Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = human estrogen receptor α

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2106 KiB  
Article
ERα36 Promotes MDR1-Mediated Adriamycin Resistance via Non-Genomic Signaling in Triple-Negative Breast Cancer
by Muslimbek Mukhammad Ugli Poyonov, Anh Thi Ngoc Bui, Seung-Yeon Lee, Gi-Ho Lee and Hye-Gwang Jeong
Int. J. Mol. Sci. 2025, 26(15), 7200; https://doi.org/10.3390/ijms26157200 - 25 Jul 2025
Viewed by 188
Abstract
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role [...] Read more.
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role of ERα36 in regulating multidrug resistance protein 1 (MDR1) in MDA-MB-231 human breast cancer cells. The activation of ERα36 by BSA-conjugated estradiol (BSA-E2) increased cell viability under Adriamycin exposure, suggesting its involvement in promoting drug resistance. BSA-E2 treatment significantly reduced the intracellular rhodamine-123 levels by activating the MDR1 efflux function, which was linked to increased MDR1 transcription and protein expression. The mechanical ERα36-mediated BSA-E2-induced activation of EGFR and downstream signaling via c-Src led to an activation of the Akt/ERK pathways and transcription factors, NF-κB and CREB. Additionally, ERα36 is involved in activating Wnt/β-catenin pathways to induce MDR1 expression. The silencing of ERα36 inhibited the BSA-E2-induced phosphorylation of Akt and ERK, thereby reducing MDR1 expression via downregulation of NF-κB and CREB as well as Wnt/β-catenin signaling. These findings demonstrated that ERα36 promotes MDR1 expression through multiple non-genomic signaling cascades, including Akt/ERK-NF-κB/CREB and Wnt/β-catenin pathways, and highlight the role of ERα36 as a promising target to enhance chemotherapeutic efficacy in TNBC. Full article
(This article belongs to the Special Issue Drug Resistance Mechanisms in Human Cancer Cells to Anticancer Drugs)
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 348
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 230
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 1676 KiB  
Article
The Anticancer Effect of Genistein Through Enhancing PERK Signaling and Suppressing the IRE1α-XBP1 Axis in Canine Mammary Gland Tumor Cells
by Ye-Ji Jang, Min-Jae Yoo, Hyuk Jang, Jun Song, Sang-Youel Park, Jawun Choi and Jae-Won Seol
Animals 2025, 15(12), 1717; https://doi.org/10.3390/ani15121717 - 10 Jun 2025
Viewed by 579
Abstract
Genistein, a natural isoflavone, exerts anticancer effects on human breast cancer cells by modulating the unfolded protein response (UPR). However, the effect of genistein on UPR in canine mammary gland tumor (CMT) cells remains unknown. The aim of the present study was to [...] Read more.
Genistein, a natural isoflavone, exerts anticancer effects on human breast cancer cells by modulating the unfolded protein response (UPR). However, the effect of genistein on UPR in canine mammary gland tumor (CMT) cells remains unknown. The aim of the present study was to investigate the anticancer effects of genistein on CMT-U27 cells, focusing on the regulation of UPR-related pathways and the associated cell death mechanisms. CMT-U27 cells were treated with genistein. Cell viability, apoptosis, and UPR-related protein expression were analyzed using MTS assay, Annexin V-Propidium Iodide (PI) staining, Western blotting, and immunocytochemistry. Genistein treatment significantly reduced cell viability and induced apoptosis, accompanied by an increased Bcl-2-associated X (Bax) ratio of B-cell lymphoma-2 (Bcl-2) and cleaved caspase-8 and caspase-3. On regulation of the UPR system, genistein treatment showed a dual-function by enhancing the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling while suppressing the inositol-requiring enzyme 1 alpha (IRE1α)–X-box-binding protein 1 (XBP1) axis. Furthermore, genistein downregulated estrogen receptor alpha (ERα), which may contribute to the inhibition of IRE1α signaling through a disrupted positive feedback loop. These findings suggested that genistein modulates the UPR to induce apoptosis in CMT-U27 cells, highlighting its potential as a therapeutic or adjuvant agent for CMTs. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

17 pages, 1080 KiB  
Article
Genistein Reduces Anxiety-like Behavior During Metestrus–Diestrus Phase Without Changing Estradiol or Progesterone Levels in Wistar Rats
by Juan Francisco Rodríguez-Landa, Oscar Jerónimo Olmos-Vázquez, Carlos Fabrizio Quiñonez-Bailón, Gabriel Guillén-Ruiz, Ana Karen Limón-Vázquez, Jonathan Cueto-Escobedo, Eduardo Rivadeneyra-Domínguez and Blandina Bernal-Morales
Metabolites 2025, 15(5), 311; https://doi.org/10.3390/metabo15050311 - 6 May 2025
Viewed by 629
Abstract
Background: Premenstrual syndrome is characterized by emotional changes, including anxiety and depression symptoms, which may be treated with anxiolytic and antidepressant drugs, as well as estrogen therapy. However, steroidal estrogen therapy is contraindicated for patients with a potential risk of developing estrogen-dependent [...] Read more.
Background: Premenstrual syndrome is characterized by emotional changes, including anxiety and depression symptoms, which may be treated with anxiolytic and antidepressant drugs, as well as estrogen therapy. However, steroidal estrogen therapy is contraindicated for patients with a potential risk of developing estrogen-dependent cancers through interactions with estrogen receptor α (ERα). Alternatively, genistein produces estrogenic effects in animals and humans at dietary dosages that act on the nuclear and membrane ERα, estrogen receptor β (ERβ), and the G-protein-coupled estrogen receptor (GPER). These receptors are likely involved in the anxiety symptoms observed in premenstrual disorders. The objective of this study was to evaluate the effects of genistein and 17β-estradiol on anxiety-like behavior and the plasma concentrations of estradiol and progesterone throughout the ovarian cycle of Wistar rats. Methods: The effect of the administration of 0.09 mg/kg of genistein or 17β-estradiol was evaluated using the elevated plus maze (EPM) test, locomotor activity test (LAT), and light/dark box (LDB) test, as well as by assessing the plasma concentrations of estradiol and progesterone, while considering the ovarian cycle phases. Results: Higher levels of anxiety-like behavior were detected in the metestrus–diestrus phase compared to the proestrus–estrus phase, which was associated with low concentrations of estradiol. Genistein, similarly to 17β-estradiol, significantly reduced anxiety-like behaviors in the EPM and LDB; however, 17β-estradiol, but not genistein, significantly increased the plasma estradiol concentration. No significant changes were found in locomotor activity or the plasma progesterone concentrations due to the treatments. Conclusions: These findings suggest that genistein may be useful in the development of alternative therapies to reduce the anxiety associated with low steroid hormone concentrations, which occur in premenstrual syndrome. Genistein could be an alternative to steroidal estrogen therapy to avoid potential side effects due to estradiol or antidepressant treatments, although it still requires medical care. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Graphical abstract

11 pages, 235 KiB  
Review
Natural Bioactive Agents: Testable Stem Cell-Targeting Alternatives for Therapy-Resistant Breast Cancer
by Nitin T. Telang
Int. J. Mol. Sci. 2025, 26(6), 2529; https://doi.org/10.3390/ijms26062529 - 12 Mar 2025
Viewed by 939
Abstract
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of [...] Read more.
Long-term treatment options for conventional chemo-endocrine therapy and molecular-pathway-based targeted therapy are associated with acquired therapy resistance and the emergence of drug-resistant cancer-initiating stem cell populations, leading to the progression of metastatic disease. These treatment options are based on the expression status of estrogen receptor-α (ER-α), progesterone receptor (PR) hormone receptors, and/or of human epidermal growth factor receptor-2 (HER-2). The breast cancer subtypes Luminal A, Luminal B, and HER-2-enriched express hormone/growth factor receptors and exhibit a favorable response to hormone receptor modulators and growth factor receptor antagonists. The triple-negative breast cancer subtype lacks the expression of hormone/growth factor receptors and responds only to cytotoxic conventional chemotherapy. The clinical limitations, due to the modest therapeutic responses of chemo-resistant cancer-initiating stem cells, emphasize the need for the identification of stem cells targeting testable alternatives for therapy-resistant breast cancer. Developed drug-resistant stem cell models exhibit upregulated expression of select cellular biomarker tumor spheroid (TS) formations and cluster of differentiation44 (CD44), DNA-binding protein (NANOG), and octamer-binding protein-4 (OCT-4) molecular biomarkers that represent novel experimentally modifiable quantitative endpoints. Naturally occurring dietary phytochemicals and nutritional herbs containing polyphenols, flavones, terpenes, saponins, lignans, and tannins have documented human consumption, lack systemic toxicity, lack phenotypic drug resistance, and exhibit preclinical efficacy. Constituent bioactive agents may provide testable stem cell-targeting alternatives. The present report provides an overview of (i) clinically relevant cellular models and drug-resistant cancer stem cell models for breast cancer subtypes, (ii) evidence for preclinical efficacy and mechanistic leads for natural phytochemicals and nutritional herbs, and (iii) the potential for the stem cell-targeting efficacy of natural bioactive agents as testable drug candidates for therapy-resistant breast cancer. Full article
(This article belongs to the Special Issue New Biomarkers and Therapy for Cancer Stem Cells)
20 pages, 6401 KiB  
Article
Genes Associated with the Immune System Affected by Ionizing Radiation and Estrogen in an Experimental Breast Cancer Model
by Gloria M. Calaf, Debasish Roy, Lilian Jara, Carmen Romero and Leodan A. Crispin
Biology 2024, 13(12), 1078; https://doi.org/10.3390/biology13121078 - 20 Dec 2024
Viewed by 985
Abstract
Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system [...] Read more.
Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system affected by ionizing radiation and estrogen in cell lines derived from an experimental breast cancer model that was previously developed; where the immortalized human breast epithelial cell line MCF-10F, a triple-negative breast cancer cell line, was exposed to low doses of high linear energy transfer α particle radiation (150 keV/μm), it subsequently grew in the presence or absence of 17β-estradiol. Results indicated that interferon-related developmental regulator 1 gene expression was affected in the estrogen-treated cell line; this interferon, as well as the Interferon-Induced Transmembrane protein 2, and the TNF alpha-induced Protein 6 gene expression levels were higher than the control in the Alpha3 cell line. Furthermore, the interferon-related developmental regulator 1, the Interferon-Induced Transmembrane protein 2, the TNF alpha-induced Protein 6, the Nuclear Factor Interleukin 3-regulated, and the Interferon-Gamma Receptor 1 showed high expression levels in the Alpha5 cell line, and the Interferon Regulatory Factor 6 was high in the Tumor2 cell line. Additionally, to further strengthen these data, publicly available datasets were analyzed. This analysis was conducted to assess the correlation between estrogen receptor alpha expression and the genes mentioned above in breast cancer patients, the differential gene expression between tumor and normal tissues, the immune infiltration level, the ER status, and the survival outcome adjusted by the clinical stage factor. It can be concluded that the genes of the interferon family and Tumor Necrosis factors can be potential therapeutic targets for breast cancer, since they are active before tumor formation as a defense of the body under radiation or estrogen effects. Full article
Show Figures

Figure 1

18 pages, 3367 KiB  
Article
miR-205 Regulates Tamoxifen Resistance by Targeting Estrogen Receptor Coactivator MED1 in Human Breast Cancer
by Bin Ouyang, Mingjun Bi, Mahendra Jadhao, Gregory Bick and Xiaoting Zhang
Cancers 2024, 16(23), 3992; https://doi.org/10.3390/cancers16233992 - 28 Nov 2024
Cited by 1 | Viewed by 2315
Abstract
Background/Objectives: Estrogen receptor-α coactivator MED1 is overexpressed in 40–60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains [...] Read more.
Background/Objectives: Estrogen receptor-α coactivator MED1 is overexpressed in 40–60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains elusive. Methods: miRNA and mRNA expression analysis was performed using the NCBI GEO database. MED1 targeting and its impact on therapy resistance was evaluated in control and tamoxifen-resistant breast cancer cell lines by miR-205 overexpression and inhibition. Immunoblotting, chromatin immunoprecipitation, and luciferase reporter assays were used to understand the molecular mechanism of MED1-mediated tamoxifen resistance. Mice xenograft models were used to validate treatment efficacy and molecular mechanisms in vivo. Results: miR-205 was found to directly target and suppress the expression of MED1 through bioinformatic analyses and experimental validations. An inverse correlation of miR-205 and MED1 was observed in breast cancer patients with high MED1/low miR-205, indicative of poor prognosis in long-term anti-estrogen treatment. Furthermore, the depletion of miR-205 was observed in tamoxifen-resistant breast cancer cells overexpressing MED1. The restoration of miR-205 expression attenuated MED1 expression and re-sensitized cells to tamoxifen both in vitro and in vivo. Interestingly, miR205 was also found to target another key regulatory gene, HER3, which drives PI3K/Akt signaling and MED1 activation by phosphorylation. Importantly, we found ER target gene transcription and promoter cofactor recruitment by tamoxifen can be reversed by induced miR205 expression. Conclusions: Altogether, miR-205 functions as a negative regulator of MED1 and HER3, affecting the regulation of the HER3-PI3K/Akt-MED1 axis in anti-estrogen resistance, and could serve as a potential therapeutic regime to overcome treatment resistance. Full article
(This article belongs to the Special Issue Overcoming Drug Resistance to Systemic Therapy in Breast Cancer)
Show Figures

Graphical abstract

37 pages, 7538 KiB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 10 | Viewed by 4930
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

10 pages, 1292 KiB  
Article
Endometrial Dysbiosis: A Possible Association with Estrobolome Alteration
by Giorgia Scarfò, Simona Daniele, Elisa Chelucci, Francesca Papini, Francesco Epifani, Maria Ruggiero, Vito Cela, Ferdinando Franzoni and Paolo Giovanni Artini
Biomolecules 2024, 14(10), 1325; https://doi.org/10.3390/biom14101325 - 18 Oct 2024
Cited by 2 | Viewed by 1624
Abstract
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection [...] Read more.
Background/Objectives: Microbiota modification at the endometrial level can favor gynecological diseases and impair women’s fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection between estrobolome impairment and gynecological diseases has been suggested in animal models. Nevertheless, in humans, coherent evidence on the estrobolome alteration and functionality of the female reproductive tract is still lacking. The objective of this study was to explore alterations in estrogen-related signaling and the putative link with endometrial dysbiosis. Methods: Women with infertility and repeated implantation failure (RIF, N = 40) were enrolled in order to explore the putative link between estrogen metabolism and endometrial dysbiosis. Endometrial biopsies were used to measure inflammatory and growth factor molecules. β-glucuronidase enzyme activity and estrogen receptor (ER) expression were also assessed. Results: Herein, increased levels of inflammatory molecules (i.e., IL-1β and HIF-1α) and decreased levels of the growth factor IGF-1 were found in the endometrial biopsies of patients presenting dysbiosis compared to eubiotic ones. β-glucuronidase activity and the expression of ERβ were significantly enhanced in patients in the dysbiosis group. Interestingly, Lactobacilli abundance was inversely related to β-glucuronidase activity and to ERβ expression, thus suggesting that an alteration of the estrogen-activating enzyme may affect the expression of ERs as well. Conclusions. Overall, these preliminary data suggested a link between endometrial dysbiosis and estrobolome impairment as possible synergistic contributing factors to women infertility and RIF. Full article
(This article belongs to the Special Issue Molecular Aspects of Female Infertility)
Show Figures

Figure 1

19 pages, 11091 KiB  
Article
Styphnolobium japonicum Fruit and Germinated Soybean Embryo Complex Extract for Postmenopausal-Symptom Relief
by Jeong-Won Ahn, Hyun-Soo Kim, Kongara Damodar, Hee-Hyun Shin, Kyung-Mi Kim, Jung-Youl Park, Su-Kil Jang, Yeong-Min Yoo, Jae-Chul Jung and Seong-Soo Joo
Nutrients 2024, 16(19), 3297; https://doi.org/10.3390/nu16193297 - 28 Sep 2024
Cited by 1 | Viewed by 2341
Abstract
Background/Objectives: Hormonal alterations during menopause result in substantial physiological changes. Although hormone replacement therapy (HRT) is widely used as a treatment strategy for these changes, its use remains controversial due to its associated risks. Plant isoflavones are phytoestrogens that are considered a potential [...] Read more.
Background/Objectives: Hormonal alterations during menopause result in substantial physiological changes. Although hormone replacement therapy (HRT) is widely used as a treatment strategy for these changes, its use remains controversial due to its associated risks. Plant isoflavones are phytoestrogens that are considered a potential alternative therapy for postmenopausal syndrome. We aimed to investigate the efficacy of ethanolic extracts from Styphnolobium japonicum fruit (SJF) and germinated soybean embryo (GSE) in alleviating prominent menopausal symptoms. Methods: A cell model (MCF7 human breast cancer cells) was used to investigate estrogen-like activity. A rat ovariectomy model was used to simulate estrogen depletion after menopause and to evaluate the efficacy of the SJF–GSE complex extract at ratios of 1:1, 1:2, and 2:1. Results: Treatment with the SJF–GSE extract elicited estrogen-like effects, raising pS2 and estrogen receptor α expression in MCF7 cells. The extract was found to contain 48–72 mg/g sophoricoside and 8–12 mg/g soyasaponin 1, identified as active compounds. In ovariectomized rats, the extract effectively reduced body weight and fat content, alleviated vasomotor symptoms, improved vaginal mucosal health, and exerted osteoprotective effects by enhancing bone density and structure, reducing bone-resorption markers and positively altering estradiol levels and lipid profiles. Conclusions: The SJF–GSE extract, working synergistically, provides a safe and effective alternative to HRT for managing postmenopausal symptoms and enhancing bone health, without adverse effects. These findings support the inclusion of SJF and GSE in health-functional foods and underscore the importance of further research into plant-based therapies for menopause. Full article
(This article belongs to the Special Issue Dietary Supplements in Human Health and Disease)
Show Figures

Graphical abstract

23 pages, 2370 KiB  
Article
Exploring Water-Soluble South African Tulbaghia violacea Harv Extract as a Therapeutic Approach for Triple-Negative Breast Cancer Metastasis
by Mohammed Alaouna, Rodney Hull, Thulo Molefi, Richard Khanyile, Langanani Mbodi, Thifhelimbilu Emmanuel Luvhengo, Nkhensani Chauke-Malinga, Boitumelo Phakathi, Clement Penny and Zodwa Dlamini
Curr. Issues Mol. Biol. 2024, 46(10), 10806-10828; https://doi.org/10.3390/cimb46100642 - 26 Sep 2024
Cited by 2 | Viewed by 1688
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast cancer cases and is characterized by a lack of estrogen, progesterone, and human epidermal growth factor 2 receptors. Current targeted medicines have been unsuccessful due to this absence of hormone receptors. This [...] Read more.
Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast cancer cases and is characterized by a lack of estrogen, progesterone, and human epidermal growth factor 2 receptors. Current targeted medicines have been unsuccessful due to this absence of hormone receptors. This study explored the efficacy of Tulbaghia violacea, a South African medicinal plant, for the treatment of TNBC metastasis. Extracts from T. violacea leaves were prepared using water and methanol. However, only the water-soluble extract showed anti-cancer activity and the effects of this water-soluble extract on cell adhesion, invasion, and migration, and its antioxidant activity were assessed using MCF-10A and MDA-MB-231 cells. The T. violacea extract that was soluble in water effectively decreased the movement and penetration of MDA-MB-231 cells through the basement membrane in scratch and invasion tests, while enhancing their attachment to a substance resembling an extracellular matrix. The sample showed mild-to-low antioxidant activity in the antioxidant assy. Nuclear magnetic resonance spectroscopy revealed 61 chemical components in the water-soluble extract, including DDMP, 1,2,4-triazine-3,5(2H,4H)-dione, vanillin, schisandrin, taurolidine, and α-pinene, which are known to have anti-cancer properties. An in-depth examination of the transcriptome showed alterations in genes linked to angiogenesis, metastasis, and proliferation post-treatment, with reduced activity in growth receptor signaling, angiogenesis, and cancer-related pathways, such as the Wnt, Notch, and PI3K pathways. These results indicate that T. violacea may be a beneficial source of lead chemicals for the development of potential therapeutic medicines that target TNBC metastasis. Additional studies are required to identify the precise bioactive chemical components responsible for the observed anti-cancer effects. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment)
Show Figures

Graphical abstract

12 pages, 2070 KiB  
Article
Ultrasensitive Electrochemical Biosensor for Rapid Screening of Chemicals with Estrogenic Effect
by Ruixin Li, Jin Li, Xianbo Lu, Fanli Meng and Jiping Chen
Biosensors 2024, 14(9), 436; https://doi.org/10.3390/bios14090436 - 9 Sep 2024
Cited by 1 | Viewed by 1491
Abstract
Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related [...] Read more.
Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related metabolism can lead to estrogen-related effects, posing risks to biological health, emphasizing the urgent need for simple and effective methods to screen compounds with estrogenic effects. Herein, a new electrochemical biological effect biosensor based on human estrogen receptor α (hERα) is developed, which uses hERα as the biorecognition element and employs the electroactive horseradish peroxidase (HRP) labeled 17β-estradiol (E2) multifunctional conjugate HRP-E2 as the signal-boosting element and ligand competition agent. Based on the specific ligand–receptor interaction principle between the target and nuclear receptor, by allowing the test compound to compete with HRP-E2 conjugate for binding to hERα and testing the electrocatalytic signal of the conjugate that fails to bind to the hERα estrogen receptor, rapid screening and quantitative detection of chemical substances with estrogenic effect have been achieved. The biosensor shows a wide linear range of 40 pM to 40 nM with a detection limit of 17 pM (S/N = 3) for E2, and the detection limit is 2 orders of magnitude better than that of the previously reported sensors. The biosensor based on ligand–receptor binding can not only quantitatively analyze the typical estrogen E2, but also evaluate the relative estrogen effect strength of other estrogen compounds, which has good stability and selectivity. This electrochemical sensing platform displays its promising potential for rapid screening and quantitative detection of chemicals with estrogenic effects. Full article
Show Figures

Figure 1

17 pages, 2484 KiB  
Article
Targeting Hypoxia and HIF1α in Triple-Negative Breast Cancer: New Insights from Gene Expression Profiling and Implications for Therapy
by Delong Han, Zeyu Li, Lingjie Luo and Hezhong Jiang
Biology 2024, 13(8), 577; https://doi.org/10.3390/biology13080577 - 31 Jul 2024
Viewed by 3056
Abstract
Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia [...] Read more.
Breast cancer is a complex and multifaceted disease with diverse risk factors, types, and treatment options. Triple-negative breast cancer (TNBC), which lacks the expression of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is the most aggressive subtype. Hypoxia is a common feature of tumors and is associated with poor prognosis. Hypoxia can promote tumor growth, invasion, and metastasis by stimulating the production of growth factors, inducing angiogenesis, and suppressing antitumor immune responses. In this study, we used mRNA-seq technology to systematically investigate the gene expression profile of MDA-MB-231 cells under hypoxia. We found that the hypoxia-inducible factor (HIF) signaling pathway is the primary pathway involved in the cellular response to hypoxia. The genes in which expression levels were upregulated in response to hypoxia were regulated mainly by HIF1α. In addition, hypoxia upregulated various genes, including Nim1k, Rimkla, Cpne6, Tpbgl, Kiaa11755, Pla2g4d, and Ism2, suggesting that it regulates cellular processes beyond angiogenesis, metabolism, and known processes. We also found that HIF1α was hyperactivated in MDA-MB-231 cells under normoxia. A HIF1α inhibitor effectively inhibited the invasion, migration, proliferation, and metabolism of MDA-MB-231 cells. Our findings suggest that hypoxia and the HIF signaling pathway play more complex and multifaceted roles in TNBC than previously thought. These findings have important implications for the development of new therapeutic strategies for TNBC. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

35 pages, 11739 KiB  
Article
Combining In Vitro, In Vivo, and Network Pharmacology Assays to Identify Targets and Molecular Mechanisms of Spirulina-Derived Biomolecules against Breast Cancer
by Soha Osama Hassanin, Amany Mohammed Mohmmed Hegab, Reham Hassan Mekky, Mohamed Adel Said, Mona G. Khalil, Alaaeldin Ahmed Hamza and Amr Amin
Mar. Drugs 2024, 22(7), 328; https://doi.org/10.3390/md22070328 - 22 Jul 2024
Cited by 16 | Viewed by 3226
Abstract
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina [...] Read more.
The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment. Full article
(This article belongs to the Special Issue Discovery of Marine-Derived Anticancer Agents)
Show Figures

Graphical abstract

Back to TopTop