Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = human Periodontal Ligament Stem Cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1855 KiB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 208
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

20 pages, 3181 KiB  
Review
Therapeutic Applications of Dental Mesenchymal Stem Cells in Alzheimer’s Disease—A Scoping Review
by Rupali Agnihotri and Sumit Gaur
Dent. J. 2025, 13(7), 288; https://doi.org/10.3390/dj13070288 - 26 Jun 2025
Viewed by 649
Abstract
Background/Objectives: Alzheimer’s disease (AD), a neurodegenerative condition, produces dementia and cognitive debility. Lately, preclinical models of AD have shown neuroregenerative potential of mesenchymal stem cells of dental origin (DMSC). This scoping review aims to map and synthesize the evidence on the therapeutic applications [...] Read more.
Background/Objectives: Alzheimer’s disease (AD), a neurodegenerative condition, produces dementia and cognitive debility. Lately, preclinical models of AD have shown neuroregenerative potential of mesenchymal stem cells of dental origin (DMSC). This scoping review aims to map and synthesize the evidence on the therapeutic applications of DMSCs in AD management. Methods: This review followed the Arksey and O’Malley framework for scoping reviews and PRISMA-ScR guidelines. Scopus, Medline (Pubmed), Web of Science, and Embase databases were searched for published literature until February 2025. Data was mapped according to the type of DMSC and their therapeutic properties useful in AD management, like neuro differentiation, neuroprotection through increased neuron number and vitality, anti-neuroinflammation, mitochondrial repair, and improved cognition. Results: A total of 22 articles were included. A research gap existed, as most studies were preclinical (in vitro and animal models) with no clinical trials in humans. Furthermore, they mostly evaluated neuroregenerative properties of dental pulp stem cells (DPSC) and stem cells from human-exfoliated deciduous teeth (SHED), while Periodontal ligament stem cells (PDLSC) were least studied. All the DMSCs were neuroprotective and increased neuron number and vitality. Neurodifferentiation was reported in DPSCs and PDLSCs, while DPSCs and SHEDs showed anti-neuroinflammation, mitochondrial repair, and improved cognition in AD animal models. Conclusions: Although the DPSCs and SHEDs showed promising outcomes in preclinical models of AD, a gap exists as results have not been translated into human clinical trials. Future advances may identify plausible ways of applying the DMSCs to regain the lost neurons and re-establish a healthy brain microenvironment. Full article
Show Figures

Figure 1

14 pages, 3107 KiB  
Article
The Pro-Angiogenic Potential of Periodontal Ligament Stem Cells and Dental Pulp Stem Cells: A Comparative Analysis
by Ilaria Roato, Clarissa Orrico, Sara Meinardi, Riccardo Pedraza, Alessandro Mosca Balma, Giacomo Baima, Tullio Genova, Mario Aimetti and Federico Mussano
Cells 2025, 14(12), 864; https://doi.org/10.3390/cells14120864 - 8 Jun 2025
Viewed by 562
Abstract
The role of periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs) in stimulating angiogenesis has been reported, but their angiogenetic potential has not been directly compared. In this work, paired PDLSCs and DPSCs, i.e., derived from the same donor, were [...] Read more.
The role of periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs) in stimulating angiogenesis has been reported, but their angiogenetic potential has not been directly compared. In this work, paired PDLSCs and DPSCs, i.e., derived from the same donor, were tested for their immunophenotype and multi-differentiation capabilities, with particular emphasis on their pro-angiogenic activity. Flow cytometry was utilized to study the expression of mesenchymal stem cell, pericyte, and endothelial markers, while gene expression was evaluated through real-time PCR. The angiogenic potential was assessed recurring to tubulogenesis assay, co-cultures with Human Microvascular Endothelial Cell (HMEC-1), and VEGF-A quantification. The immunophenotype of DPSCs and PDLSCs was different in CD146+ and CD31+ cell subsets, but both cell types promoted HMEC-1 tubulogenesis in vitro. Consistently, VEGF-A gene expression level and its quantification in cell-conditioned media of PDLSCs and DPSCs was comparable between them, and both promoted the formation of vessel-like structures, when co-cultured with HMEC-1 cells. All together, these results showed the heterogeneity of PDLSCs and DPSCs, which are constituted of different cellular subsets, likely modulated by the microenvironmental cues. PDLSCs and DPSCs showed comparable pro-angiogenic activity, enhanced by the contemporary expression of angiogenic and chemotactic factors. Full article
Show Figures

Graphical abstract

17 pages, 15346 KiB  
Article
Combination of Periodontal Ligament Stem Cells and Metformin via Organic Cation Transporters for Periodontal Regeneration in Rats
by Qingchen Qiao, Zeqing Zhao, Yaxi Sun, Jing Wang, Xiaowei Li, Li Zhang, Hao Yang, Ning Zhang, Ke Zhang and Yuxing Bai
Biomolecules 2025, 15(5), 663; https://doi.org/10.3390/biom15050663 - 3 May 2025
Viewed by 534
Abstract
Periodontal regeneration remains challenging due to individual variability, especially in treatments involving bioactive factors such as metformin. This study aimed to investigate the role of organic cation transporters (OCTs) in metformin-induced periodontal regeneration. The expression and function of OCTs in human periodontal ligament [...] Read more.
Periodontal regeneration remains challenging due to individual variability, especially in treatments involving bioactive factors such as metformin. This study aimed to investigate the role of organic cation transporters (OCTs) in metformin-induced periodontal regeneration. The expression and function of OCTs in human periodontal ligament stem cells (hPDLSCs) were assessed, and OCT-mediated metformin uptake was quantified by high-performance liquid chromatography (HPLC). Osteogenic and cementogenic differentiation markers were analyzed in vitro, and periodontal regeneration was evaluated using a rat periodontal defect model. OCTs were differentially expressed and functional in hPDLSCs. Both the OCT1 inhibitor cimetidine and OCT1 knockdown significantly reduced intracellular metformin accumulation to 50–60% and 20–30% of control levels, respectively (p < 0.01). Cimetidine diminished the osteogenic and cementogenic effects of metformin by approximately 31–48% and 32–40%, respectively (p < 0.01). In vivo, oral administration of cimetidine decreased bone regeneration by 25% and cementum regeneration by 36% compared with controls receiving GelMA/hPDLSCs/metformin (p < 0.01). This study demonstrates that OCTs regulate metformin uptake in hPDLSCs, and that inhibition of OCT1 by cimetidine significantly reduces the osteogenic and cementogenic efficacy of metformin, providing the first evidence of drug interactions affecting periodontal regeneration mediated by OCT transport in rats. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Graphical abstract

23 pages, 21338 KiB  
Article
The Multi-Target Action Mechanism for the Anti-Periodontitis Effect of Astragali radix Based on Bioinformatics Analysis and In Vitro Verification
by Ningli Li, Bowen Wang, Mingzhen Yang, Miaomiao Feng, Xiaoran Xu, Cory J. Xian, Tiejun Li and Yuankun Zhai
Nutrients 2025, 17(4), 627; https://doi.org/10.3390/nu17040627 - 10 Feb 2025
Viewed by 2199
Abstract
Background: Astragali radix is a traditional Chinese medicine with potential therapeutic effects on periodontitis; however, its underlying mechanisms require further investigation. Methods: We employed network pharmacology, molecular docking, molecular dynamics simulations, and in vitro experiments to explore the potential actions and mechanisms [...] Read more.
Background: Astragali radix is a traditional Chinese medicine with potential therapeutic effects on periodontitis; however, its underlying mechanisms require further investigation. Methods: We employed network pharmacology, molecular docking, molecular dynamics simulations, and in vitro experiments to explore the potential actions and mechanisms of Astragali radix in treating periodontitis. Results: A total of 17 compounds (including the most prevalent one, Kaempferol) from Astragali radix and 464 corresponding targets were identified, from which five major active ingredients were selected based on the drug-active ingredient and periodontitis gene network. Protein–protein interaction (PPI) network analysis identified the top ten core potential targets, seven of which possess suitable crystal structures for molecular docking. These include interleukin-6 (IL6), tumor necrosis factor (TNF), AKT serine/threonine kinase 1 (AKT1), interleukin-1β (IL1β), prostaglandin G/H synthase-2 (PTGS2), matrix metalloproteinase-9 (MMP9), and caspase-3 (CASP3). Additionally, 58 Gene Ontology (GO) terms and 146 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. The five major active ingredients and seven core targets mentioned above were subjected to molecular docking analysis using Discovery Studio 2019 software. Molecular dynamic simulations confirmed a stable interaction between the CASP3 and the Kaempferol ligand system. In vitro experiments indicated that Kaempferol significantly inhibited lipopolysaccharide (LPS)-induced apoptosis in human periodontal ligament stem cells and reduced the expression levels of IL6, CASP3 and MMP9. Conclusions: This study systematically elucidates that the primary active ingredients derived from Astragali radix exert their pharmacological effects (including anti-inflammation and anti-apoptosis) primarily by interacting with multiple targets. These findings establish a promising foundation for the targeted application of Astragali radix in the treatment of periodontitis. Full article
(This article belongs to the Special Issue Antioxidants in Metabolic Disorders and Inflammatory Diseases)
Show Figures

Figure 1

12 pages, 1551 KiB  
Article
Dexamethasone-Functionalized PLLA Membranes: Effects of Layer-by-Layer Coating and Electrospinning on Osteogenesis
by Flavia Gonçalves, Roberta Molisani Letomai, Marjory Muraro Gomes, Maria dos Remédios Aguiar Araújo, Yasmin Silva Muniz, Maria Stella Moreira and Leticia Cidreira Boaro
Bioengineering 2025, 12(2), 130; https://doi.org/10.3390/bioengineering12020130 - 30 Jan 2025
Viewed by 1044
Abstract
The addition of dexamethasone in membranes for guided bone regeneration is promising due to its dual effect: (1) anti-inflammatory action and (2) induction of osteogenesis in host stem cells. Electrospun fiber coating with dexamethasone using the layer-by-layer (LBL) technique offers an interesting alternative [...] Read more.
The addition of dexamethasone in membranes for guided bone regeneration is promising due to its dual effect: (1) anti-inflammatory action and (2) induction of osteogenesis in host stem cells. Electrospun fiber coating with dexamethasone using the layer-by-layer (LBL) technique offers an interesting alternative for the gradual release of the drug, aiming for enhanced osteodifferentiation activity. This study aimed to develop synthetic poly-L-lactide (PLLA) membranes with dexamethasone incorporated into the fibers or coated on their surface, and to evaluate the drug release rate, as well as the material’s ability to promote proliferation, osteoconduction, and osteodifferentiation of human periodontal ligament stem cells (hPDLSCs). PLLA membranes were produced by electrospinning. Dexamethasone was incorporated using three techniques: (A) electrospinning of a co-solution of PLLA with 2.5 w/w% dexamethasone; (B) deposition of four layers on the PLLA membrane using alternating solutions of chitosan and heparin/dexamethasone; (C) deposition of 10 layers on the PLLA membrane using the same solutions. hPDLSC proliferation was measured via CCK-8 at 1, 7, 14, and 21 days. Cellular differentiation was assessed by alkaline phosphatase activity (7 days) and alizarin red staining (21 days) in clonogenic and osteogenic media (ODM). Data were analyzed using one or two-way ANOVA and Tukey test. Electrospun membranes with dexamethasone and those with 4 layers showed immediate drug release within 24 h, whereas 10 layers exhibited gradual release over 14 days. Cumulative drug release was higher for electrospun membranes at 1 and 7 days, similar to 10 layers at 14 and 21 days. The 4 LBL membrane promoted lower hPDLSC proliferation compared to the 10 LBL and electrospun membranes at 21 days but showed increased extracellular matrix mineralization in osteogenic media. No significant differences in alkaline phosphatase expression were observed between materials. Therefore, the addition of dexamethasone in 10 layers, combined with heparin, enables gradual drug release. However, lower drug release in the first 24 h by four LBL membranes improved the material’s osteogenesis properties. None of the materials improved the osteodifferentiation in the clonogenic medium. Full article
Show Figures

Figure 1

17 pages, 3800 KiB  
Article
TGF-β3 Restrains Osteoclastic Resorption Through Autophagy
by Hui Liao, Yiqin Pan, Yiming Liu, Yuxiao Li, Shiyi Huang, Shan Ding and Qi Xiang
Bioengineering 2024, 11(12), 1206; https://doi.org/10.3390/bioengineering11121206 - 28 Nov 2024
Viewed by 1204
Abstract
While TGF-β3 promoted defect healing in a primate baboon skull defect model and patients, it remains unclear whether TGF-β3 affects the formation of osteoclasts and bone resorption between osteogenesis and osteolysis. Analysis of the full transcriptome of hPDLSCs (human periodontal ligament stem cells) [...] Read more.
While TGF-β3 promoted defect healing in a primate baboon skull defect model and patients, it remains unclear whether TGF-β3 affects the formation of osteoclasts and bone resorption between osteogenesis and osteolysis. Analysis of the full transcriptome of hPDLSCs (human periodontal ligament stem cells) revealed that the expression of RANKL was significantly up-regulated after TGF-β3 treatment during osteogenesis, which suggests its involvement in clock-controlled autophagy in bone metabolism. TRAP staining and bone resorption lacunae were used to assess the osteoclasts formed from RANKL-induced differentiated BMMs. During osteoclast differentiation, the characteristics of autophagy regulated by TGF-β3 were observed in BMMs through MDC staining, transmission electron microscopy, and LC3 immunofluorescence. The expression of related genes and proteins were detected on the sixth day in mCherry-EGFP-LC3B lentivirus-transfected BMMs using RT-qPCR and WB. Finally, a trans-well co-culture system was used to evaluate the effects of osteogenic differentiated hPDLSCs treated with TGF-β3 on the osteoclastic differentiation of BMMs. The results showed 10 ng/mL of TGF-β3 significantly suppressed osteoclastic differentiation and bone resorption in BMMs (p < 0.05 vs. RANKL). In particular, TGF-β3 augments the expression of LC3-II to stimulate autophagy, consequently restraining osteoclastic resorption. These findings provide a molecular basis and are beneficial to illustrate the potential druggability of TGF-β3 in osteoporotic diseases. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

11 pages, 1271 KiB  
Article
Xanthohumol: Anti-Inflammatory Effects in Mechanically Stimulated Periodontal Ligament Stem Cells
by Christian Niederau, René H. Tolba, Joachim Jankowski, Nikolaus Marx, Michael Wolf and Rogerio Bastos Craveiro
Biomedicines 2024, 12(12), 2688; https://doi.org/10.3390/biomedicines12122688 - 25 Nov 2024
Viewed by 1077
Abstract
Background/Objectives: Initial sterile inflammation is an essential molecular process in the periodontium during orthodontic tooth movement. A better understanding and possible modulations of these processes are of great interest to develop individual therapies for special patient groups. The prenylated plant polyphenol xanthohumol (XN) [...] Read more.
Background/Objectives: Initial sterile inflammation is an essential molecular process in the periodontium during orthodontic tooth movement. A better understanding and possible modulations of these processes are of great interest to develop individual therapies for special patient groups. The prenylated plant polyphenol xanthohumol (XN) could have modulating effects as it has shown anti-inflammatory and angiogenesis-inhibiting effects in various cell lines. This study investigated the anti-inflammatory properties of XN in an in vitro model of compressively stimulated human periodontal ligament stem cells (hPDLSCs), which have a different function in the periodontium than the previously used cementoblasts. Methods: The expression of inflammatory markers at the mRNA and protein levels and the regulation of central kinases were investigated. Results: XN showed a dose-dependent influence on cell viability. Low concentrations between 0.2 and 4 µM showed positive effects, while 8 µM caused a significant decrease in viability after 24 h. Mechanical stimulation induced an upregulation of pro-inflammatory gene (IL-6, COX2) and protein (IL-6) expression. Here, XN significantly reduced stimulation-related IL-6 mRNA and gene expression. Furthermore, the phosphorylation of AKT and ERK was upregulated by mechanical stimulation, and XN re-established phosphorylation at a level similar to the control. Conclusions: We demonstrated a selective anti-inflammatory effect of XN in hPDLSCs. These findings provide the basis for further investigation of XN in the modulation of inflammatory responses in orthodontic therapy and the treatment of periodontal inflammation. Full article
Show Figures

Figure 1

14 pages, 4545 KiB  
Article
Investigating the Cytotoxic Effects of Artemisia absinthium Extract on Oral Carcinoma Cell Line
by Ioannis Tsamesidis, Aliki Papadimitriou-Tsantarliotou, Athanasios Christodoulou, Dionysia Amanatidou, Chrysostomos Avgeros, Evangelia Stalika, Maria Bousnaki, Georgia Michailidou, Anastasia Beketova, Phaedra Eleftheriou, Dimitrios N. Bikiaris, Ioannis S. Vizirianakis and Eleana Kontonasaki
Biomedicines 2024, 12(12), 2674; https://doi.org/10.3390/biomedicines12122674 - 24 Nov 2024
Viewed by 2232
Abstract
Background: Artemisia absinthium (A. absinthium), commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and [...] Read more.
Background: Artemisia absinthium (A. absinthium), commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and as the primary ingredient in the alcoholic beverage absinthe has recently seen a resurgence following a period of prohibition. This study investigates the biological effects of A. absinthium extract on healthy human periodontal ligament stem cells (hPDLSCs) and the human tongue squamous carcinoma cell line (HSC-3). Methods: A. absinthium element characterization was performed using High-Performance Liquid Chromatography (HPLC) and the Folin method. Alizarin assays evaluated the osteogenic capacity of human periodontal ligament cells (hPDLSCs) while CCK-8 and MTT determined the cytotoxicity of the extract against HSC-3 and hPDLSCs. Results: High artemisinin levels were detected, revealing a concentration of 89 μM (25 μg/mL). The total phenolic concentration of the extract was 1.07 mM +/− 0.11. The in vitro cytotoxicity assays revealed the biocompatible profile of the Artemisia extract in hPDLSCs without exhibiting any osteogenic potential. After 24 h of incubation with HSC-3, Artemisia extract (10 µM) decreased cancer cell viability by 99% and artemisinin by 64%, and increased the expression of Caspase 3 and 9 almost six and two times, respectively. Conclusions: In summary, our preliminary findings suggest that A. absinthium extract exhibits a toxic effect against carcinoma cell lines without affecting healthy human periodontal ligament stem cells. Full article
(This article belongs to the Special Issue Recent Advances in Oral Medicine)
Show Figures

Figure 1

15 pages, 4388 KiB  
Article
Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone
by Mhd Safwan Albougha, Hideki Sugii, Orie Adachi, Bara Mardini, Serina Soeno, Sayuri Hamano, Daigaku Hasegawa, Shinichiro Yoshida, Tomohiro Itoyama, Junko Obata and Hidefumi Maeda
Biomolecules 2024, 14(11), 1455; https://doi.org/10.3390/biom14111455 - 17 Nov 2024
Cited by 3 | Viewed by 1923
Abstract
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is [...] Read more.
Deep caries and severe periodontitis cause bone resorption in periodontal tissue, and severe bone resorption leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are important for the healing of defective periodontal tissue. It is increasingly understood that healing of periodontal tissue is mediated through the secretion of trophic factors, particularly exosomes. This study investigated the effects of exosomes from human PDLSCs (HPDLSCs-Exo) on human osteoblast-like cells in vitro and on the healing of rat calvarial bone defects in vivo. HPDLSCs-Exo were isolated and characterized by their particle shape, size (133 ± 6.4 nm), and expression of surface markers (CD9, CD63, and CD81). In vitro results showed that HPDLSCs-Exo promoted the migration, mineralization, and expression of bone-related genes such as alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), osteocalcin (OCN), and osteopontin (OPN) in human osteoblast-like cells. Furthermore, in vivo results showed that more newly formed bone was observed in the HPDLSCs-Exo-treated group than in the non-treated group at the defect sites in rats. These results indicated that HPDLSCs-Exo could promote osteogenesis in vitro and in vivo, and this suggests that HPDLSCs-Exo may be an attractive treatment tool for bone healing in defective periodontal tissue. Full article
Show Figures

Figure 1

25 pages, 14504 KiB  
Article
Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway
by Luis Ignacio Poblano-Pérez, Alberto Monroy-García, Gladis Fragoso-González, María de Lourdes Mora-García, Andrés Castell-Rodríguez, Héctor Mayani, Marco Antonio Álvarez-Pérez, Sonia Mayra Pérez-Tapia, Zaira Macías-Palacios, Luis Vallejo-Castillo and Juan José Montesinos
Int. J. Mol. Sci. 2024, 25(17), 9578; https://doi.org/10.3390/ijms25179578 - 4 Sep 2024
Cited by 1 | Viewed by 1718
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival [...] Read more.
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs. Full article
Show Figures

Figure 1

17 pages, 8775 KiB  
Article
Human Periodontal Ligament Stem Cells (hPDLSCs) Spontaneously Differentiate into Myofibroblasts to Repair Diabetic Wounds
by Yuxiao Li, Qi Su, Zhaoyu Tao, Xiang Cai, Yueping Zhao, Zhiying Zhou, Yadong Huang and Qi Xiang
Bioengineering 2024, 11(6), 602; https://doi.org/10.3390/bioengineering11060602 - 12 Jun 2024
Cited by 2 | Viewed by 2299
Abstract
Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic [...] Read more.
Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic and refractory skin ulcers, their delivery methods are still under investigation. Human periodontal ligament stem cells (hPDLSCs) can spontaneously differentiate into myofibroblasts in specific cultures; therefore, they have the potential to effectively treat diabetic wounds and may also have applications in the field of medical cosmetics. The myofibroblastic differentiation ability of hPDLSCs in the presence of AGEs was evaluated by the expression of α-SMA and COL1A1 using RT-qPCR and WB technology. Wound healing in diabetic mice, induced by streptozotocin (STZ) and assessed using H&E staining, Masson staining, and immunohistochemical (IHC) and immunofluorescence (IF) staining, was used to validate the effects of hPDLSCs. In the wound tissues, the expression of α-SMA, COL1A1, CD31, CD206, iNOS, and vimentin was detected. The findings indicated that in H-DMEM, the expression of COL1A1 exhibited a significant decrease, while α-SMA demonstrated an increase in P7 cells, ignoring the damage from AGEs (p < 0.05). In an STZ-induced diabetic C57BL/6J mice whole-skin defect model, the healing rate of the hPDLSCs treatment group was significantly higher than that in the models (on the 7th day, the rate was 65.247% vs. 48.938%, p < 0.05). hPDLSCs have been shown to spontaneously differentiate into myofibroblasts in H-DMEM and resist damage from AGEs in both in vivo and in vitro models, suggesting their potential in the field of cosmetic dermatology. Full article
Show Figures

Graphical abstract

18 pages, 17051 KiB  
Article
Proanthocyanidins Ameliorate LPS-Inhibited Osteogenesis of PDLSCs by Restoring Lysine Lactylation
by Yaxin Wu, Xiangyao Wang, Yuxiao Zhang, Zhihao Wen, Yuanyuan Li, Kehan Zhang, Nuerlan Gosar, Qilin Li, Jing Mao and Shiqiang Gong
Int. J. Mol. Sci. 2024, 25(5), 2947; https://doi.org/10.3390/ijms25052947 - 3 Mar 2024
Cited by 18 | Viewed by 3242
Abstract
Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a [...] Read more.
Periodontitis is a bacteria-induced inflammatory disease characterized by the progressive destruction of periodontal supporting tissues. Periodontal ligament stem cells (PDLSCs) are capable of differentiating into osteoblasts, which is an important stem cell source for endogenous periodontal tissue regeneration. Lysine lactylation (Kla) is a novel post-translational modification of proteins that is recently thought to be associated with osteogenic differentiation. Here, we found that lactylation levels are reduced both in the periodontal tissue of rats with periodontitis and lipopolysaccharide (LPS)-stimulated human PDLSCs. Proanthocyanidins were able to promote the osteogenesis of inflamed PDLSCs by restoring lactylation levels. Mechanistically, proanthocyanidins increased lactate production and restored the lactylation levels of PDLSCs, which recovered osteogenesis of inflamed PDLSCs via the Wnt/β-catenin pathway. These results provide evidence on how epigenetic regulation by pharmacological agents influence the osteogenic phenotype of stem cells and the process of periodontal tissue repair. Our current study highlights the valuable potential of natural product proanthocyanidins in the regenerative engineering of periodontal tissues. Full article
(This article belongs to the Collection Feature Papers in 'Macromolecules')
Show Figures

Figure 1

16 pages, 4173 KiB  
Article
The Added Value of a Collagenated Thermosensitive Bone Substitute as a Scaffold for Bone Regeneration
by Charlotte Jeanneau, Jean-Hugues Catherine, Thomas Giraud, Romain Lan and Imad About
Materials 2024, 17(3), 625; https://doi.org/10.3390/ma17030625 - 27 Jan 2024
Cited by 3 | Viewed by 2189
Abstract
A pre-hydrated thermosensitive collagenated biomaterial which sets at body temperature and maintains the space of the missing alveolar bone volume, OsteoBiol GTO® (GTO), has been released as a bone substitute. This study was designed to check its angiogenic and osteogenic potentials compared [...] Read more.
A pre-hydrated thermosensitive collagenated biomaterial which sets at body temperature and maintains the space of the missing alveolar bone volume, OsteoBiol GTO® (GTO), has been released as a bone substitute. This study was designed to check its angiogenic and osteogenic potentials compared to OsteoBiol Gen-Os® (Gen-Os) and Geistlich Bio-Oss® (Bio-Oss). Samples of materials were incubated in culture media to obtain the extracts. Collagen release was measured in the extracts, which were used to investigate human periodontal ligament (hPDL) cell proliferation (MTT), colonization (Scratch assays) and growth factor release (ELISA). The effects on endothelial cell proliferation (MTT) and organization (Matrigel® assays) were also studied. Finally, endothelial and mesenchymal Stem Cell (hMSC) recruitment (Boyden Chambers) were investigated, and hMSC Alkaline Phosphatase (ALP) activity was measured. A higher collagen concentration was found in GTO extract, which led to significantly higher hPDL cell proliferation/colonization. All materials increased VEGF/FGF-2 growth factor secretion, endothelial cell recruitment, proliferation, and organization, but the increase was highest with GTO. All materials increased hMSC recruitment and ALP activity. However, the increase was highest with collagenated GTO and Gen-Os, which enhanced C5a and BMP-2 secretion. Overall, GTO has higher angiogenic/osteogenic potentials than the collagenated Gen-Os and the anorganic Bio-Oss. It provides a suitable scaffold for endothelial and mesenchymal stem cell recruitment, which represent essential bone regeneration requirements. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

20 pages, 5549 KiB  
Article
Effects of Oral Cavity Stem Cell Sources and Serum-Free Cell Culture on Hydrogel Encapsulation of Mesenchymal Stem Cells for Bone Regeneration: An In Vitro Investigation
by Premjit Arpornmaeklong, Supakorn Boonyuen, Komsan Apinyauppatham and Prisana Pripatnanont
Bioengineering 2024, 11(1), 59; https://doi.org/10.3390/bioengineering11010059 - 8 Jan 2024
Cited by 3 | Viewed by 2596
Abstract
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation [...] Read more.
Introduction: To develop a stem cell delivery model and improve the safety of stem cell transplantation for bone regeneration, this study aimed to determine the effects of stem cell sources, serum-free cell culture, and hydrogel cell encapsulation on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) from the oral cavity. Methods: The study groups were categorized according to stem cell sources into buccal fat pad adipose (hBFP-ADSCs) (Groups 1, 4, and 7), periodontal ligament (hPDLSCs) (Groups 2, 5, and 8), and dental pulp-derived stem cells (hDPSCs) (Groups 3, 6, and 9). MSCs from each source were isolated and expanded in three types of sera: fetal bovine serum (FBS) (Groups 1–3), human serum (HS) (Groups 4–6), and synthetic serum (SS) (StemPro™ MSC SFM) (Groups 7–9) for monolayer (m) and hydrogel cell encapsulation cultures (e). Following this, the morphology, expression of MSC cell surface antigens, growth, and osteogenic differentiation potential of the MSCs, and the expression of adhesion molecules were analyzed and compared. Results: SS decreased variations in the morphology and expression levels of cell surface antigens of MSCs from three cell sources (Groups 7m–9m). The levels of osteoblastic differentiation of the hPDLSCs and hBFP-ADSCs were increased in SS (Groups 8m and 7m) and the cell encapsulation model (Groups 1e, 4e, 7e–9e), but the promoting effects of SS were decreased in a cell encapsulation model (Groups 7e–9e). The expression levels of the alpha v beta 3 (ITG-αVβ3) and beta 1 (ITG-β1) integrins in the encapsulated cells in FBS (Group 1e) were higher than those in the SS (Group 7e). Conclusions: Human PDLSCs and BFP-ADSCs were the optimum stem cell source for stem cell encapsulation by using nanohydroxyapatite–calcium carbonate microcapsule–chitosan/collagen hydrogel in serum-free conditions. Full article
(This article belongs to the Special Issue Stem Cell for Tissue Engineering)
Show Figures

Figure 1

Back to TopTop