Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = human biomonitoring (HBM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1057 KiB  
Article
Participant Experiences with Human Biomonitoring in Communities Affected by Chronic PFAS Environmental Contamination in the Veneto Region (Italy)
by Marialuisa Menegatto, Andrea Bobbio, Gloria Freschi, Francesca Celeste Conti, Maria Cristina Cola, Michela Zamboni and Adriano Zamperini
Int. J. Environ. Res. Public Health 2025, 22(8), 1190; https://doi.org/10.3390/ijerph22081190 - 29 Jul 2025
Viewed by 241
Abstract
This exploratory study investigated how health concerns related to chronic environmental contamination and how satisfaction with the human biomonitoring (HBM) process influence the perceived quality of life in the context of per- and polyfluoroalkyl substances (PFAS) contamination in the Veneto Region (Italy). We [...] Read more.
This exploratory study investigated how health concerns related to chronic environmental contamination and how satisfaction with the human biomonitoring (HBM) process influence the perceived quality of life in the context of per- and polyfluoroalkyl substances (PFAS) contamination in the Veneto Region (Italy). We administered a questionnaire to 84 residents of the Red Area, where PFAS exposure is classified as most severe. The main findings revealed that satisfaction with HBM was positively correlated with perceived quality of life and showed a statistically significant but modest moderation effect on the relationship between PFAS-related health concerns and quality of life (explaining 17.4% of the variance). Particularly, it attenuates the negative effect that PFAS health concerns have on quality of life. Differences between subgroups revealed heightened concern regarding PFAS health risks among women vs. men and participants with children vs. those without. These results underscore the central role of relational and communication aspects of HBM programs to mitigate psychological distress and possibly contribute to higher perceived well-being. The study highlights the need for tailored public health interventions, including transparent communication, empathetic support, and community engagement, to address the psychosocial dimensions of environmental contamination. Full article
Show Figures

Figure 1

24 pages, 4223 KiB  
Article
Chemical Prioritisation for Human Biomonitoring in Ireland: A Synergy of Global Frameworks and Local Perspectives
by Richa Singh, Holger Martin Koch, Marike Kolossa-Gehring and Alison Connolly
Toxics 2025, 13(4), 281; https://doi.org/10.3390/toxics13040281 - 7 Apr 2025
Viewed by 838
Abstract
Human biomonitoring (HBM) is a critical scientific tool for assessing human exposure by quantifying chemicals and their metabolites in biological specimens such as blood and urine. This approach provides a comprehensive and accurate evaluation of internal exposures from diverse sources and exposure routes. [...] Read more.
Human biomonitoring (HBM) is a critical scientific tool for assessing human exposure by quantifying chemicals and their metabolites in biological specimens such as blood and urine. This approach provides a comprehensive and accurate evaluation of internal exposures from diverse sources and exposure routes. In Ireland, establishing a national HBM programme requires a systematic chemical prioritisation process that aligns global frameworks with local public perceptions. This study integrates insights from international initiatives such as the European Joint Programme Human Biomonitoring for Europe (HBM4EU) and the Partnership for the Assessment of Risks from Chemicals (PARC)—along with HBM programmes from EU countries (Germany, France, Belgium, Norway, Slovenia, Czech Republic, and Sweden) and non-EU countries (US, Canada, South Korea, China, and New Zealand). In addition, a national survey was conducted to capture the perceptions of people in Ireland regarding chemicals of concern to develop a comprehensive priority list of chemicals and biomarkers. The broader chemical groups identified include heavy metals (lead, cadmium, mercury, arsenic, and chromium VI), plasticisers (phthalates), bisphenols, pesticides, flame retardants, PFASs (per- and polyfluoroalkyl substances), PAHs (polycyclic aromatic hydrocarbons), POPs (persistent organic compounds), VOCs (volatile organic compounds), and UV (ultraviolet) filters. This integrated, participatory approach provides a roadmap for a robust, adaptable chemical list that supports evidence-based policy decisions in HBM in Ireland and enhances public health outcomes. Full article
(This article belongs to the Special Issue Pesticide Risk Assessment, Emerging and Re-Emerging Problems)
Show Figures

Graphical abstract

26 pages, 509 KiB  
Article
Identification, Evaluation and Prioritization of Chemicals for National Human Biomonitoring Program: Insights from Latvia
by Linda Matisāne, Lāsma Akūlova, Žanna Martinsone, Ilona Pavlovska, Laura Komarovska, Kristiāna Venžega, Dace Jakimova, Kristīne Sproģe, Normunds Kadiķis, Inese Mārtiņsone, Madlen David, Marike Kolossa-Gehring and Ivars Vanadziņš
Toxics 2025, 13(2), 96; https://doi.org/10.3390/toxics13020096 - 26 Jan 2025
Cited by 1 | Viewed by 1423
Abstract
Human biomonitoring (HBM) is a critical tool for assessing chemical exposure in populations and informing public health policies. This study aimed to prioritize chemical substances for the development of a national HBM program in Latvia, addressing the need for systematic evaluation of chemicals [...] Read more.
Human biomonitoring (HBM) is a critical tool for assessing chemical exposure in populations and informing public health policies. This study aimed to prioritize chemical substances for the development of a national HBM program in Latvia, addressing the need for systematic evaluation of chemicals in the local context. Initially, 318 chemical substances were reviewed, of which 130 were shortlisted and assessed using an adapted Hanlon methodology. Substances were assessed based on their health significance, hazardous properties, exposure characteristics, national relevance, and public interest. The results identified 30 high-priority substances across various categories, providing a foundation for the HBM4LV program. This prioritization process highlighted the challenges of data gaps, resource limitations, and the need to balance national priorities with alignment to European frameworks. Despite addressing key methodological challenges, the study highlights the importance for ongoing refinement, robust data collection, and strengthened international collaboration to enhance the program’s scope and long-term sustainability. While the methodology addressed key challenges, further refinement and international collaboration are essential to enhance the program’s scope and sustainability. Full article
Show Figures

Figure 1

21 pages, 1225 KiB  
Article
The Exposure Status of Environmental Chemicals in South Korea: The Korean National Environmental Health Survey 2018–2020
by Sooyeon Hong, Ok-Jin Kim, Sun Kyoung Jung, Hye Li Jeon, Suejin Kim and Jihyon Kil
Toxics 2024, 12(11), 829; https://doi.org/10.3390/toxics12110829 - 19 Nov 2024
Cited by 8 | Viewed by 2803
Abstract
In South Korea, a Human Biomonitoring (HBM) program, known as the Korean National Environmental Health Survey (KoNEHS), was launched in 2009. This study aims to provide an overview of environmental chemical exposures in South Korea based on data from the KoNEHS cycle 4 [...] Read more.
In South Korea, a Human Biomonitoring (HBM) program, known as the Korean National Environmental Health Survey (KoNEHS), was launched in 2009. This study aims to provide an overview of environmental chemical exposures in South Korea based on data from the KoNEHS cycle 4 (2018–2020). To ensure population representativeness, Koreans aged 3 years and older were recruited from 426 sites across the country. A total of 6381 participants joined in the collection of biospecimens, which were subsequently analyzed for 33 environmental chemicals or their metabolites, including nine that were not included in the previous cycle. The five most common PFASs were detected in more than 99.7% of the participants. The GM of serum PFOS was the highest in adults at 15.1 µg/L (13.9, 16.4) and in adolescents at 7.97 µg/L (7.42, 8.56). In adults, there was a gradual decrease in the detection rate and concentration of some heavy metals and phthalate metabolites. In children and adolescents, the detection rate of BPA in urine decreased, while the rate of its substitutes BPF and BPS increased, and the rate of propyl paraben in urine decreased significantly. The results of the KoNEHS cycle 4 indicate that exposure levels to certain environmental chemicals are still high, highlighting further monitoring and on-going surveys to determine their trends, especially for newly investigated substances, such as PFASs. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

22 pages, 1724 KiB  
Article
Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies
by Elena Salamanca-Fernández, Lydia Espín-Moreno, Alicia Olivas-Martínez, Ainhoa Pérez-Cantero, José L. Martín-Rodríguez, Rafael M. Poyatos, Fabio Barbone, Valentina Rosolen, Marika Mariuz, Luca Ronfani, Ľubica Palkovičová Murínová, Lucia Fábelová, Tamás Szigeti, Réka Kakucs, Amrit K. Sakhi, Line S. Haug, Birgitte Lindeman, Janja Snoj Tratnik, Tina Kosjek, Griet Jacobs, Stefan Voorspoels, Helena Jurdáková, Renáta Górová, Ida Petrovičová, Branislav Kolena, Marta Esteban, Susana Pedraza-Díaz, Marike Kolossa-Gehring, Sylvie Remy, Eva Govarts, Greet Schoeters, Mariana F. Fernández and Vicente Mustielesadd Show full author list remove Hide full author list
Toxics 2024, 12(9), 642; https://doi.org/10.3390/toxics12090642 - 31 Aug 2024
Cited by 1 | Viewed by 2306
Abstract
Based on toxicological evidence, children’s exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels [...] Read more.
Based on toxicological evidence, children’s exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6–12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children’s total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS—IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: −8.8%; 95% CI: −16.7, −0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children’s exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a “urine concentration bias” that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations. Full article
Show Figures

Figure 1

13 pages, 501 KiB  
Article
Human Biomonitoring Guidance Values for Deoxynivalenol Derived under the European Human Biomonitoring Initiative (HBM4EU)
by Marcel J. B. Mengelers, Annick D. van den Brand, Shensheng Zhao, Rudolf Hoogenveen and Eva Ougier
Toxins 2024, 16(3), 139; https://doi.org/10.3390/toxins16030139 - 7 Mar 2024
Cited by 6 | Viewed by 1937
Abstract
The mycotoxin deoxynivalenol (DON) was one of the priority substances in the European Joint Human Biomonitoring Initiative (HBM4EU) project. In this study, to better interpret the actual internal exposure of DON in the general population and safeguard public health, human biomonitoring guidance values [...] Read more.
The mycotoxin deoxynivalenol (DON) was one of the priority substances in the European Joint Human Biomonitoring Initiative (HBM4EU) project. In this study, to better interpret the actual internal exposure of DON in the general population and safeguard public health, human biomonitoring guidance values of DON for the general population (HBM-GVGenPop) were derived. The HBM-GVGenPop of DON was based on either the total DON (DON and its glucuronides) or DON’s main metabolite (DON-15-GlcA) levels in 24-h urine samples, resulting in a HBM-GVGenPop of 0.023 µg/mL for the total DON or a HBM-GVGenPop of 0.020 µg/mL for DON-15-GlcA. The use of 24-h urine samples is recommended based on the fact that DON and its metabolites have a short elimination half-life (T1/2), and 95% of the cumulative amount was excreted within 12 h after DON intake. The T1/2 for DON, DON-15-GlcA, and total DON were estimated to be 2.55 h, 2.95 h, and 2.95 h, respectively. Therefore, a 24-h urine sample reflects almost all of the DON exposure from the previous day, and this type of sample was considered for the derivation of a HBM-GVGenPop for DON. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 2242 KiB  
Article
Applicability of Food Monitoring Data for Assessing Relative Exposure Contributions of Pyrethroids in Retrospective Human Biomonitoring Risk Estimations
by Mercedes de Alba-Gonzalez, Maria Carmen González-Caballero and Jose V. Tarazona
Toxics 2024, 12(1), 24; https://doi.org/10.3390/toxics12010024 - 28 Dec 2023
Cited by 3 | Viewed by 1809
Abstract
The use of pyrethroids is very broad and shows increasing trends. Human biomonitoring studies represent the best approach for realistic risk estimations, but their interpretation requires a tiered approach. A previous HBM4EU study indicated levels in European children groups just around the threshold [...] Read more.
The use of pyrethroids is very broad and shows increasing trends. Human biomonitoring studies represent the best approach for realistic risk estimations, but their interpretation requires a tiered approach. A previous HBM4EU study indicated levels in European children groups just around the threshold for concern, requiring further refinement. The main difficulty is that several pyrethroids with different toxicity potencies generate the same urinary metabolites. As diet is the main pyrethroid source for the general population, EU food monitoring data reported by EFSA have been used to estimate the relative contribution of each pyrethroid. The main contributors were cypermethrin for DCCA and 3-PBA and lambda-cyhalothrin for CFMP. Urinary levels predicted from food concentration according to the EFSA diets were mostly within the range of measured levels, except 3-PBA and CFMP levels in children, both below measured levels. The predicted lower levels for 3-PBA can be explained by the very low Fue value, initially proposed as conservative, but that seems to be unrealistic. The discrepancies for CFMP are mostly for the highest percentiles and require further assessments. The refined assessments included the revision of the previously proposed human biomonitoring guidance values for the general population, HBM-GV Gen Pop, following recent toxicological reevaluations, and the estimation of hazard quotients (HQs) for each individual pyrethroid and for the combined exposure to all pyrethroids. All HQs were below 1, indicating no immediate concern, but attention is required, particularly for children, with HQs in the range of 0.2–0.3 for the highly exposed group. The application of probabilistic methods offers assessments at the population level, addressing the variability in exposure and risk and providing relevant information for Public Health impact assessments and risk management prioritization. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

20 pages, 1103 KiB  
Article
Health and Psychological Concerns of Communities Affected by Per- and Poly-Fluoroalkyl Substances: The Case of Residents Living in the Orange Area of the Veneto Region
by Marialuisa Menegatto and Adriano Zamperini
Int. J. Environ. Res. Public Health 2023, 20(22), 7056; https://doi.org/10.3390/ijerph20227056 - 12 Nov 2023
Cited by 2 | Viewed by 2727
Abstract
Residents of an extensive area of the Veneto Region (Italy) face one of the largest technological disasters due to per- and polyfluoroalkyl substances (PFAS). On the basis of a risk gradient of contamination, the affected territories were divided into 4 areas: Red (of [...] Read more.
Residents of an extensive area of the Veneto Region (Italy) face one of the largest technological disasters due to per- and polyfluoroalkyl substances (PFAS). On the basis of a risk gradient of contamination, the affected territories were divided into 4 areas: Red (of maximum exposure, where a human biomonitoring programme (HBM) was activated), Orange, Yellow, and Green. This article presents a case study of residents who live in the Orange Area, the second area in terms of contamination, excluded from the HBM. Semi-structured interviews were conducted with 17 residents engaged in promoting a legal procedure to exercise their right to know. Grounded theory and a thematic analysis method were used. Overall, the findings revealed that experiencing contamination causes a negative psychosocial impact on the residents’ lives; difficulty accessing information; living with uncertainty, caused by the lack of institutional and health support and medical consultation; a sense of abandonment; difficulty managing preventive and protective actions; and the deterioration of relationships, on the basis of the social comparison with residents of the Red Area, to whom HBM was granted and where the concept of health ostracism has emerged. This study demonstrated that biomonitoring may help reduce discomfort in the case of contamination by informing people of their chemical exposure. Full article
(This article belongs to the Special Issue Environmental Exposures and the Effects on Human Health)
Show Figures

Figure 1

15 pages, 526 KiB  
Article
Cognitive Performance and Exposure to Organophosphate Flame Retardants in Children: Evidence from a Cross-Sectional Analysis of Two European Mother–Child Cohorts
by Valentina Rosolen, Elisa Giordani, Marika Mariuz, Maria Parpinel, Vicente Mustieles, Liese Gilles, Eva Govarts, Laura Rodriguez Martin, Kirsten Baken, Greet Schoeters, Ovnair Sepai, Eva Sovcikova, Lucia Fabelova, Jiři Kohoutek, Tina Kold Jensen, Adrian Covaci, Maarten Roggeman, Lisa Melymuk, Jana Klánová, Argelia Castano, Marta Esteban López and Fabio Barboneadd Show full author list remove Hide full author list
Toxics 2023, 11(11), 878; https://doi.org/10.3390/toxics11110878 - 24 Oct 2023
Cited by 4 | Viewed by 2227
Abstract
The knowledge of the effects of organophosphate flame retardants on children’s neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children’s neurodevelopment in two European cohorts involved in the Human Biomonitoring [...] Read more.
The knowledge of the effects of organophosphate flame retardants on children’s neurodevelopment is limited. The purpose of the present research is to evaluate the association between exposure to organophosphate flame retardants and children’s neurodevelopment in two European cohorts involved in the Human Biomonitoring Initiative Aligned Studies. The participants were school-aged children belonging to the Odense Child Cohort (Denmark) and the PCB cohort (Slovakia). In each cohort, the children’s neurodevelopment was assessed through the Full-Scale Intelligence Quotient score of the Wechsler Intelligence Scale for Children, using two different editions. The children’s urine samples, collected at one point in time, were analyzed for several metabolites of organophosphate flame retardants. The association between neurodevelopment and each organophosphate flame retardant metabolite was explored by applying separate multiple linear regressions based on the approach of MM-estimation in each cohort. In the Danish cohort, the mean ± standard deviation for the neurodevelopment score was 98 ± 12; the geometric mean (95% confidence interval (95% CI)) of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) standardized by creatinine (crt) was 0.52 µg/g crt (95% CI = 0.49; 0.60), while that of diphenyl phosphate (DPHP) standardized by crt was 1.44 µg/g crt (95% CI = 1.31; 1.58). The neurodevelopment score showed a small, negative, statistically imprecise trend with BDCIPP standardized by crt (β = −1.30; 95%CI = −2.72; 0.11; p-value = 0.07) and no clear association with DPHP standardized by crt (β = −0.98; 95%CI = −2.96; 0.99; p-value = 0.33). The neurodevelopment score showed a negative trend with BDCIPP (β = −1.42; 95% CI = −2.70; −0.06; p-value = 0.04) and no clear association with DPHP (β = −1.09; 95% CI = −2.87; 0.68; p-value = 0.23). In the Slovakian cohort, the mean ± standard deviation for the neurodevelopment score was 81 ± 15; the geometric mean of BDCIPP standardized by crt was 0.18 µg/g crt (95% CI = 0.16; 0.20), while that of DPHP standardized by crt was 2.24 µg/g crt (95% CI = 2.00; 3.52). The association of the neurodevelopment score with BDCIPP standardized by crt was −0.49 (95%CI = −1.85; 0.87; p-value = 0.48), and with DPHP standardized by crt it was −0.35 (95%CI = −1.90; 1.20; p-value = 0.66). No clear associations were observed between the neurodevelopment score and BDCIPP/DPHP concentrations that were not standardized by crt. No clear associations were observed with bis(1-chloro-2-propyl) phosphate (BCIPP) in either cohort, due to the low detection frequency of this compound. In conclusion, this study provides only limited evidence of an inverse association between neurodevelopment and exposure to BDCIPP and DPHP. The timing of exposure and effect modification of other organophosphate flame retardant metabolites and other substances should be the subject of further investigations that address this scientific hypothesis. Full article
Show Figures

Figure 1

23 pages, 3090 KiB  
Article
Time Patterns in Internal Human Exposure Data to Bisphenols, Phthalates, DINCH, Organophosphate Flame Retardants, Cadmium and Polyaromatic Hydrocarbons in Europe
by Laura Rodriguez Martin, Liese Gilles, Emilie Helte, Agneta Åkesson, Jonas Tägt, Adrian Covaci, Amrit K. Sakhi, An Van Nieuwenhuyse, Andromachi Katsonouri, Anna-Maria Andersson, Arno C. Gutleb, Beata Janasik, Brice Appenzeller, Catherine Gabriel, Cathrine Thomsen, Darja Mazej, Denis Sarigiannis, Elena Anastasi, Fabio Barbone, Hanna Tolonen, Hanne Frederiksen, Jana Klanova, Jani Koponen, Janja Snoj Tratnik, Kim Pack, Koppen Gudrun, Kristin Ólafsdóttir, Lisbeth E. Knudsen, Loïc Rambaud, Loreta Strumylaite, Lubica Palkovicova Murinova, Lucia Fabelova, Margaux Riou, Marika Berglund, Maté Szabados, Medea Imboden, Michelle Laeremans, Milada Eštóková, Natasa Janev Holcer, Nicole Probst-Hensch, Nicole Vodrazkova, Nina Vogel, Pavel Piler, Phillipp Schmidt, Rosa Lange, Sónia Namorado, Szilvia Kozepesy, Tamás Szigeti, Thorhallur I. Halldorsson, Till Weber, Tina Kold Jensen, Valentina Rosolen, Vladimira Puklova, Wojciech Wasowicz, Ovnair Sepai, Lorraine Stewart, Marike Kolossa-Gehring, Marta Esteban-López, Argelia Castaño, Jos Bessems, Greet Schoeters and Eva Govartsadd Show full author list remove Hide full author list
Toxics 2023, 11(10), 819; https://doi.org/10.3390/toxics11100819 - 28 Sep 2023
Cited by 12 | Viewed by 3217
Abstract
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000–2010, literature and aggregated data were collected in a [...] Read more.
Human biomonitoring (HBM) data in Europe are often fragmented and collected in different EU countries and sampling periods. Exposure levels for children and adult women in Europe were evaluated over time. For the period 2000–2010, literature and aggregated data were collected in a harmonized way across studies. Between 2011–2012, biobanked samples from the DEMOCOPHES project were used. For 2014–2021, HBM data were generated within the HBM4EU Aligned Studies. Time patterns on internal exposure were evaluated visually and statistically using the 50th and 90th percentiles (P50/P90) for phthalates/DINCH and organophosphorus flame retardants (OPFRs) in children (5–12 years), and cadmium, bisphenols and polycyclic aromatic hydrocarbons (PAHs) in women (24–52 years). Restricted phthalate metabolites show decreasing patterns for children. Phthalate substitute, DINCH, shows a non-significant increasing pattern. For OPFRs, no trends were statistically significant. For women, BPA shows a clear decreasing pattern, while substitutes BPF and BPS show an increasing pattern coinciding with the BPA restrictions introduced. No clear patterns are observed for PAHs or cadmium. Although the causal relations were not studied as such, exposure levels to chemicals restricted at EU level visually decreased, while the levels for some of their substitutes increased. The results support policy efficacy monitoring and the policy-supportive role played by HBM. Full article
Show Figures

Figure 1

17 pages, 523 KiB  
Article
PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies
by Bianca Cox, Natasha Wauters, Andrea Rodríguez-Carrillo, Lützen Portengen, Antje Gerofke, Marike Kolossa-Gehring, Sanna Lignell, Anna Karin Lindroos, Lucia Fabelova, Lubica Palkovicova Murinova, Anteneh Desalegn, Nina Iszatt, Tessa Schillemans, Agneta Åkesson, Ann Colles, Elly Den Hond, Gudrun Koppen, Nicolas Van Larebeke, Greet Schoeters, Eva Govarts and Sylvie Remyadd Show full author list remove Hide full author list
Toxics 2023, 11(8), 711; https://doi.org/10.3390/toxics11080711 - 18 Aug 2023
Cited by 4 | Viewed by 3730
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). [...] Read more.
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016–2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from −0.34 to −0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality. Full article
(This article belongs to the Section Reproductive and Developmental Toxicity)
Show Figures

Figure 1

16 pages, 2269 KiB  
Article
Toxicity Weighting for Human Biomonitoring Mixture Risk Assessment: A Proof of Concept
by Miranda M. Loh, Phillipp Schmidt, Yvette Christopher de Vries, Nina Vogel, Marike Kolossa-Gehring, Jelle Vlaanderen, Erik Lebret and Mirjam Luijten
Toxics 2023, 11(5), 408; https://doi.org/10.3390/toxics11050408 - 26 Apr 2023
Cited by 2 | Viewed by 2539
Abstract
Chemical mixture risk assessment has, in the past, primarily focused on exposures quantified in the external environment. Assessing health risks using human biomonitoring (HBM) data provides information on the internal concentration, from which a dose can be derived, of chemicals to which human [...] Read more.
Chemical mixture risk assessment has, in the past, primarily focused on exposures quantified in the external environment. Assessing health risks using human biomonitoring (HBM) data provides information on the internal concentration, from which a dose can be derived, of chemicals to which human populations are exposed. This study describes a proof of concept for conducting mixture risk assessment with HBM data, using the population-representative German Environmental Survey (GerES) V as a case study. We first attempted to identify groups of correlated biomarkers (also known as ‘communities’, reflecting co-occurrence patterns of chemicals) using a network analysis approach (n = 515 individuals) on 51 chemical substances in urine. The underlying question is whether the combined body burden of multiple chemicals is of potential health concern. If so, subsequent questions are which chemicals and which co-occurrence patterns are driving the potential health risks. To address this, a biomonitoring hazard index was developed by summing over hazard quotients, where each biomarker concentration was weighted (divided) by the associated HBM health-based guidance value (HBM-HBGV, HBM value or equivalent). Altogether, for 17 out of the 51 substances, health-based guidance values were available. If the hazard index was higher than 1, then the community was considered of potential health concern and should be evaluated further. Overall, seven communities were identified in the GerES V data. Of the five mixture communities where a hazard index was calculated, the highest hazard community contained N-Acetyl-S-(2-carbamoyl-ethyl)cysteine (AAMA), but this was the only biomarker for which a guidance value was available. Of the other four communities, one included the phthalate metabolites mono-isobutyl phthalate (MiBP) and mono-n-butyl phthalate (MnBP) with high hazard quotients, which led to hazard indices that exceed the value of one in 5.8% of the participants included in the GerES V study. This biological index method can put forward communities of co-occurrence patterns of chemicals on a population level that need further assessment in toxicology or health effects studies. Future mixture risk assessment using HBM data will benefit from additional HBM health-based guidance values based on population studies. Additionally, accounting for different biomonitoring matrices would provide a wider range of exposures. Future hazard index analyses could also take a common mode of action approach, rather than the more agnostic and non-specific approach we have taken in this proof of concept. Full article
Show Figures

Figure 1

23 pages, 2283 KiB  
Article
Exposure to Phthalates in European Children, Adolescents and Adults since 2005: A Harmonized Approach Based on Existing HBM Data in the HBM4EU Initiative
by Nina Vogel, Rosa Lange, Phillipp Schmidt, Laura Rodriguez Martin, Sylvie Remy, Andrea Springer, Vladimíra Puklová, Milena Černá, Péter Rudnai, Szilvia Középesy, Beata Janasik, Danuta Ligocka, Lucia Fábelová, Branislav Kolena, Ida Petrovicova, Michal Jajcaj, Milada Eštóková, Marta Esteban-Lopez, Argelia Castaño, Janja Snoj Tratnik, Anja Stajnko, Lisbeth E. Knudsen, Jorma Toppari, Katharina M. Main, Anders Juul, Anna-Maria Andersson, Niels Jørgensen, Hanne Frederiksen, Cathrine Thomsen, Amrit Kaur Sakhi, Agneta Åkesson, Christina Hartmann, Marie Christine Dewolf, Gudrun Koppen, Pierre Biot, Elly Den Hond, Stefan Voorspoels, Liese Gilles, Eva Govarts, Aline Murawski, Antje Gerofke, Till Weber, Maria Rüther, Arno C. Gutleb, Cedric Guignard, Tamar Berman, Holger M. Koch and Marike Kolossa-Gehringadd Show full author list remove Hide full author list
Toxics 2023, 11(3), 241; https://doi.org/10.3390/toxics11030241 - 4 Mar 2023
Cited by 5 | Viewed by 3447
Abstract
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from [...] Read more.
Phthalates are mainly used as plasticizers and are associated inter alia with adverse effects on reproductive functions. While more and more national programs in Europe have started monitoring internal exposure to phthalates and its substitute 1,2-Cyclohexanedicarboxylic acid (DINCH), the comparability of results from such existing human biomonitoring (HBM) studies across Europe is challenging. They differ widely in time periods, study samples, degree of geographical coverage, design, analytical methodology, biomarker selection, and analytical quality assurance level. The HBM4EU initiative has gathered existing HBM data of 29 studies from participating countries, covering all European regions and Israel. The data were prepared and aggregated by a harmonized procedure with the aim to describe—as comparably as possible—the EU-wide general population’s internal exposure to phthalates from the years 2005 to 2019. Most data were available from Northern (up to 6 studies and up to 13 time points), Western (11; 19), and Eastern Europe (9; 12), e.g., allowing for the investigation of time patterns. While the bandwidth of exposure was generally similar, we still observed regional differences for Butyl benzyl phthalate (BBzP), Di(2-ethylhexyl) phthalate (DEHP), Di-isononyl phthalate (DiNP), and Di-isobutyl phthalate (DiBP) with pronounced decreases over time in Northern and Western Europe, and to a lesser degree in Eastern Europe. Differences between age groups were visible for Di-n-butyl phthalate (DnBP), where children (3 to 5-year olds and 6 to 11-year olds) had lower urinary concentrations than adolescents (12 to 19-year-olds), who in turn had lower urinary concentrations than adults (20 to 39-year-olds). This study is a step towards making internal exposures to phthalates comparable across countries, although standardized data were not available, targeting European data sets harmonized with respect to data formatting and calculation of aggregated data (such as developed within HBM4EU), and highlights further suggestions for improved harmonization in future studies. Full article
Show Figures

Figure 1

15 pages, 612 KiB  
Article
Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland
by Pasi Huuskonen, Simo P. Porras, Bernice Scholten, Lützen Portengen, Sanni Uuksulainen, Katriina Ylinen and Tiina Santonen
Toxics 2023, 11(3), 229; https://doi.org/10.3390/toxics11030229 - 27 Feb 2023
Cited by 6 | Viewed by 2792
Abstract
Diisocyanates are a group of chemicals widely used in different industrial applications. The critical health effects related to diisocyanate exposure are isocyanate sensitisation, occupational asthma and bronchial hyperresponsiveness (BHR). Industrial air measurements and human biomonitoring (HBM) samples were gathered in specific occupational sectors [...] Read more.
Diisocyanates are a group of chemicals widely used in different industrial applications. The critical health effects related to diisocyanate exposure are isocyanate sensitisation, occupational asthma and bronchial hyperresponsiveness (BHR). Industrial air measurements and human biomonitoring (HBM) samples were gathered in specific occupational sectors to examine MDI, TDI, HDI and IPDI and the respective metabolites from Finnish screening studies. HBM data can give a more accurate picture of diisocyanate exposure, especially if workers have been exposed dermally or used respiratory protection. The HBM data were used for conducting a health impact assessment (HIA) in specific Finnish occupational sectors. For this purpose, exposure reconstruction was performed on the basis of HBM measurements of TDI and MDI exposures using a PBPK model, and a correlation equation was made for HDI exposure. Subsequently, the exposure estimates were compared to a previously published dose–response curve for excess BHR risk. The results showed that the mean and median diisocyanate exposure levels and HBM concentrations were low for all diisocyanates. In HIA, the excess risk of BHR from MDI exposure over a working life period was highest in the construction and motor and vehicle industries and repair sectors, resulting in estimated excess risks of BHR of 2.0% and 2.6%, and 113 and 244 extra BHR cases in Finland, respectively. Occupational exposure to diisocyanates must be monitored because a clear threshold for DI sensitisation cannot be established. Full article
Show Figures

Figure 1

31 pages, 15369 KiB  
Article
Identification of Real-Life Mixtures Using Human Biomonitoring Data: A Proof of Concept Study
by Laura Rodriguez Martin, Ilse Ottenbros, Nina Vogel, Marike Kolossa-Gehring, Phillipp Schmidt, Katarína Řiháčková, Miguel Juliá Molina, Elena Varea-Jiménez, Eva Govarts, Susana Pedraza-Diaz, Erik Lebret, Jelle Vlaanderen and Mirjam Luijten
Toxics 2023, 11(3), 204; https://doi.org/10.3390/toxics11030204 - 22 Feb 2023
Cited by 3 | Viewed by 2700
Abstract
Human health risk assessment of chemical mixtures is complex due to the almost infinite number of possible combinations of chemicals to which people are exposed to on a daily basis. Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that [...] Read more.
Human health risk assessment of chemical mixtures is complex due to the almost infinite number of possible combinations of chemicals to which people are exposed to on a daily basis. Human biomonitoring (HBM) approaches can provide inter alia information on the chemicals that are in our body at one point in time. Network analysis applied to such data may provide insight into real-life mixtures by visualizing chemical exposure patterns. The identification of groups of more densely correlated biomarkers, so-called “communities”, within these networks highlights which combination of substances should be considered in terms of real-life mixtures to which a population is exposed. We applied network analyses to HBM datasets from Belgium, Czech Republic, Germany, and Spain, with the aim to explore its added value for exposure and risk assessment. The datasets varied in study population, study design, and chemicals analysed. Sensitivity analysis was performed to address the influence of different approaches to standardise for creatinine content of urine. Our approach demonstrates that network analysis applied to HBM data of highly varying origin provides useful information with regards to the existence of groups of biomarkers that are densely correlated. This information is relevant for regulatory risk assessment, as well as for the design of relevant mixture exposure experiments. Full article
Show Figures

Figure 1

Back to TopTop