Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,781)

Search Parameters:
Keywords = human–robotic systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2586 KiB  
Article
Fatigue-Aware Sub-Second Combinatorial Auctions for Dynamic Cycle Allocation in Human–Robot Collaborative Assembly
by Claudio Urrea
Mathematics 2025, 13(15), 2429; https://doi.org/10.3390/math13152429 - 28 Jul 2025
Abstract
Problem: Existing Human–Robot Collaboration (HRC) allocators cannot react at a sub‑second scale while accounting for worker fatigue. Objective: We designed a fatigue‑aware combinatorial auction executed every 100 ms. Method: A human and a FANUC robot submit bids combining execution time, predicted energy, [...] Read more.
Problem: Existing Human–Robot Collaboration (HRC) allocators cannot react at a sub‑second scale while accounting for worker fatigue. Objective: We designed a fatigue‑aware combinatorial auction executed every 100 ms. Method: A human and a FANUC robot submit bids combining execution time, predicted energy, and real‑time fatigue; a greedy algorithm (≤1 ms) with a approximation guarantee and O (|Bids| log |Bids|) complexity maximizes utility. Results: In 1000 RoboDK episodes, the framework increases active cycles·min−1 by 20%, improves robot utilization by +10.2 percentage points, reduces per cycle fatigue by 4%, and raises the collision‑free rate to 99.85% versus a static baseline (p < 0.001). Contribution: We provide the first transparent, sub‑second, fatigue‑aware allocation mechanism for Industry 5.0, with quantified privacy safeguards and a roadmap for physical deployment. Unlike prior auction-based or reinforcement learning approaches, our model uniquely integrates a sub-second ergonomic adaptation with a mathematically interpretable utility structure, ensuring both human-centered responsiveness and system-level transparency. Full article
46 pages, 85624 KiB  
Article
ROS-Based Autonomous Driving System with Enhanced Path Planning Node Validated in Chicane Scenarios
by Mohamed Reda, Ahmed Onsy, Amira Y. Haikal and Ali Ghanbari
Actuators 2025, 14(8), 375; https://doi.org/10.3390/act14080375 - 27 Jul 2025
Abstract
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that [...] Read more.
In modern vehicles, Autonomous Driving Systems (ADSs) are designed to operate partially or fully without human intervention. The ADS pipeline comprises multiple layers, including sensors, perception, localization, mapping, path planning, and control. The Robot Operating System (ROS) is a widely adopted framework that supports the modular development and integration of these layers. Among them, the path-planning and control layers remain particularly challenging due to several limitations. Classical path planners often struggle with non-smooth trajectories and high computational demands. Meta-heuristic optimization algorithms have demonstrated strong theoretical potential in path planning; however, they are rarely implemented in real-time ROS-based systems due to integration challenges. Similarly, traditional PID controllers require manual tuning and are unable to adapt to system disturbances. This paper proposes a ROS-based ADS architecture composed of eight integrated nodes, designed to address these limitations. The path-planning node leverages a meta-heuristic optimization framework with a cost function that evaluates path feasibility using occupancy grids from the Hector SLAM and obstacle clusters detected through the DBSCAN algorithm. A dynamic goal-allocation strategy is introduced based on the LiDAR range and spatial boundaries to enhance planning flexibility. In the control layer, a modified Pure Pursuit algorithm is employed to translate target positions into velocity commands based on the drift angle. Additionally, an adaptive PID controller is tuned in real time using the Differential Evolution (DE) algorithm, ensuring robust speed regulation in the presence of external disturbances. The proposed system is practically validated on a four-wheel differential drive robot across six scenarios. Experimental results demonstrate that the proposed planner significantly outperforms state-of-the-art methods, ranking first in the Friedman test with a significance level less than 0.05, confirming the effectiveness of the proposed architecture. Full article
(This article belongs to the Section Control Systems)
28 pages, 31172 KiB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 88
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

51 pages, 5654 KiB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Viewed by 233
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

15 pages, 2371 KiB  
Article
Designing and Implementing a Ground-Based Robotic System to Support Spraying Drone Operations: A Step Toward Collaborative Robotics
by Marcelo Rodrigues Barbosa Júnior, Regimar Garcia dos Santos, Lucas de Azevedo Sales, João Victor da Silva Martins, João Gabriel de Almeida Santos and Luan Pereira de Oliveira
Actuators 2025, 14(8), 365; https://doi.org/10.3390/act14080365 - 23 Jul 2025
Viewed by 250
Abstract
Robots are increasingly emerging as effective platforms to overcome a wide range of challenges in agriculture. Beyond functioning as standalone systems, agricultural robots are proving valuable as collaborative platforms, capable of supporting and integrating with humans and other technologies and agricultural activities. In [...] Read more.
Robots are increasingly emerging as effective platforms to overcome a wide range of challenges in agriculture. Beyond functioning as standalone systems, agricultural robots are proving valuable as collaborative platforms, capable of supporting and integrating with humans and other technologies and agricultural activities. In this study, we designed and implemented an automated system embedded in a ground-based robotic platform to support spraying drone operations. The system consists of a robotic platform that carries the spraying drone along with all necessary support devices, including a water tank, chemical reservoirs, a mixer, generators for drone battery charging, and a top landing pad. The system is controlled with a mobile app that calculates the total amount of water and chemicals required and sends commands to the platform to prepare the application mixture. The input information in the app includes the field area, application rate, and up to three chemical dosages simultaneously. Additionally, the platform allows the drone to take off from and land on it, enhancing both safety and operability. A set of pumps was used to deliver water and chemicals as specified in the mobile app. To automate pump control, we used Arduino technology, including both the microcontroller and a programming environment for coding and designing the mobile app. To validate the system’s effectiveness, we individually measured the amount of water and chemical delivered to the mixer tank and compared it with conventional manual methods for calculating chemical quantities and preparation time. The system demonstrated consistent results, achieving high precision and accuracy in delivering the correct amount. This study advances the field of agricultural robotics by highlighting the role of collaborative platforms. Particularly, the system presents a valuable and low-cost solution for small farms and experimental research. Full article
(This article belongs to the Special Issue Design and Control of Agricultural Robotics)
Show Figures

Figure 1

25 pages, 13994 KiB  
Article
A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests
by Simone D’Angelo, Salvatore Marcellini, Alessandro De Crescenzo, Michele Marolla, Vincenzo Lippiello and Bruno Siciliano
Drones 2025, 9(8), 516; https://doi.org/10.3390/drones9080516 - 23 Jul 2025
Viewed by 243
Abstract
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, [...] Read more.
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, designed to perform non-destructive in-contact inspections of iron structures. The system is intended to operate in complex and potentially hazardous environments, where autonomous execution is supported by shared-control strategies that include human supervision. A parallel force–impedance control framework is implemented to enable smooth and repeatable contact between a sensor for ultrasonic testing (UT) and the inspected surface. During interaction, the arm applies a controlled push to create a vacuum seal, allowing accurate thickness measurements. The control strategy is validated through repeated trials in both indoor and outdoor scenarios, demonstrating consistency and robustness. The paper also addresses the mechanical and control integration of the complex robotic system, highlighting the challenges and solutions in achieving a responsive and reliable aerial platform. The combination of semi-autonomous control and human-in-the-loop operation significantly improves the effectiveness of inspection tasks in hard-to-reach environments, enhancing both human safety and task performance. Full article
(This article belongs to the Special Issue Unmanned Aerial Manipulation with Physical Interaction)
Show Figures

Figure 1

36 pages, 9902 KiB  
Article
Digital-Twin-Enabled Process Monitoring for a Robotic Additive Manufacturing Cell Using Wire-Based Laser Metal Deposition
by Alberto José Alvares, Efrain Rodriguez and Brayan Figueroa
Processes 2025, 13(8), 2335; https://doi.org/10.3390/pr13082335 - 23 Jul 2025
Viewed by 230
Abstract
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs [...] Read more.
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs in robotic metal additive manufacturing (AM) remains challenging because of the complexity of the wire-based laser metal deposition (LMD) process, the need for real-time monitoring, and the demand for advanced defect detection to ensure high-quality prints. This work proposes a structured DT architecture for a robotic wire-based LMD cell, following a standard framework. Three DT implementations were developed. First, a real-time 3D simulation in RoboDK, integrated with a 2D Node-RED dashboard, enabled motion validation and live process monitoring via MQTT (message queuing telemetry transport) telemetry, minimizing toolpath errors and collisions. Second, an Industrial IoT-based system using KUKA iiQoT (Industrial Internet of Things Quality of Things) facilitated predictive maintenance by analyzing motor loads, joint temperatures, and energy consumption, allowing early anomaly detection and reducing unplanned downtime. Third, the Meltio dashboard provided real-time insights into the laser temperature, wire tension, and deposition accuracy, ensuring adaptive control based on live telemetry. Additionally, a prescriptive analytics layer leveraging historical data in FireStore was integrated to optimize the process performance, enabling data-driven decision making. Full article
Show Figures

Graphical abstract

16 pages, 1913 KiB  
Proceeding Paper
Collaborative Robots as an Engineering Tool for the Transition of the Food Industry to Industry 5.0
by Valentina Nikolova-Alexieva, Katina Valeva, Margarita Terziyska and Nikola Shakev
Eng. Proc. 2025, 100(1), 57; https://doi.org/10.3390/engproc2025100057 - 22 Jul 2025
Viewed by 91
Abstract
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, [...] Read more.
The article examines the application of collaborative robots (cobots) as a modern engineering tool for the transformation of the food industry following the principles of Industry 5.0. A conceptual engineering model has been developed that integrates collaborative robots with IoT systems, digital twins, and predictive analytics to increase the flexibility, safety, and sustainability of production processes. The proposed model is validated through a practical case study focused on a yogurt packaging line in the dairy sector, where cobot systems demonstrate a significant improvement in operational efficiency and process safety. A step-by-step strategic roadmap is presented to guide industrial enterprises through the various stages of implementation, from the initial assessment to the full-scale integration of solutions. Additionally, a comparative analysis has been performed between traditional automated systems and the integrated approach with collaborative robots, which highlights the technological, economic, and human-oriented advantages of the latter. The results of the study confirm that collaborative robotics offers an effective and applicable path for transforming the food and beverage industry towards a sustainable, adaptive, and human-centered manufacturing ecosystem characteristic of Industry 5.0. Full article
Show Figures

Figure 1

21 pages, 2941 KiB  
Article
Dynamic Proxemic Model for Human–Robot Interactions Using the Golden Ratio
by Tomáš Spurný, Ján Babjak, Zdenko Bobovský and Aleš Vysocký
Appl. Sci. 2025, 15(15), 8130; https://doi.org/10.3390/app15158130 - 22 Jul 2025
Viewed by 166
Abstract
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety [...] Read more.
This paper presents a novel approach to determine dynamic safety and comfort zones in human–robot interactions (HRIs), with a focus on service robots operating in dynamic environments with people. The proposed proxemic model leverages the golden ratio-based comfort zone distribution and ISO safety standards to define adaptive proxemic boundaries for robots around humans. Unlike traditional fixed-threshold approaches, this novel method proposes a gradual and context-sensitive modulation of robot behaviour based on human position, orientation, and relative velocity. The system was implemented on an NVIDIA Jetson Xavier NX platform using a ZED 2i stereo depth camera Stereolabs, New York, USA and tested on two mobile robotic platforms: Go1 Unitree, Hangzhou, China (quadruped) and Scout Mini Agilex, Dongguan, China (wheeled). The initial verification of proposed proxemic model through experimental comfort validation was conducted using two simple interaction scenarios, and subjective feedback was collected from participants using a modified Godspeed Questionnaire Series. The results show that the participants felt comfortable during the experiments with robots. This acceptance of the proposed methodology plays an initial role in supporting further research of the methodology. The proposed solution also facilitates integration into existing navigation frameworks and opens pathways towards socially aware robotic systems. Full article
(This article belongs to the Special Issue Intelligent Robotics: Design and Applications)
Show Figures

Figure 1

18 pages, 1696 KiB  
Article
Concurrent Adaptive Control for a Robotic Leg Prosthesis via a Neuromuscular-Force-Based Impedance Method and Human-in-the-Loop Optimization
by Ming Pi
Appl. Sci. 2025, 15(15), 8126; https://doi.org/10.3390/app15158126 - 22 Jul 2025
Viewed by 185
Abstract
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape [...] Read more.
This paper proposes an adaptive human–robot concurrent control scheme that achieves the appropriate gait trajectory for a robotic leg prosthesis to improve the wearer’s comfort in various tasks. To accommodate different wearers, a neuromuscular-force-based impedance method was developed using muscle activation to reshape gait trajectory. To eliminate the use of sensors for torque measurement, a disturbance observer was established to estimate the interaction force between the human residual limb and the prosthetic receptacle. The cost function was combined with the interaction force and tracking errors of the joints. We aim to reduce the cost function by minimally changing the control weight of the gait trajectory generated by the Central Pattern Generator (CPG). The control scheme was primarily based on human-in-the-loop optimization to search for a suitable control weight to regenerate the appropriate gait trajectory. To handle the uncertainties and unknown coupling of the motors, an adaptive law was designed to estimate the unknown parameters of the system. Through a stability analysis, the control framework was verified by semi-globally uniformly ultimately bounded stability. Experimental results are discussed, and the effectiveness of the adaptive control framework is demonstrated. In Case 1, the mean error (MEAN) of the tracking performance was 3.6° and 3.3°, respectively. And the minimized mean square errors (MSEs) of the tracking performance were 2.3° and 2.8°, respectively. In Case 2, the mean error (MEAN) of the tracking performance is 2.7° and 3.1°, respectively. And the minimized mean square errors (MSEs) of the tracking performance are 1.8° and 2.4°, respectively. In Case 3, the mean errors (MEANs) of the tracking performance for subject1 and 2 are 2.4°, 2.9°, 3.4°, and 2.2°, 2.8°, 3.1°, respectively. The minimized mean square errors (MSEs) of the tracking performance for subject1 and 2 were 1.6°, 2.3°, 2.6°, and 1.3°, 1.7°, 2.2°, respectively. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 170
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

15 pages, 1991 KiB  
Article
Hybrid Deep–Geometric Approach for Efficient Consistency Assessment of Stereo Images
by Michał Kowalczyk, Piotr Napieralski and Dominik Szajerman
Sensors 2025, 25(14), 4507; https://doi.org/10.3390/s25144507 - 20 Jul 2025
Viewed by 361
Abstract
We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which may overlook subtle [...] Read more.
We present HGC-Net, a hybrid pipeline for assessing geometric consistency between stereo image pairs. Our method integrates classical epipolar geometry with deep learning components to compute an interpretable scalar score A, reflecting the degree of alignment. Unlike traditional techniques, which may overlook subtle miscalibrations, HGC-Net reliably detects both severe and mild geometric distortions, such as sub-degree tilts and pixel-level shifts. We evaluate the method on the Middlebury 2014 stereo dataset, using synthetically distorted variants to simulate misalignments. Experimental results show that our score degrades smoothly with increasing geometric error and achieves high detection rates even at minimal distortion levels, outperforming baseline approaches based on disparity or calibration checks. The method operates in real time (12.5 fps on 1080p input) and does not require access to internal camera parameters, making it suitable for embedded stereo systems and quality monitoring in robotic and AR/VR applications. The approach also supports explainability via confidence maps and anomaly heatmaps, aiding human operators in identifying problematic regions. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

15 pages, 1900 KiB  
Article
RRT-GPMP2: A Motion Planner for Mobile Robots in Complex Maze Environments
by Jiawei Meng, Yuanchang Liu, Richard Bucknall and Danail Stoyanov
Electronics 2025, 14(14), 2888; https://doi.org/10.3390/electronics14142888 - 18 Jul 2025
Viewed by 183
Abstract
With the development of science and technology, mobile robots are playing a significant role in the new round of world revolution. Mobile robots could serve as assistants or substitutes for humans across a wide range of applications. To enhance mobile robot automation, advanced [...] Read more.
With the development of science and technology, mobile robots are playing a significant role in the new round of world revolution. Mobile robots could serve as assistants or substitutes for humans across a wide range of applications. To enhance mobile robot automation, advanced motion planners must be integrated to handle diverse environments. Navigating complex maze environments is a key challenge for mobile robots in various practical scenarios. Therefore, this article proposes a novel hierarchical motion planner named the rapidly exploring random tree-based Gaussian process motion planner 2, which aims to tackle the motion planning problem for mobile robots in complex maze environments. Specifically, the proposed motion planner successfully combines the advantages of the trajectory optimisation motion planning method and sampling-based motion planning method. To validate the performance and practicability of the proposed motion planner, we tested it in a series of self-constructed maze simulations and applied it on a surface marine robot in a high-fidelity maritime simulation environment in the Robot operating system. Full article
Show Figures

Figure 1

17 pages, 2319 KiB  
Article
Coordinating the Redundant DOFs of Humanoid Robots
by Pietro Morasso
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Viewed by 114
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with [...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions. Full article
Show Figures

Figure 1

22 pages, 11043 KiB  
Article
Digital Twin-Enabled Adaptive Robotics: Leveraging Large Language Models in Isaac Sim for Unstructured Environments
by Sanjay Nambiar, Rahul Chiramel Paul, Oscar Chigozie Ikechukwu, Marie Jonsson and Mehdi Tarkian
Machines 2025, 13(7), 620; https://doi.org/10.3390/machines13070620 - 17 Jul 2025
Viewed by 280
Abstract
As industrial automation evolves towards human-centric, adaptable solutions, collaborative robots must overcome challenges in unstructured, dynamic environments. This paper extends our previous work on developing a digital shadow for industrial robots by introducing a comprehensive framework that bridges the gap between physical systems [...] Read more.
As industrial automation evolves towards human-centric, adaptable solutions, collaborative robots must overcome challenges in unstructured, dynamic environments. This paper extends our previous work on developing a digital shadow for industrial robots by introducing a comprehensive framework that bridges the gap between physical systems and their virtual counterparts. The proposed framework advances toward a fully functional digital twin by integrating real-time perception and intuitive human–robot interaction capabilities. The framework is applied to a hospital test lab scenario, where a YuMi robot automates the sorting of microscope slides. The system incorporates a RealSense D435i depth camera for environment perception, Isaac Sim for virtual environment synchronization, and a locally hosted large language model (Mistral 7B) for interpreting user voice commands. These components work together to achieve bi-directional synchronization between the physical and digital environments. The framework was evaluated through 20 test runs under varying conditions. A validation study measured the performance of the perception module, simulation, and language interface, with a 60% overall success rate. Additionally, synchronization accuracy between the simulated and physical robot joint movements reached 98.11%, demonstrating strong alignment between the digital and physical systems. By combining local LLM processing, real-time vision, and robot simulation, the approach enables untrained users to interact with collaborative robots in dynamic settings. The results highlight its potential for improving flexibility and usability in industrial automation. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

Back to TopTop