as improving patient outcomes. Full article
(This article belongs to the Special Issue Emerging Treatment Options in Inflammatory Bowel Disease)
23 pages, 1654 KiB  
Review
The Small Intestinal Microbiota and the Gut–Brain Axis in Parkinson’s Disease: A Narrative Review
by Gloria Carrossa, Valentina Misenti, Sofia Faggin, Maria Cecilia Giron and Angelo Antonini
Biomedicines 2025, 13(7), 1769; https://doi.org/10.3390/biomedicines13071769 - 19 Jul 2025
Viewed by 704
Abstract
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool [...] Read more.
Researchers are increasingly focusing on understanding the microbiota’s influence on disease susceptibility and overall health. The vast number of microorganisms in our gastrointestinal tract and their extensive surface area underscore their undeniable impact on well-being. Viewing the gut microbiome as a distinct pool of microbial genetic information that interacts with the human genome highlights its pivotal role in genetically predisposed diseases. Investigating this complex crosstalk may lead to the development of novel therapeutic strategies—such as targeting dysbiosis—to complement conventional treatments and improve patient care. Parkinson’s disease (PD) is a multifactorial condition originating from a combination of genetic and environmental risk factors. Compelling evidence points to the enteric nervous system as an initial site of pathological processes that later extend to the brain—a pattern known as the ‘body-first’ model. Furthermore, most patients with PD exhibit both qualitative and quantitative alterations in the composition of the gut microbiota, including dysbiosis and small intestinal overgrowth. Nonetheless, the existing literature predominantly addresses fecal microbiota, while knowledge of upper intestinal sections, like the duodenum, remains scarce. Given the potential for microbiota modulation to impact both motor and gastrointestinal symptoms, further research exploring the therapeutic roles of balanced diets, probiotics, and fecal transplants in PD is warranted. Full article
Show Figures

Figure 1

20 pages, 1125 KiB  
Review
Dietary Principles, Interventions and Oxidative Stress in Psoriasis Management: Current and Future Perspectives
by Oana-Georgiana Vaduva, Aristodemos-Theodoros Periferakis, Roxana Elena Doncu, Vlad Mihai Voiculescu and Calin Giurcaneanu
Medicina 2025, 61(7), 1296; https://doi.org/10.3390/medicina61071296 - 18 Jul 2025
Viewed by 537
Abstract
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative [...] Read more.
Psoriasis is a chronic inflammatory autoimmune disease that causes significant deterioration of the quality of life, and due to its multifactorial causes, it is often difficult to manage. Apart from genetic and environmental components, an important part of its pathophysiology comprises an oxidative stress induction that the standard antioxidative mechanisms of the human body cannot compensate for. Moreover, in many psoriatic patients, there is a documented imbalance between antioxidant and pro-oxidative factors. Usually, psoriasis is evaluated using the Psoriasis Area and Severity Index (PASI) score. It has been demonstrated that dietary choices can lead to significant modification of PASI scores. Hypocaloric diets that are rich in antioxidants are highly effective in this regard, especially when focusing on vegetables and restricting consumption of animal-derived protein. Specific dietary regimens, namely the Mediterranean diet and potentially the ketogenic diet, are very beneficial, in the former case owing in large part to the omega-three fatty acids it provides and its ability to alter gut microbiome, a factor which seems to play a notable role in the pathogenesis of the disease. Another option is the topical application of vitamin D and its analogues, combined with corticosteroids, which can ameliorate the manifestations of psoriasis at the level of the skin. Finally, oral vitamin D supplementation has a positive impact on psoriatic arthritis and can mitigate the risk of associated comorbidities. Full article
(This article belongs to the Special Issue Recent Advances in Autoimmune Rheumatic Diseases: 2nd Edition)
Show Figures

Figure 1

17 pages, 3908 KiB  
Article
Metagenomic Characterization of Gut Microbiota in Individuals with Low Cardiovascular Risk
by Argul Issilbayeva, Samat Kozhakhmetov, Zharkyn Jarmukhanov, Elizaveta Vinogradova, Nurislam Mukhanbetzhanov, Assel Meiramova, Yelena Rib, Tatyana Ivanova-Razumova, Gulzhan Myrzakhmetova, Saltanat Andossova, Ayazhan Zeinoldina, Malika Kuantkhan, Bayan Ainabekova, Makhabbat Bekbossynova and Almagul Kushugulova
J. Clin. Med. 2025, 14(14), 5097; https://doi.org/10.3390/jcm14145097 - 17 Jul 2025
Viewed by 399
Abstract
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal [...] Read more.
Background/Objectives: Cardiovascular diseases remain the leading cause of global mortality, with the gut microbiome emerging as a critical factor. This study aimed to characterize gut microbiome composition and metabolic pathways in individuals with low cardiovascular risk (LCR) compared to healthy controls to reveal insights into early disease shifts. Methods: We performed shotgun metagenomic sequencing on fecal samples from 25 LCR individuals and 25 matched healthy controls. Participants underwent a comprehensive cardiovascular evaluation. Taxonomic classification used MetaPhlAn 4, and functional profiling employed HUMAnN 3. Results: Despite similar alpha diversity, significant differences in bacterial community structure were observed between groups (PERMANOVA, p < 0.05). The LCR group showed enrichment of Faecalibacterium prausnitzii (p = 0.035), negatively correlating with atherogenic markers, including ApoB (r = −0.3, p = 0.025). Conversely, Fusicatenibacter saccharivorans positively correlated with ApoB (r = 0.4, p = 0.006). Metabolic pathway analysis revealed upregulation of nucleotide biosynthesis, glycolysis, and sugar degradation pathways in the LCR group, suggesting altered metabolic activity. Conclusions: We identified distinct gut microbiome signatures in LCR individuals that may represent early alterations associated with cardiovascular disease development. The opposing correlations between F. prausnitzii and F. saccharivorans with lipid parameters highlight their potential roles in cardiometabolic health. These findings suggest gut microbiome signatures may serve as indicators of early metabolic dysregulation preceding clinically significant cardiovascular disease. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

31 pages, 2679 KiB  
Article
Gut Microbial Postbiotics as Potential Therapeutics for Lymphoma: Proteomics Insights of the Synergistic Effects of Nisin and Urolithin B Against Human Lymphoma Cells
by Ahmad K. Al-Khazaleh, Muhammad A. Alsherbiny, Gerald Münch, Dennis Chang and Deep Jyoti Bhuyan
Int. J. Mol. Sci. 2025, 26(14), 6829; https://doi.org/10.3390/ijms26146829 - 16 Jul 2025
Viewed by 498
Abstract
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of [...] Read more.
Lymphoma continues to pose a significant global health burden, highlighting the urgent need for novel therapeutic strategies. Recent advances in microbiome research have identified gut-microbiota-derived metabolites, or postbiotics, as promising candidates in cancer therapy. This study investigates the antiproliferative and mechanistic effects of two postbiotics, Nisin (N) and Urolithin B (UB), individually and in combination, against the human lymphoma cell line HKB-11. Moreover, this study evaluated cytotoxic efficacy and underlying molecular pathways using a comprehensive experimental approach, including the Alamar Blue assay, combination index (CI) analysis, flow cytometry, reactive oxygen species (ROS) quantification, and bottom-up proteomics. N and UB displayed notable antiproliferative effects, with IC50 values of 1467 µM and 87.56 µM, respectively. Importantly, their combination at a 4:6 ratio demonstrated strong synergy (CI = 0.09 at IC95), significantly enhancing apoptosis (p ≤ 0.0001) and modulating oxidative stress. Proteomic profiling revealed significant regulation of key proteins related to lipid metabolism, mitochondrial function, cell cycle control, and apoptosis, including upregulation of COX6C (Log2FC = 2.07) and downregulation of CDK4 (Log2FC = −1.26). These findings provide mechanistic insights and underscore the translational potential of postbiotics in lymphoma treatment. Further preclinical and clinical investigations are warranted to explore their role in therapeutic regimens. Full article
Show Figures

Figure 1

21 pages, 1665 KiB  
Review
Possible Crosstalk and Alterations in Gut Bacteriome and Virome in HIV-1 Infection and the Associated Comorbidities Related to Metabolic Disorder
by Komal Shrivastav, Hesham Nasser, Terumasa Ikeda and Vijay Nema
Viruses 2025, 17(7), 990; https://doi.org/10.3390/v17070990 - 16 Jul 2025
Viewed by 519
Abstract
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of [...] Read more.
Improved antiretroviral therapy (ART) has significantly increased the life expectancy of people living with HIV (PLWH). At the same time, other complications like metabolic syndrome (MetS) are coming up as new challenges to handle. This review aims to explore the emerging evidence of gut microbiome and virome alterations in human immunodeficiency virus-1 (HIV-1) infection and associated metabolic disorders, such as type-2 diabetes (T2DM) and cardiovascular disease (CVD), with a focus on their interplay, contribution to immune dysfunction, and potential as therapeutic targets. We conducted a comprehensive review of the current literature on gut bacteriome and virome changes in HIV-1-infected individuals and those with metabolic comorbidities emphasizing their complex interplay and potential as biomarkers or therapeutic targets. HIV-1 infection disrupts gut microbial homeostasis, promoting bacterial translocation, systemic inflammation, and metabolic dysregulation. Similarly, metabolic disorders are marked by reduced beneficial short-chain fatty acid-producing bacteria and an increase in pro-inflammatory taxa. Alterations in the gut virome, particularly involving bacteriophages, may exacerbate bacterial dysbiosis and immune dysfunction. Conversely, some viral populations have been associated with immune restoration post-ART. These findings point toward a dynamic and bidirectional relationship between the gut virome, bacteriome, and host immunity. Targeted interventions such as microbiome modulation and fecal virome transplantation (FVT) offer promising avenues for restoring gut homeostasis and improving long-term outcomes in PLWH. Full article
(This article belongs to the Special Issue HIV and HTLV Infections and Coinfections)
Show Figures

Graphical abstract

20 pages, 4749 KiB  
Article
The Gut Microbiome Obesity Index: A New Analytical Tool in the Metagenomics Workflow for the Evaluation of Gut Dysbiosis in Obese Humans
by Maria Kulecka, Paweł Jaworski, Natalia Zeber-Lubecka, Aneta Bałabas, Magdalena Piątkowska, Paweł Czarnowski, Barbara Frączek, Wiesław Tarnowski, Michał Mikula and Jerzy Ostrowski
Nutrients 2025, 17(14), 2320; https://doi.org/10.3390/nu17142320 - 14 Jul 2025
Viewed by 410
Abstract
Background/Objectives: Our aim was to create a new method for analyzing metagenomics data, named the gut microbiome obesity index, using a set of taxa/biological functions that correlated with BMI. Methods: A total of 109 obese patients (73 women and 36 men, [...] Read more.
Background/Objectives: Our aim was to create a new method for analyzing metagenomics data, named the gut microbiome obesity index, using a set of taxa/biological functions that correlated with BMI. Methods: A total of 109 obese patients (73 women and 36 men, median BMI 43.0 kg/m2), 87 healthy control (HC) individuals (39 females and 48 males, median BMI 22.7 kg/m2), and 109 esports players (five females and 104 males, median BMI 23.0 kg/m2) were included in the study. To conduct metagenomic and metabolomic analyses, DNA and selected metabolites were isolated from fecal samples and used for whole-genome shotgun sequencing and gas chromatography/mass spectrometry, respectively. Results: Compared with HCs and esports players, obese patients with a BMI > 40 kg/m2 had a significantly higher alpha diversity, as analyzed by the Shannon index, and significant dissimilarities in beta diversity. Both richness and diversity measures were correlated with BMI. Compared with HCs and esports players, 12 differential bacteria were found in the overall obesity group and 42 were found in those with a BMI > 40 kg/m2. Most of the altered species belonged to the Lachnospiraceae family. When the logarithmic relationship of the sums of the bacteria correlated with BMI was calculated to establish a taxonomic health index, it better differentiated between the obesity groups than a standard analytical pipeline; however, it did not differentiate between the HC and the BMI < 35 kg/m2 obesity group. Therefore, we created a functional index based on BMI-associated biological pathways, which differentiated between all obesity groups. Conclusions: Of the obesity indices used to distinguish between healthy and obese microbiota analyzed in this study, a function-based index was more useful than a taxonomy-based index. We believe that gut microbiome indexes could be useful as part of routine metagenomics evaluations. However, an index developed in one geographical area might not be applicable to individuals in a different region and, therefore, further studies should develop separate indices for different populations or geographical regions rather than relying on a single index. Full article
(This article belongs to the Special Issue Interaction Between Gut Microbiota and Obesity)
Show Figures

Figure 1

21 pages, 2164 KiB  
Review
Prebiotic Potential of Dietary Polyphenols in Colorectal Cancer Immunomodulation
by Bini Sreenesh, Elizabeth Varghese, Peter Kubatka, Samson Mathews Samuel and Dietrich Büsselberg
Foods 2025, 14(13), 2392; https://doi.org/10.3390/foods14132392 - 7 Jul 2025
Viewed by 759
Abstract
Molecular crosstalk between the gut microbiome and human diet represent a potential therapeutic avenue requiring further investigation as it can be applied to human health management and treatment. Colon cancer, the third leading cause of cancer mortality, is often linked to the gut [...] Read more.
Molecular crosstalk between the gut microbiome and human diet represent a potential therapeutic avenue requiring further investigation as it can be applied to human health management and treatment. Colon cancer, the third leading cause of cancer mortality, is often linked to the gut microbiome. In vitro and in vivo studies and metagenomic research have revealed alterations in gut microbial flora among diseased individuals. The human diet is connected to these changes in microbial inhabitants related to the pathophysiology underlying colorectal cancer (CRC). Polyphenols are well-studied, naturally occurring plant secondary metabolites recognized for their anti-inflammatory and antioxidant properties. The anticancer activities of these compounds are increasingly reported, offering insights into the administration of these natural molecules for managing various types of cancer and developing novel medications from them. Recent investigations have highlighted the prebiotic-like effects of these compounds on gut microbial dysbiosis and their metabolism concerning colorectal cancer, influencing colon cancer by interfering with multiple signaling pathways. This review will focus on the existing literature regarding the prebiotic potential of dietary polyphenols, and further research in this area would be valuable, as the integration of artificial intelligence (AI) and machine learning (ML) can enable analysis of the connections between unique gut microbiome profiles and other dependent factors such as physiological and genetic variables, paving the way for personalized treatment strategies in gut microbiome-based health management and precision medicine. Full article
(This article belongs to the Special Issue Polyphenols and Health Benefits: 2nd Edition)
Show Figures

Figure 1

Back to TopTop