Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,754)

Search Parameters:
Keywords = human disease animal model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3221 KiB  
Article
Development of a Deer Tick Virus Infection Model in C3H/HeJ Mice to Mimic Human Clinical Outcomes
by Dakota N. Paine, Erin S. Reynolds, Charles E. Hart, Jessica Crooker and Saravanan Thangamani
Viruses 2025, 17(8), 1092; https://doi.org/10.3390/v17081092 (registering DOI) - 7 Aug 2025
Abstract
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human [...] Read more.
Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, Ixodes scapularis, which is also the primary vector of Borrelia burgdorferi s.l., the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with B. burgdorferi s.l. Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice. Neurological clinical signs, mortality, and weight loss were observed in all DTV-infected mice during the investigation. Infected animals demonstrated consistent viral infection in their organs. Additionally, neuropathology of brain sections indicated the presence of meningoencephalitis throughout the brain. This data, along with the clinical outcomes for the mice, indicates successful infection and showcases the neuroinvasive nature of the virus. This is the first study to identify C3H/HeJ mice as an appropriate model for DTV infection. As C3H/HeJ mice are already an established model for B. burgdorferi s.l. infection, this model could serve as an ideal system for investigating disease progression and pathogenesis of co-infections. Full article
(This article belongs to the Special Issue Tick-Borne Viruses 2026)
Show Figures

Figure 1

20 pages, 1558 KiB  
Review
Managing Japanese Encephalitis Virus as a Veterinary Infectious Disease Through Animal Surveillance and One Health Control Strategies
by Jae-Yeon Park and Hye-Mi Lee
Life 2025, 15(8), 1260; https://doi.org/10.3390/life15081260 (registering DOI) - 7 Aug 2025
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification [...] Read more.
Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that circulates primarily within animal populations and occasionally spills over to humans, causing severe neurological disease. While humans are terminal hosts, veterinary species such as pigs and birds play essential roles in viral amplification and maintenance, making JEV fundamentally a veterinary infectious disease with zoonotic potential. This review summarizes the current understanding of JEV transmission dynamics from a veterinary and ecological perspective, emphasizing the roles of amplifying hosts and animal surveillance in controlling viral circulation. Recent genotype shifts and viral evolution have raised concerns regarding vaccine effectiveness and regional emergence. National surveillance systems and animal-based monitoring strategies are examined for their predictive value in detecting outbreaks early. Veterinary and human vaccination strategies are also reviewed, highlighting the importance of integrated One Health approaches. Advances in modeling and climate-responsive surveillance further underscore the dynamic and evolving landscape of JEV transmission. By managing the infection in animal reservoirs, veterinary interventions form the foundation of sustainable zoonotic disease control. Full article
Show Figures

Figure 1

41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
20 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

12 pages, 579 KiB  
Article
In Vivo Safety and Efficacy of Thiosemicarbazones in Experimental Mice Infected with Toxoplasma gondii Oocysts
by Manuela Semeraro, Ghalia Boubaker, Mirco Scaccaglia, Dennis Imhof, Maria Cristina Ferreira de Sousa, Kai Pascal Alexander Hänggeli, Anitha Löwe, Marco Genchi, Laura Helen Kramer, Alice Vismarra, Giorgio Pelosi, Franco Bisceglie, Luis Miguel Ortega-Mora, Joachim Müller and Andrew Hemphill
Biomedicines 2025, 13(8), 1879; https://doi.org/10.3390/biomedicines13081879 - 1 Aug 2025
Viewed by 178
Abstract
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their [...] Read more.
Background: Toxoplasma gondii is a globally widespread parasite responsible for toxoplasmosis, a zoonotic disease with significant impact on both human and animal health. The current lack of safe and effective treatments underscores the need for new drugs. Earlier, thiosemicarbazones (TSCs) and their metal complexes have shown promising activities against T. gondii. This study evaluated a gold (III) complex C3 and its TSC ligand C4 for safety in host immune cells and zebrafish embryos, followed by efficacy assessment in a murine model for chronic toxoplasmosis. Methods: The effects on viability and proliferation of murine splenocytes were determined using Alamar Blue assay and BrdU ELISA, and potential effects of the drugs on zebrafish (Danio rerio) embryos were detected through daily light microscopical inspection within the first 96 h of embryo development. The parasite burden in treated versus non-treated mice was measured by quantitative real-time PCR in the brain, eyes and the heart. Results: Neither compound showed immunosuppressive effects on the host immune cells but displayed dose-dependent toxicity on early zebrafish embryo development, suggesting that these compounds should not be applied in pregnant animals. In the murine model of chronic toxoplasmosis, C4 treatment significantly reduced the parasite load in the heart but not in the brain or eyes, while C3 did not have any impact on the parasite load. Conclusions: These results highlight the potential of C4 for further exploration but also the limitations of current approaches in effectively reducing parasite burden in vivo. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

20 pages, 1886 KiB  
Article
Elevated IGFBP4 and Cognitive Impairment in a PTFE-Induced Mouse Model of Obstructive Sleep Apnea
by E. AlShawaf, N. Abukhalaf, Y. AlSanae, I. Al khairi, Abdullah T. AlSabagh, M. Alonaizi, A. Al Madhoun, A. Alterki, M. Abu-Farha, F. Al-Mulla and J. Abubaker
Int. J. Mol. Sci. 2025, 26(15), 7423; https://doi.org/10.3390/ijms26157423 - 1 Aug 2025
Viewed by 155
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical observation of elevated IGFBP4 in OSA patients motivated the present investigation in a controlled animal model. Building on the previously reported protocol, OSA was induced in male C57BL/6 mice (9–12 weeks old) through intralingual injection of polytetrafluoroethylene (PTFE), producing tongue hypertrophy, intermittent airway obstruction, and hypoxemia. After 8–10 weeks, the study assessed (1) hypoxia biomarkers—including HIF-1α and VEGF expression—and (2) neurobehavioral outcomes in anxiety and cognition using the open-field and novel object recognition tests. PTFE-treated mice exhibited a significant increase in circulating IGFBP4 versus both baseline and control groups. Hepatic Igfbp4 mRNA was also upregulated. Behaviorally, PTFE mice displayed heightened anxiety-like behavior and impaired novel object recognition, paralleling cognitive deficits reported in human OSA. These findings validate the PTFE-induced model as a tool for studying OSA-related hypoxia and neurocognitive dysfunction, and they underscore IGFBP4 as a promising biomarker and potential mediator of OSA’s systemic effects. Full article
(This article belongs to the Special Issue Sleep and Breathing: From Molecular Perspectives)
Show Figures

Figure 1

11 pages, 737 KiB  
Article
Generation of an In Vitro Cartilage Aging Model Using Human Sera from Old Donors
by Sophie Hines, Meagan J. Makarczyk, Joseph Garzia and Hang Lin
Bioengineering 2025, 12(8), 823; https://doi.org/10.3390/bioengineering12080823 - 30 Jul 2025
Viewed by 378
Abstract
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully [...] Read more.
Cartilage degradation is a key feature of osteoarthritis (OA), a joint disease that significantly impacts the quality of life of the elderly population. While advanced age is recognized as one of the major risk factors for OA, the underlying mechanisms are not fully understood. Research involving cartilage from aged animals has improved our understanding of the changes associated with aging. However, studies with aged animals can be time-consuming and costly. In this study, we investigate the use of human sera from older donors as a stressor to induce aging-like changes in cultured human chondrocytes. First, we assess the expression levels of markers related to chondrogenesis, hypertrophy, fibrosis, and inflammation in human chondrocytes treated with sera from younger or older human donors. Next, we evaluate the regenerative potential of these sera-treated chondrocytes by stimulating them with the anabolic factor transforming growth factor (TGF)-β3. The results show that treatment with sera from older donors induced an aging-like phenotype in chondrocytes and impaired their ability to generate new cartilage. These findings provide insight into the role of systemic factors (serum) in cartilage aging and offer a novel in vitro model for studying age-related changes in chondrocytes. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

20 pages, 3005 KiB  
Review
EUS-Guided Pancreaticobiliary Ablation: Is It Ready for Prime Time?
by Nina Quirk, Rohan Ahuja and Nirav Thosani
Immuno 2025, 5(3), 30; https://doi.org/10.3390/immuno5030030 - 25 Jul 2025
Viewed by 295
Abstract
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, [...] Read more.
Despite advances in surgery, chemotherapy, and radiation treatments for pancreatic ductal adenocarcinoma (PDAC), 5-year survival rates remain at nearly 11%. Cholangiocarcinoma, while not as severe, also possesses similar survival rates. Fewer than 20% of patients are surgical candidates at time of diagnosis; therefore, it is imperative that alternative therapies are effective for non-surgical patients. There are several thermal ablative techniques, including radiofrequency ablation (RFA), high-intensity focused ultrasound (HIFU), microwave ablation (MWA), alcohol ablation, stereotactic body radiotherapy (SBRT), cryoablation, irreversible electroporation (IRE), biliary intraluminal brachytherapy, and biliary photodynamic therapy (PDT). Emerging literature in animal models and human patients has demonstrated that endoscopic ultrasound (EUS)-guided RFA (EUS-RFA) prevents tumor progression through coagulative necrosis, protein denaturation, and activation of anticancer immunity in local and distant tumor tissue (abscopal effect). RFA treatment has been shown to not only reduce tumor-associated immunosuppressive cells but also increase functional T cells in distant tumor cells not treated with RFA. The remarkable ability to reduce tumor progression and promote tumor microenvironment (TME) remodeling makes RFA a very promising non-surgical therapy technique that has the potential to reduce mortality in this patient population. EUS-RFA offers superior precision and safety compared to other ablation techniques for pancreatic and biliary cancers, due to real-time imaging capabilities and minimally invasive nature. Future research should focus on optimizing RFA protocols, exploring combination therapies with chemotherapy or immunotherapy, and expanding its use in patients with metastatic disease. This review article will explore the current data and underlying pathophysiology of EUS-RFA while also highlighting the role of ablative therapies as a whole in immune activation response. Full article
Show Figures

Figure 1

16 pages, 13113 KiB  
Article
Ambient Particulate Matter Exposure Impairs Gut Barrier Integrity and Disrupts Goblet Cell Function
by Wanhao Gao, Wang Lin, Miao Tian, Shilang Fan, Sabrina Edwards, Joanne Tran, Yuanjing Li and Xiaoquan Rao
Biomedicines 2025, 13(8), 1825; https://doi.org/10.3390/biomedicines13081825 - 25 Jul 2025
Viewed by 341
Abstract
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure [...] Read more.
Background: As a well-known environmental hazard, ambient fine particulate matter (PM2.5, aerodynamic diameter ≤ 2.5 µm) has been positively correlated with an increased risk of digestive system diseases, including appendicitis, inflammatory bowel disease, and gastrointestinal cancer. Additionally, PM2.5 exposure has been shown to alter microbiota composition and diversity in human and animal models. However, its impact on goblet cells and gut mucus barrier integrity remains unclear. Methods: To address this, 8-week-old male and female interleukin-10 knockout (IL10−/−) mice, serving as a spontaneous colitis model, were exposed to concentrated ambient PM2.5 or filtered air (FA) in a whole-body exposure system for 17 weeks. Colon tissues from the PM2.5-exposed mice and LS174T goblet cells were analyzed using H&E staining, transmission electron microscopy (TEM), and transcriptomic profiling. Results: The average PM2.5 concentration in the exposure chamber was 100.20 ± 13.79 µg/m3. PM2.5 exposure in the IL10−/− mice led to pronounced colon shortening, increased inflammatory infiltration, ragged villi brush borders, dense goblet cells with sparse enterocytes, and lipid droplet accumulation in mitochondria. Similar ultrastructure changes were exhibited in the LS174T goblet cells after PM2.5 exposure. Transcriptomic analysis revealed a predominantly upregulated gene expression spectrum, indicating an overall enhancement rather than suppression of metabolic activity after PM2.5 exposure. Integrated enrichment analyses, including GO, KEGG, and GSEA, showed enrichment in pathways related to oxidative stress, xenobiotic (exogenous compound) metabolism, and energy metabolism. METAFlux, a metabolic activity analysis, further substantiated that PM2.5 exposure induces a shift in cellular energy metabolism preference and disrupts redox homeostasis. Conclusions: The findings of exacerbated gut barrier impairment and goblet cell dysfunction following PM2.5 exposure provide new evidence of environmental factors contributing to colitis, highlighting new perspectives on its role in the pathogenesis of colitis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 2411 KiB  
Systematic Review
Response of Akkermansia muciniphila to Bioactive Compounds: Effects on Its Abundance and Activity
by Jair Alejandro Temis-Cortina, Harold Alexis Prada-Ramírez, Hulme Ríos-Guerra, Judith Espinosa-Raya and Raquel Gómez-Pliego
Fermentation 2025, 11(8), 427; https://doi.org/10.3390/fermentation11080427 - 24 Jul 2025
Viewed by 665
Abstract
Introduction: The gut microbiota is vital for human health, and its modulation through dietary and pharmaceutical compounds has gained increasing attention. Among gut microbes, Akkermansia muciniphila has been extensively researched due to its role in maintaining intestinal barrier integrity, regulating energy metabolism, and [...] Read more.
Introduction: The gut microbiota is vital for human health, and its modulation through dietary and pharmaceutical compounds has gained increasing attention. Among gut microbes, Akkermansia muciniphila has been extensively researched due to its role in maintaining intestinal barrier integrity, regulating energy metabolism, and influencing inflammatory responses. Subject: To analyze and synthesize the available scientific evidence on the influence of various bioactive compounds, including prebiotics, polyphenols, antioxidants, and pharmaceutical agents, on the abundance and activity of A. muciniphila, considering underlying mechanisms, microbial context, and its therapeutic potential for improving metabolic and intestinal health. Methods: A systematic literature review was conducted in accordance with the PRISMA 2020 guidelines. Databases such as PubMed, ScienceDirect, Scopus, Web of Science, SciFinder-n, and Google Scholar were searched for publications from 2004 to 2025. Experimental studies in animal models or humans that evaluated the impact of bioactive compounds on the abundance or activity of A. muciniphila were prioritized. The selection process was managed using the Covidence platform. Results: A total of 78 studies were included in the qualitative synthesis. This review compiles and analyzes experimental evidence on the interaction between A. muciniphila and various bioactive compounds, including prebiotics, antioxidants, flavonoids, and selected pharmaceutical agents. Factors such as the chemical structure of the compounds, microbial environment, underlying mechanisms, production of short-chain fatty acids (SCFAs), and mucin interactions were considered. Compounds such as resistant starch type 2, GOS, 2′-fucosyllactose, quercetin, resveratrol, metformin, and dapagliflozin showed beneficial effects on A. muciniphila through direct or indirect pathways. Discussion: Variability across studies reflects the influence of multiple variables, including compound type, dose, intervention duration, experimental models, and analytical methods. These differences emphasize the need for a contextualized approach when designing microbiota-based interventions. Conclusions: A. muciniphila emerges as a promising therapeutic target for managing metabolic and inflammatory diseases. Further mechanistic and clinical studies are necessary to validate its role and to support the development of personalized microbiota-based treatment interventions. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

12 pages, 1137 KiB  
Article
Which One Would You Choose?—Investigation of Widely Used Housekeeping Genes and Proteins in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis
by Aimo Samuel Christian Epplen, Sarah Stahlke, Carsten Theiss and Veronika Matschke
NeuroSci 2025, 6(3), 69; https://doi.org/10.3390/neurosci6030069 - 23 Jul 2025
Viewed by 266
Abstract
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential [...] Read more.
Amyotrophic lateral sclerosis (ALS) remains a progressive neurodegenerative disease, lacking effective causal therapies. The Wobbler mouse model harboring a spontaneous autosomal recessive mutation in the vacuolar protein sorting associated protein (Vps54), has emerged as a valuable model for investigating ALS pathophysiology and potential treatments. This model exhibits cellular and phenotypic parallels to human ALS, including protein aggregation, microglia and astrocyte activation, as well as characteristic disease progression at distinct stages. Exploring the underlying pathomechanisms and identifying therapeutic targets requires a comprehensive analysis of gene and protein expression. In this study, we examined the expression of three well-established housekeeping genes and proteins—calnexin, ß-actin, and ßIII-tubulin—in the cervical spinal cord of the Wobbler model. These candidates were selected based on their demonstrated stability across various systems like animal models or cell culture. Calnexin, an integral protein of the endoplasmic reticulum, ß-actin, a structural component of the cytoskeleton, and ß-tubulin III, a component of microtubules, were quantitatively assessed using quantitative reverse transcription-polymerase chain reaction (RT-PCR) for gene expression and Western blotting for protein expression. Our results revealed no significant differences in the expression of CANX, ACTB, and TUBB3 between spinal cords of wild-type and Wobbler mice at the symptomatic stage (p40) at both the gene and protein levels. These findings suggest that the pathophysiological alterations induced by the Wobbler mutation do not significantly affect the expression of these crucial housekeeping genes and proteins at p40. Overall, this study provides a basis for further investigations using the Wobbler mouse model, while highlighting the potential use of calnexin, ß-actin, and ßIII-tubulin as reliable reference genes and proteins in future research to aid in the discovery for effective therapeutic interventions. Full article
Show Figures

Figure 1

19 pages, 3112 KiB  
Article
Development of a Lentiviral Vector for High-Yield Production of Synthetic and Recombinant GCase for Gaucher Disease Therapy
by Ana Carolina Coelho, Claudia Emília Vieira Wiezel, Alline Cristina de Campos, Lílian Louise Souza Figueiredo, Gabriela Aparecida Marcondes Suardi, Juliana de Paula Bernardes, Daniela Pretti da Cunha Tirapelli, Vitor Marcel Faça, Kuruvilla Joseph Abraham, Carlos Gilberto Carlotti-Júnior, Velia Siciliano, Ron Weiss, Stanton Gerson and Aparecida Maria Fontes
Int. J. Mol. Sci. 2025, 26(15), 7089; https://doi.org/10.3390/ijms26157089 - 23 Jul 2025
Viewed by 320
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, [...] Read more.
Gaucher disease (GD) is an autosomal recessive disorder caused by the deficient activity of the lysosomal enzyme glucocerebrosidase (GCase). Although enzyme replacement therapy (ERT) remains the standard of care for non-neuropathic GD patients, its high cost significantly limits accessibility. To enhance production efficiency, we developed a lentiviral system encoding a codon-optimized GCase gene driven by the human elongation factor 1a (hEF1α) promoter for stable production in human cell lines. A functional lentiviral vector, LV_EF1α_GBA_Opt, was generated at a titer of 7.88 × 108 LV particles/mL as determined by qPCR. Six transduction cycles were performed at a multiplicity of infection of 30–50. The transduced heterogeneous human cell population showed GCase-specific activity of 307.5 ± 53.49 nmol/mg protein/h, which represents a 3.21-fold increase compared to wild-type 293FT cells (95.58 ± 16.5 nmol/mg protein/h). Following single-cell cloning, two clones showed specific activity of 763.8 ± 135.1 and 752.0 ± 152.1 nmol/mg/h (clones 15 and 16, respectively). These results show that codon optimization, a lentiviral delivery system, and clonal selection together enable the establishment of stable human cell lines capable of producing high levels of biologically active, synthetic recombinant GCase in vitro. Further studies are warranted for the functional validation in GD patient-derived fibroblasts and animal models. Full article
(This article belongs to the Special Issue Gaucher Disease: From Molecular Mechanisms to Treatments)
Show Figures

Graphical abstract

11 pages, 786 KiB  
Article
Methylene Blue Increases Active Mitochondria and Cellular Survival Through Modulation of miR16–UPR Signaling Axis
by Carlos Garcia-Padilla, David García-Serrano and Diego Franco
J. Mol. Pathol. 2025, 6(3), 16; https://doi.org/10.3390/jmp6030016 - 23 Jul 2025
Viewed by 1175
Abstract
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial [...] Read more.
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial DNA. The protective role of this compound has been described in several neurodegenerative disease such as Alzheimer’s and Parkinson’s diseases. However, its role in cardiovascular disease has been poorly explored. Methods: In this study, we explored the impact of MB on murine (HL1) and human (AC16) cardiomyocyte redox signaling and cellular survival using RT-Qpcr analysis and immunochemistry assays. Results: Our results revealed that MB increased functional mitochondria, reversed H2O2-induced oxidative damage, and modulated antioxidant gene expression. Furthermore, it regulated the microRNA16–UPR signaling axis, reducing CHOP expression and promoting cell survival. Conclusions: These findings underscore its potential in cardioprotective therapy; however, its putative use as a drug requires in vivo validation in preclinical animal models. Full article
Show Figures

Figure 1

23 pages, 39698 KiB  
Article
Anti-C1q Autoantibody-Binding Engineered scFv C1q-Mimicking Fragment Enhances Disease Progression in Lupus-Prone MRL/lpr Mice
by Silviya Bradyanova, Nikolina Mihaylova, Nikola Ralchev, Alexandra Kapogianni, Ginka Cholakova, Kalina Nikolova-Ganeva, Ivanka Tsacheva and Andrey Tchorbanov
Int. J. Mol. Sci. 2025, 26(15), 7048; https://doi.org/10.3390/ijms26157048 - 22 Jul 2025
Viewed by 207
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by tissue damage in multiple organs caused by autoantibodies and the resulting immune complexes. One possible way for complement system contribution to onset of autoimmune disorder could be realized by the impairment of C1q-mediated apoptotic clearance as part of human homeostasis. The capacity of C1q to bind early apoptotic cells could be decreased or even lost in the presence of anti-C1q antibodies. A monoclonal anti-idiotypic single-chain (scFv) antibody was selected from the phage library Griffin1” to recognize anti-C1q autoantibodies, purified from sera of lupus nephritis patients. Lupus-prone MRL/lpr mice were injected weekly with scFv A1 fragment-binding anti-C1q antibodies. The number of in vitro and ex vivo studies with collected cells, sera, and organs from the treated animals was performed. scFv treatment changed the percentage of different B-, T-, and NK-cell subpopulations as well as plasma cells and plasmablasts in the spleen and bone marrow. An increase in the levels of splenocyte proliferation, anti-C1q antibodies, and the number of plasma cells producing anti-dsDNA and anti-C1q antibodies were also observed in scFv-treated animals. High levels of proteinuria and hematuria combined with unstable levels of IL10 and IFNγ promote the development of severe lupus and shorten the survival of treated MRL/lpr mice. Therapy with the scFv A1 antibody resulted in BCR recognition on the surface of anti-C1q-specific B-cells and had a disease progression effect, enhancing lupus symptoms in the MRL/lpr mouse model of SLE. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 891 KiB  
Review
The Role of Aldosterone and the Mineralocorticoid Receptor in Metabolic Dysfunction-Associated Steatotic Liver Disease
by Mohammed Barigou, Imran Ramzan and Dionysios V. Chartoumpekis
Biomedicines 2025, 13(8), 1792; https://doi.org/10.3390/biomedicines13081792 - 22 Jul 2025
Viewed by 352
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of [...] Read more.
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is one of the fastest-growing hepatic disorders worldwide. During its natural course, MASLD tends to progress from isolated steatosis of the liver to Metabolic Dysfunction-Associated Alcoholic Steatohepatitis (MASH), advanced fibrosis, and finally cirrhosis, with the risk of developing hepatocellular carcinoma (HCC). Although frequently related to overweight or obesity and other components of the metabolic syndrome (MS), MASLD can also be present in individuals without such risk factors. The mechanisms leading to MASLD are incompletely elucidated and may involve many proinflammatory and pro-fibrotic pathways, disrupted biliary acid homeostasis, and gut microbiota dysbiosis. Aldosterone and its interaction with the mineralocorticoid receptor (MR) are thought to participate in the pathogenesis of MASLD through the modulation of inflammation and fibrosis. Remarkably, blockade of the MR in experimental models was shown to improve MASH and fibrosis through mechanisms that need further characterization. So far, however, few clinical studies have explored the effect of MR blockade in the management of MASH and associated fibrosis. This review is intended to summarize the recent animal and human data concerning the interaction between MR pathways and MASLD. Full article
(This article belongs to the Special Issue Novel Insights into Liver Metabolism)
Show Figures

Figure 1

Back to TopTop