Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = human electric shock

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 842 KiB  
Article
Development of an Electric Pulse Device for Coal Grinding
by Ayanbergen Khassenov, Dana Karabekova, Madina Bolatbekova, Bekbolat Nussupbekov, Perizat Kissabekova and Rakhman Orazbayev
Appl. Sci. 2025, 15(10), 5548; https://doi.org/10.3390/app15105548 - 15 May 2025
Viewed by 419
Abstract
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can [...] Read more.
Efficient coal grinding is a crucial aspect of the energy and mining industries. However, traditional grinding methods are known to be energy-intensive and cause significant wear on equipment as well as negative environmental impacts due to the release of small particles that can harm air quality and affect human health. In response to these challenges, we are conducting research to develop an electric pulse device for coal grinding. This device will use high-voltage discharges in a liquid medium to create shock waves that selectively destroy coal particles while minimizing mechanical damage. The electric pulse installation consisted of a control unit (for monitoring the operating modes of the installation), a generator (for converting the AC input voltage into DC output voltage), a capacitor (for energy storage), a protection system (for shutting down the installation in cases when a voltage exceeding the set safe operating discharge voltage occurs on the capacitor), a spark gap (forming a gap consisting of two conductive hemispherical electrodes separated by an air gap, designed to form an electric spark between conductors), and an electric pulse grinding device. The input material for each experiment had consistent parameters: the coal particles were diameter 8–10 mm and weighed 400 g. Coal was processed using the electric pulse method with various voltage values, numbers of pulses, capacitor capacities, and pulse frequencies. The yield of the final product depended on these parameters, and effective settings for producing coal powder were identified. The research results demonstrate that a flat metal mesh plate is effective as the negative electrode in the electric pulse grinding device. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 1810 KiB  
Article
Investigating the Influence of Renewable Energy Use and Innovative Investments in the Transportation Sector on Environmental Sustainability—A Nonlinear Assessment
by Mohammed Adgheem Alsunousi Adgheem and Göktuğ Tenekeci
Sustainability 2025, 17(10), 4311; https://doi.org/10.3390/su17104311 - 9 May 2025
Cited by 1 | Viewed by 1548
Abstract
Ecologically sustainable economic development is increasingly recognized as essential to global efforts to improve and protect environmental and socio-economic conditions. The transportation sector is also important regarding the movement of human beings and goods. Fossil fuels are primarily used in transport vehicles and [...] Read more.
Ecologically sustainable economic development is increasingly recognized as essential to global efforts to improve and protect environmental and socio-economic conditions. The transportation sector is also important regarding the movement of human beings and goods. Fossil fuels are primarily used in transport vehicles and emit carbon dioxide into the atmosphere. Hence, innovative investments in the transportation system and the use of renewable energy play a key role in overcoming this lingering problem. This study utilizes nonlinear autoregressive distributed lag (NARDL) methods to uncover key drivers influencing innovative investments in the transportation sector and the impact of renewable energy use on environmental sustainability in France between 1995 and 2020. The results indicate that renewable energy use and transport infrastructure innovations positively and negatively impact environmental sustainability. Both variables have different influences on the dependent variable depending on the economic shock period. Based on the outcomes, this study offers the following significant policy insights: (i) France could invest in innovations in renewable energy sourcing and incentivize switching from combustion engine-based transport systems. (ii) France should commit to the Europe 2020 strategy for green growth to ensure resource efficiency and promote environmental sustainability, which requires a coordinated effort to invest in smart transport systems that leverage technologies like the Internet of Things, artificial intelligence, and big data analytics. (iii) Given that two-thirds of France’s electricity is produced from nuclear sources, the government needs to implement policies in the renewable energy sector to reduce over-reliance on nuclear energy sourcing. Full article
Show Figures

Figure 1

27 pages, 5521 KiB  
Article
Investigation of the Smoothness of an Intelligent Chassis in Electric Vehicles
by Chuzhao Ma, Zhengyi Wang, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(4), 219; https://doi.org/10.3390/wevj16040219 - 6 Apr 2025
Viewed by 761
Abstract
This study examines the smoothness of an intelligent chassis for electric vehicles, analyzes the chassis structure and configuration, and considers the impacts of the primary energy subsystem, electric drive subsystem, and auxiliary control subsystem on smoothness. The influence of suspension parameters on smoothness [...] Read more.
This study examines the smoothness of an intelligent chassis for electric vehicles, analyzes the chassis structure and configuration, and considers the impacts of the primary energy subsystem, electric drive subsystem, and auxiliary control subsystem on smoothness. The influence of suspension parameters on smoothness is examined, highlighting the significance of elastic element stiffness and the shock absorber damping ratio. Dynamic models of quarter- and half-car suspension systems, as well as a comprehensive nine-degree-of-freedom vehicle model, are developed to examine the vibration characteristics under varying road conditions. The chassis suspension dynamic model is developed, simulated, and analyzed using ADAMS/View software 2024. The suspension damping value is optimized with the ADAMS/PostProcessor tool, revealing that smoothness can be enhanced by judiciously decreasing the damping value. The article discusses the human body’s reaction to vibration and assessment metrics, referencing worldwide standards to establish a foundation for evaluation. The study offers theoretical backing for the design and optimization of an intelligent chassis, hence advancing the technological development of electric vehicles. Full article
Show Figures

Figure 1

25 pages, 11367 KiB  
Article
An mRNA Vaccine for Herpes Zoster and Its Efficacy Evaluation in Naïve/Primed Murine Models
by Linglei Jiang, Wenshuo Zhou, Fei Liu, Wenhui Li, Yan Xu, Zhenwei Liang, Man Cao, Li Hou, Pengxuan Liu, Feifei Wu, Aijun Shen, Zhiyuan Zhang, Xiaodi Zhang, Haibo Zhao, Xinping Pan, Tengjie Wu, William Jia and Yuntao Zhang
Vaccines 2025, 13(3), 327; https://doi.org/10.3390/vaccines13030327 - 19 Mar 2025
Cited by 1 | Viewed by 1888
Abstract
Background/Objectives: An overwhelming burden to clinics, herpes zoster (HZ), or shingles, is a painful disease that occurs frequently among aged individuals with a varicella-zoster virus (VZV) infection history. The cause of shingles is the reactivation of dormant VZV in the dorsal root ganglia/cranial [...] Read more.
Background/Objectives: An overwhelming burden to clinics, herpes zoster (HZ), or shingles, is a painful disease that occurs frequently among aged individuals with a varicella-zoster virus (VZV) infection history. The cause of shingles is the reactivation of dormant VZV in the dorsal root ganglia/cranial nerves of the human body. Patients with HZ experience sharp, intense, electric shock-like pain, which makes their health-related quality of life (HRQoL) extremely low. Methods: Various mRNA constructs were designed based on intracellular organelle-targeting strategies and AI algorithm-guided high-throughput automation platform screening and were then synthesized by in vitro transcription and encapsulated with four-component lipid nanoparticles (LNPs). Immunogenicity was evaluated on a naïve mouse model, long-term mouse model, and VZV-primed mouse model. Safety was evaluated by a modified “nestlet shredding” method for potential adverse effects induced by vaccines. Comparison between muscular and intradermal administrations was conducted using different inoculated approaches as well. Results: The best vaccine candidate, CVG206, showed robust humoral and cellular immune responses, durable immune protection, and the fewest adverse effects. The CVG206 administered intradermally revealed at least threefold higher humoral and cellular immune responses compared to intramuscular vaccination. The manufactured and lyophilized patch of CVG206 demonstrated good thermal stability at 2–8 °C during 9 months of storage. Conclusions: The lyophilized mRNA vaccine CVG206 possesses remarkable immunogenicity, long-term protection, safety, and thermal stability, and its effectiveness could even be further improved by intradermal administration, revealing that CVG206 is a promising vaccine candidate for HZ in future clinical studies. Full article
Show Figures

Figure 1

21 pages, 2174 KiB  
Article
Safety Risk Assessment Method of In-Service Stage Suspension Equipment Based on Grey Fuzzy Comprehensive Evaluation
by Zhibin Su, Xueying Zhang, Huiqin Wang and Jingjing Zhang
Appl. Sci. 2024, 14(23), 10998; https://doi.org/10.3390/app142310998 - 26 Nov 2024
Viewed by 819
Abstract
Performance safety is one of the important goals for the high-quality development of modern performance services. The in-service stage suspension equipment that has been put into use is one of the most frequently used and most closely related stage machinery in performances, and [...] Read more.
Performance safety is one of the important goals for the high-quality development of modern performance services. The in-service stage suspension equipment that has been put into use is one of the most frequently used and most closely related stage machinery in performances, and there are often significant safety hazards during its use. In response to the current lack of safety risk assessment methods and incomplete assessment techniques for in-service stage suspension equipment, this paper proposes a safety risk assessment method for in-service stage suspension equipment based on grey fuzzy comprehensive evaluation, with professional theaters as the target scenario. This method first identifies risk factors based on Failure Mode and Effects Analysis (FMEA), then uses the grey relational analysis (GRA) method for risk factor analysis, and finally adopts the fuzzy comprehensive evaluation (FCE) method to achieve safety risk level assessment. By constructing and analyzing an evaluation model for professional theater stage suspension equipment, the safety risk levels and corresponding safety risk factor rankings of performance accidents such as electric shock, falling, and failure can be obtained, and measures to reduce risks can be provided based on the most important risk factors. The research results show that more attention should be paid to the influence of human factors in the safety assessment and detection of in-service stage suspension systems. The research in this article is of great significance for improving the safe use of in-service stage suspension equipment, enhancing the level of performance safety management, and improving the quality of performance equipment services, laying the foundation for the formation of relevant regulatory systems and standards. Full article
(This article belongs to the Special Issue Advances in Risk and Reliability Analysis)
Show Figures

Figure 1

18 pages, 9899 KiB  
Article
A Robotic Teleoperation System with Integrated Augmented Reality and Digital Twin Technologies for Disassembling End-of-Life Batteries
by Feifan Zhao, Wupeng Deng and Duc Truong Pham
Batteries 2024, 10(11), 382; https://doi.org/10.3390/batteries10110382 - 30 Oct 2024
Cited by 4 | Viewed by 3003
Abstract
Disassembly is a key step in remanufacturing, especially for end-of-life (EoL) products such as electric vehicle (EV) batteries, which are challenging to dismantle due to uncertainties in their condition and potential risks of fire, fumes, explosions, and electrical shock. To address these challenges, [...] Read more.
Disassembly is a key step in remanufacturing, especially for end-of-life (EoL) products such as electric vehicle (EV) batteries, which are challenging to dismantle due to uncertainties in their condition and potential risks of fire, fumes, explosions, and electrical shock. To address these challenges, this paper presents a robotic teleoperation system that leverages augmented reality (AR) and digital twin (DT) technologies to enable a human operator to work away from the danger zone. By integrating AR and DTs, the system not only provides a real-time visual representation of the robot’s status but also enables remote control via gesture recognition. A bidirectional communication framework established within the system synchronises the virtual robot with its physical counterpart in an AR environment, which enhances the operator’s understanding of both the robot and task statuses. In the event of anomalies, the operator can interact with the virtual robot through intuitive gestures based on information displayed on the AR interface, thereby improving decision-making efficiency and operational safety. The application of this system is demonstrated through a case study involving the disassembly of a busbar from an EoL EV battery. Furthermore, the performance of the system in terms of task completion time and operator workload was evaluated and compared with that of AR-based control methods without informational cues and ‘smartpad’ controls. The findings indicate that the proposed system reduces operation time and enhances user experience, delivering its broad application potential in complex industrial settings. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

15 pages, 5733 KiB  
Article
Research on Low-Voltage Arc Fault Based on CNN–Transformer Parallel Neural Network with Threshold-Moving Optimization
by Xin Ning, Tianli Ding and Hongwei Zhu
Sensors 2024, 24(20), 6540; https://doi.org/10.3390/s24206540 - 10 Oct 2024
Viewed by 1362
Abstract
Low-voltage arc fault detection can effectively prevent fires, electric shocks, and other accidents, reducing potential risks to human life and property. The research on arc fault circuit interrupters (AFCIs) is of great significance for both safety in production scenarios and daily living disaster [...] Read more.
Low-voltage arc fault detection can effectively prevent fires, electric shocks, and other accidents, reducing potential risks to human life and property. The research on arc fault circuit interrupters (AFCIs) is of great significance for both safety in production scenarios and daily living disaster prevention. Considering the diverse characteristics of loads between the normal operational state and the arc fault condition, a parallel neural network structure is proposed for arc fault recognition, which is based on a convolutional neural network (CNN) and a Transformer. The network uses convolutional layers and Transformer encoders to process the low-frequency current and high-frequency components, respectively. Then, it uses Softmax classification to perform supervised learning on the concatenated features. The method combines the advantages of both networks and effectively reduces the required depth and computational complexity. The experimental results show that the accuracy of this method can reach 99.74%, and with the threshold-moving method, the erroneous judgment rate can be lower. These results indicate that the parallel neural network can definitely detect arc faults and also improve recognition efficiency due to its lean structure. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 5862 KiB  
Article
Assessing High-Voltage Shore Connection Safety: An In-Depth Study of Grounding Practices in Shore Power Systems
by Shih-Hsien Hsu, Fu-Ming Tzu, Wei-Huang Chang and Yi-Dong Chen
Energies 2024, 17(6), 1373; https://doi.org/10.3390/en17061373 - 13 Mar 2024
Cited by 6 | Viewed by 3117
Abstract
There is growing concern regarding air pollutants (NOx, SOx, and PM) and carbon emissions from ocean-going vessels in harbor areas and the role of high-voltage shore connection (HVSC) systems in mitigating these emissions during vessel berthing. The HVSC operates as a TN grounding [...] Read more.
There is growing concern regarding air pollutants (NOx, SOx, and PM) and carbon emissions from ocean-going vessels in harbor areas and the role of high-voltage shore connection (HVSC) systems in mitigating these emissions during vessel berthing. The HVSC operates as a TN grounding system in humid environments, and it needs a proper grounding design to ensure safety when faults occur. This article intends to examine the overvoltage resulting from fault currents and its implications for the safety of operators when a single line-to-ground fault takes place within the design of HVSC grounding systems. The assessment is carried out by employing actual scenarios and parameters from a container berth at Kaohsiung Harbor in Taiwan. Considering site conditions, such as the wet ground surface, human body resistance, and electric shock duration, the tolerable safe voltage level is derived using IEEE Std. 80 and IEC 60479-1. Based on the shore power system grounding architecture specified in IEEE/IEC 80005-1, an equivalent circuit model is constructed to calculate the fault currents using symmetrical component analysis. The actual touch voltages generated in various locations are analyzed under scenarios of connecting or disconnecting the equipotential bonding between the ship and the shore using neutral grounding resistor (NGR) designs. This article delves into the scenarios of electric shock that may occur during the operation of an actual container ship’s shore power system. It evaluates whether various contact voltage values exceed current international standards and verifies the grounding design and safety voltage specifications of IEEE/IEC 80005-1. According to the results of this study, the use of NGR and protective earthed neutral (PEN) conductors in HVSC is crucial. This can limit fault currents, reduce touch voltage, and ensure the safety of personnel and equipment. Therefore, ensuring and monitoring equipment conductors and adopting NGRs of appropriate sizes are crucial elements in maintaining electrical safety in HVSC systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

8 pages, 3380 KiB  
Case Report
Implementation of an Electrosurgical Checklist in a Podiatry Unit in Relation to a Case of Inadvertent Burns during Hallux Valgus Surgery
by Antonio Córdoba-Fernández, María Dolores Jiménez-Cristino, Francisco Javier Mármol-García and Victoria Eugenia Córdoba-Jiménez
Reports 2023, 6(3), 43; https://doi.org/10.3390/reports6030043 - 14 Sep 2023
Cited by 1 | Viewed by 2196
Abstract
Iatrogenic burns are unpleasant and sometimes difficult to explain to patients. Podiatric surgeons routinely use electrosurgical devices to cut and coagulate tissue during surgical procedures. Although advances in technology have made electrosurgery increasingly safer for patients and personnel, its use is still poorly [...] Read more.
Iatrogenic burns are unpleasant and sometimes difficult to explain to patients. Podiatric surgeons routinely use electrosurgical devices to cut and coagulate tissue during surgical procedures. Although advances in technology have made electrosurgery increasingly safer for patients and personnel, its use is still poorly understood by the surgical community, and the hazards associated with its use still exist presently. Human error, direct or indirect transfer of electricity to a conductive device, or device malfunction can cause serious adverse events, including burns, electrical shocks, and or fires. Here, we report a rare case of a 43-year-old man who suffered severe burns during hallux valgus surgery. The surgeon and the nursing staff did not notice any injuries during the surgical intervention. This unusual clinical case serves to highlight the importance of implementing protocols to prevent injuries related to the use of electrosurgery. Based on this report, a specific checklist was implemented to prevent adverse events related to electrosurgery in our podiatric surgery unit to reduce the risk of electrosurgical complications. The implementation of the checklist can be useful to help health professionals improve patient safety during surgery and avoid potential medico–legal liability claims. Full article
Show Figures

Figure 1

14 pages, 2493 KiB  
Article
Attitudes towards the Potential Use of Aversive Geofencing Devices to Manage Wild Elephant Movement
by Surendranie J. Cabral de Mel, Saman Seneweera, Ashoka Dangolla, Devaka K. Weerakoon, Tek Maraseni and Benjamin L. Allen
Animals 2023, 13(16), 2657; https://doi.org/10.3390/ani13162657 - 18 Aug 2023
Cited by 3 | Viewed by 3547
Abstract
Aversive geofencing devices (AGDs) or animal-borne satellite-linked shock collars might become a useful tool to mitigate human-elephant conflict (HEC). AGDs have the potential to condition problem elephants to avoid human-dominated landscapes by associating mild electric shocks with preceding audio warnings given as they [...] Read more.
Aversive geofencing devices (AGDs) or animal-borne satellite-linked shock collars might become a useful tool to mitigate human-elephant conflict (HEC). AGDs have the potential to condition problem elephants to avoid human-dominated landscapes by associating mild electric shocks with preceding audio warnings given as they approach virtual boundaries. We assessed the opinions of different stakeholders (experts, farmers, and others who have and have not experienced HEC; n = 611) on the potential use of AGDs on Asian elephants. Most respondents expressed positive opinions on the potential effectiveness of AGDs in managing elephant movement (62.2%). About 62.8% respondents also provided positive responses for the acceptability of AGDs if pilot studies with captive elephants have been successful in managing their movements. Some respondents perceived AGDs to be unacceptable because they are unethical or harmful and would be unsuccessful given wild elephants may respond differently to AGDs than captive elephants. Respondents identified acceptability, support and awareness of stakeholders, safety and wellbeing of elephants, logistical difficulties, durability and reliable functionality of AGDs, and uncertainties in elephants’ responses to AGDs as potential challenges for implementing AGDs. These issues need attention when developing AGDs to increase support from stakeholders and to effectively reduce HEC incidents in the future. Full article
(This article belongs to the Special Issue Conservation Behavior Approaches to Elephant Management and Welfare)
Show Figures

Figure 1

13 pages, 755 KiB  
Opinion
Poultry Welfare at Slaughter
by Awal Fuseini, Mara Miele and John Lever
Poultry 2023, 2(1), 98-110; https://doi.org/10.3390/poultry2010010 - 3 Mar 2023
Cited by 1 | Viewed by 8173
Abstract
Billions of poultry are slaughtered globally each year to provide protein for a rapidly expanding human population. The large number of birds produced in conventional systems presents animal welfare issues during production, transport, and at the time of slaughter. While we recognise the [...] Read more.
Billions of poultry are slaughtered globally each year to provide protein for a rapidly expanding human population. The large number of birds produced in conventional systems presents animal welfare issues during production, transport, and at the time of slaughter. While we recognise the significance of welfare issues during rearing and transport, this paper highlights the welfare of poultry at the time of slaughter. The impacts of manual handling, inversion and shackling, use of inappropriate electrical stunning parameters, and the use of aversive gas mixtures during controlled atmosphere stunning are some of the evident welfare lapses; if the entrance to the water bath is wet and not isolated, bird welfare can also be compromised during water bath stunning because of pre-stun shocks. We also highlight the use of aversive stunning methods such as carbon dioxide gas at high concentrations, which has been shown to compromise bird welfare. In conclusion, we offer some reflections on ways to improve the welfare of birds during pre-slaughter handling, stunning, and neck cutting. Full article
Show Figures

Figure 1

20 pages, 4174 KiB  
Article
Differential Effects of Oligosaccharides, Antioxidants, Amino Acids and PUFAs on Heat/Hypoxia-Induced Epithelial Injury in a Caco-2/HT-29 Co-Culture Model
by Puqiao Lian, Paul A. J. Henricks, Harry J. Wichers, Gert Folkerts and Saskia Braber
Int. J. Mol. Sci. 2023, 24(2), 1111; https://doi.org/10.3390/ijms24021111 - 6 Jan 2023
Cited by 8 | Viewed by 3472
Abstract
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. [...] Read more.
(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

7 pages, 1486 KiB  
Case Report
Multimodal Imaging of a Chimney-Stenting Procedure Performed Simultaneously with a Transcatheter Aortic Valve Replacement (TAVR) in a Reanimated Human Heart including Post-Implant Analyses
by Michael A. Bielecki, Amanda N. DeVos, Francesco Bianchini and Paul A. Iaizzo
J. Cardiovasc. Dev. Dis. 2022, 9(12), 413; https://doi.org/10.3390/jcdd9120413 - 24 Nov 2022
Cited by 2 | Viewed by 2567
Abstract
Transcatheter aortic valve replacement (TAVR) has become a popular treatment option for severe aortic stenosis for patients with a high risk for mortality with surgical aortic valve replacement (SAVR). Coronary artery occlusion (CAO) following the implantation of the device is a potential and [...] Read more.
Transcatheter aortic valve replacement (TAVR) has become a popular treatment option for severe aortic stenosis for patients with a high risk for mortality with surgical aortic valve replacement (SAVR). Coronary artery occlusion (CAO) following the implantation of the device is a potential and sometimes devastating complication of this procedure, that provokes a sudden deterioration of hemodynamic status followed by cardiogenic shock and electrical instability. With patients that present a high risk for coronary obstruction, coronary protection with a chimney stenting technique is an effective strategy that can ensure coronary perfusion during TAVR in case of acute CAO. Utilizing Visible Heart® methodologies, a human heart was reanimated. A chimney stenting technique was implemented simultaneously with the deployment of a Medtronic Evolut Pro+ valve (Medtronic PLC; Minneapolis, MN, USA). The entire procedure was recorded utilizing endoscopic cameras, fluoroscopy, optical coherence tomography, and echocardiography. In addition to these procedural visualizations, post-procedural micro-computed tomography (micro-CT) was conducted to provide post-implantation imaging with approximately 60-micron resolution. Utilizing these imaging modalities in a reanimated human heart allows for the unique opportunity to collect data for TAVR procedures in real human anatomies for the subsequent educational uses by the physicians treating aortic valvular disease and/or the designers of future TAVR technologies and procedures. Full article
(This article belongs to the Special Issue Transcatheter Aortic Valve Implantation (TAVI))
Show Figures

Figure 1

20 pages, 4210 KiB  
Article
Design of Mid-Point Ground with Resistors and Capacitors in Mono-Polar LVDC System
by Seung-Taek Lim, Ki-Yeon Lee, Dong-Ju Chae and Sung-Hun Lim
Energies 2022, 15(22), 8653; https://doi.org/10.3390/en15228653 - 18 Nov 2022
Cited by 4 | Viewed by 3180
Abstract
Low-voltage direct current (LVDC) systems have been increasingly studied as new efficient power systems. However, existing studies have primarily focused on power conversion designs, control, and operation, and research on ground configurations of LVDC systemsis insufficient. Consideration of the installation criteria of protective [...] Read more.
Low-voltage direct current (LVDC) systems have been increasingly studied as new efficient power systems. However, existing studies have primarily focused on power conversion designs, control, and operation, and research on ground configurations of LVDC systemsis insufficient. Consideration of the installation criteria of protective equipment and grounding systems is crucial because ground configurations in general households for end users are highly associated with the risk of human electrocution. Therefore, we investigate a mid-point grounding system using capacitors to ensure electrical safety in a mono-polar LVDC system that a general end user can directly experience in a household. MATLAB/Simulink is used to analyze the fault characteristics of the mid-point grounding system using capacitors by considering the effects of DC on the human body based on the International Electrical Code (IEC). Consequently, this paper suggests the minimum required values of the capacitors and resistors to operate the DC residual current detector (DC RCD), and the operation of the DC RCD was confirmed. By confirming the applicability of DC RCD in a household LVDC system with a mid-point grounding system using capacitors and resistors, unnecessary power loss in a mid-point grounding system and electrical accidents, such as electric shocks and fires, could be minimized. Full article
Show Figures

Figure 1

29 pages, 8838 KiB  
Article
Design and Manufacturing of Equipment for Investigation of Low Frequency Bioimpedance
by Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Gabriela Telipan and Victor Stoica
Micromachines 2022, 13(11), 1858; https://doi.org/10.3390/mi13111858 - 29 Oct 2022
Cited by 4 | Viewed by 2928
Abstract
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection [...] Read more.
The purpose of this study was to highlight a method of making equipment for the investigation of low frequency bioimpedance. A constant current with an average value of I = 100 µA is injected into the human body via means of current injection electrodes, and the biological signal is taken from the electrodes of electric potential charged with the biopotentials generated by the human body. The resulting voltage, ΔU is processed by the electronic conditioning system. The mathematical model of the four-electrode system in contact with the skin, and considering a target organ, was simplified to a single equivalent impedance. The capacitive filter low passes down from the differential input of the first instrumentation amplifier together with the isolated capacitive barrier integrated in the precision isolated secondary amplifier and maintains the biological signal taken from the electrodes charged with the undistorted biopotentials generated by the human body. Mass loops are avoided, and any electric shocks or electrostatic discharges are prevented. In addition, for small amplitudes of the biological signal, electromagnetic interferences of below 100 Hz of the power supply network were eliminated by using an active fourth-order Bessel filtering module. The measurements performed for the low frequency of f = 100 Hz on the volunteers showed for the investigated organs that the bioelectrical resistivities vary from 90 Ωcm up to 450 Ωcm, and that these are in agreement with other published and disseminated results for each body zone. Full article
(This article belongs to the Special Issue Electrochemical Sensors in Biological Applications, Volume II)
Show Figures

Figure 1

Back to TopTop