Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,909)

Search Parameters:
Keywords = human–plant relations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 707 KB  
Review
Plant-Based Nano-Delivery Systems in the Treatment of Inflammatory Disorders
by Catarina R. Silva, Amélia C. F. Vieira, Ana Cláudia Paiva-Santos, Francisco Veiga and Gustavo Costa
Pharmaceutics 2026, 18(2), 150; https://doi.org/10.3390/pharmaceutics18020150 - 23 Jan 2026
Abstract
Inflammation is strongly related to the development of multiple chronic diseases, such as cardiovascular and autoimmune diseases, and is considered a crucial target for new therapeutic approaches, since it significantly impacts public health, contributes to high mortality rates, and decreases the quality of [...] Read more.
Inflammation is strongly related to the development of multiple chronic diseases, such as cardiovascular and autoimmune diseases, and is considered a crucial target for new therapeutic approaches, since it significantly impacts public health, contributes to high mortality rates, and decreases the quality of life. Conventional anti-inflammatory approaches are commonly used, but they present multiple limitations, such as undesirable side effects and low target-specificity. Medicinal plants and their bioactive phytochemical compounds have been studied in recent years and are considered promising alternatives to classical therapies. They are widely recognized for their capacity to modulate inflammatory pathways, regulate inflammatory responses, and consequently reduce inflammation and related symptoms. Although they are considered a good therapeutic alternative, their application in the human body is limited by certain characteristics, such as low solubility, which leads to rapid metabolism and excretion by the organism, significantly reducing bioavailability; for these reasons, the use of medicinal plants remains a biopharmaceutical challenge. Nanotechnology represents a promising tool in this context, since it can improve several characteristics of these compounds. By incorporating plant-derived compounds in nanosystems, considerable advantages, including sustained release, protection from degradation, an increase in the specificity to target tissues, and consequent reduction in toxicity, can be achieved. Thus, nanosystems promote more favorable therapeutic outcomes. This work aims to compile scientific evidence supporting the use of medicinal plants and their bioactive phytochemical compounds, incorporated in nanosystems, in inflammatory disorders. This review enlarges knowledge by integrating both in vitro and in vivo studies involving multiple medicinal plants and bioactive phytochemical compounds, describing their mechanisms of action and the nanosystems employed for drug delivery. In the future, the need for deeper mechanistic studies, the development of targeted and stimuli-responsive systems, and advancement toward clinically translatable, sustainable, and cost-effective plant-based nanotherapies is required. Full article
(This article belongs to the Special Issue Phytocompounds-Based Formulations for Anti-Inflammatory Disorders)
58 pages, 1801 KB  
Review
Medicinal Plants and Phytochemicals in Cardioprotection—Mechanistic Pathways and Translational Roadmap
by Diana Maria Morariu-Briciu, Alex-Robert Jîjie, Sorin Lucian Bolintineanu, Ana-Maria Pah, Sorin Dan Chiriac, Adelina Chevereșan, Victor Dumitrașcu, Cătălin Prodan Bărbulescu and Radu Jipa
Life 2026, 16(1), 175; https://doi.org/10.3390/life16010175 - 21 Jan 2026
Viewed by 75
Abstract
Despite major advances in guideline-directed cardiovascular therapy, residual cardiovascular risk persists, partly driven by oxidative stress, chronic inflammation, endothelial dysfunction, and mitochondrial injury not fully addressed by current drugs. Translation of plant-based cardioprotectants is constrained by preparation-dependent variability in extract chemistry (plant part/cultivar/processing [...] Read more.
Despite major advances in guideline-directed cardiovascular therapy, residual cardiovascular risk persists, partly driven by oxidative stress, chronic inflammation, endothelial dysfunction, and mitochondrial injury not fully addressed by current drugs. Translation of plant-based cardioprotectants is constrained by preparation-dependent variability in extract chemistry (plant part/cultivar/processing and extraction method), low and variable systemic exposure for key actives (notably curcuminoids and many polyphenols), and clinically relevant safety/interaction considerations (e.g., hepatotoxicity reports with concentrated green tea extracts and antiplatelet-related bleeding-risk considerations for some botanicals). We therefore provide a mechanism- and translation-oriented synthesis of evidence for cardioprotective botanicals, chosen for long-standing traditional use and scientific validation with reproducible experimental data and, where available, human studies, including Crataegus monogyna, Allium sativum, Olea europaea, Ginkgo biloba, Leonurus cardiaca, and Melissa officinalis. Across studies, polyphenols (especially flavonoids and phenolic acids) and organosulfur compounds are most consistently associated with cardioprotection, while terpene-derived constituents and secoiridoids contribute mechanistically in plant-specific settings (e.g., Ginkgo and Olea). Predominantly in experimental models, these agents engage redox-adaptive (Nrf2), mitochondrial (mPTP), endothelial, and inflammatory (NF-κB) pathways, with reported reductions in ischemia–reperfusion injury, oxidative damage, and apoptosis. Clinical evidence remains heterogeneous and is largely confined to short-term studies and surrogate outcomes (blood pressure, lipids, oxidative biomarkers, endothelial function), with scarce data on hard cardiovascular endpoints or event reduction. Priorities include standardized, chemotype-controlled formulations with PK/PD-guided dosing and adequately powered randomized trials that assess safety and herb–drug interactions. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

65 pages, 861 KB  
Review
Fermented Plant-Based Foods and Postbiotics for Glycemic Control—Microbial Biotransformation of Phytochemicals
by Emilia Cevallos-Fernández, Elena Beltrán-Sinchiguano, Belén Jácome, Tatiana Quintana and Nadya Rivera
Molecules 2026, 31(2), 360; https://doi.org/10.3390/molecules31020360 - 20 Jan 2026
Viewed by 146
Abstract
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, [...] Read more.
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, plant-based kefir, and cereal/pulse sourdoughs. Across these systems, microbial β-glucosidases, esterases, tannases, and phenolic-acid decarboxylases remodel polyphenols toward more bioaccessible aglycones and phenolic acids, while lactic and acetic fermentations generate organic acids, exopolysaccharides, bacterial cellulose, γ-polyglutamic acid, γ-aminobutyric acid, and bioactive peptides. We map these postbiotic signatures onto proximal mechanisms—α-amylase/α-glucosidase inhibition, viscosity-driven slowing of starch digestion, gastric emptying and incretin signaling, intestinal-barrier reinforcement, and microbiota-dependent short-chain–fatty-acid and bile-acid pathways—and their downstream effects on AMPK/Nrf2 signaling and the gut–liver axis. Animal models consistently show improved glucose tolerance, insulin sensitivity, and hepatic steatosis under fermented vs. non-fermented diets. In humans, however, glycemic effects are modest and highly context-dependent: The most robust signal is early postprandial attenuation with γ-PGA-rich natto, strongly acidified or low-glycemic sourdough breads, and selected kombucha formulations, particularly in individuals with impaired glucose regulation. We identify major sources of heterogeneity (starters, process parameters, substrates, background diet) and safety considerations (sodium, ethanol, gastrointestinal symptoms) and propose minimum reporting standards and trial designs integrating metabolomics, microbiome, and host-omics. Overall, plant-based ferments appear best positioned as adjuncts within cardiometabolic dietary patterns and as candidates for “purpose-built” postbiotic products targeting early glycemic excursions and broader metabolic risk. Full article
(This article belongs to the Special Issue Phytochemistry, Antioxidants, and Anti-Diabetes)
Show Figures

Figure 1

26 pages, 17406 KB  
Article
Mapping the Spatial Distribution of Photovoltaic Power Plants in Northwest China Using Remote Sensing and Machine Learning
by Xiaoliang Shi, Wenyu Lyu, Weiqi Ding, Yizhen Wang, Yuchen Yang and Li Wang
Sustainability 2026, 18(2), 820; https://doi.org/10.3390/su18020820 - 14 Jan 2026
Viewed by 158
Abstract
Photovoltaic (PV) power generation is essential for achieving carbon neutrality and advancing renewable energy development. In Northwest China, the rapid expansion of PV installations requires accurate and timely spatial data to support effective monitoring and planning. Addressing the limitations of existing datasets in [...] Read more.
Photovoltaic (PV) power generation is essential for achieving carbon neutrality and advancing renewable energy development. In Northwest China, the rapid expansion of PV installations requires accurate and timely spatial data to support effective monitoring and planning. Addressing the limitations of existing datasets in spatiotemporal resolution and driver analysis, this study develops a scalable solar facility inventory framework on the Google Earth Engine (GEE) platform. The framework integrates Sentinel-1 SAR, Sentinel-2 multispectral imagery, and interpretable machine learning. Feature redundancy is first assessed using correlation-based metrics, after which a Random Forest classifier is applied to generate a 10 m resolution distribution map of utility-scale photovoltaic power plants as of December 2023. To elucidate model behavior, SHAP (SHapley Additive exPlanations) is used to identify key predictors, and MaxEnt is incorporated to provide a preliminary quantitative assessment of spatial drivers of PV deployment. The RFECV-optimized model, retaining 44 key features, achieves an overall accuracy of 98.4% and a Kappa coefficient of 0.96. The study region contains approximately 2560 km2 of PV installations, with pronounced clusters in northern Ningxia, central Shaanxi, and parts of Xinjiang and Gansu. SHAP analysis highlights the Enhanced Photovoltaic Index (EPVI), the Normalized Difference Built-up Index (NDBI), Sentinel-2 Band 8A, and related texture metrics as primary contributors to model predictions. High EPVI, NDBI, and Sentinel-2 Band 8A values contribute positively to PV classification, whereas vegetation-related indices (e.g., NDVI) exhibit predominantly negative contributions; these results indicate that PV mapping relies on the integrated discrimination of multiple spectral and texture features rather than on a single dominant variable. MaxEnt results indicate that grid accessibility and land-use constraints (e.g., nighttime light intensity reflecting human activity) are dominant drivers of PV clustering, often exerting more influence than solar irradiance alone. This framework provides robust technical support for PV monitoring and offers high-resolution spatial distribution data and driver insights to inform sustainable energy management and regional renewable-energy planning. Full article
Show Figures

Figure 1

29 pages, 5022 KB  
Article
Suvarṇabhūmi Convergence Area: Humans, Animals, Artefacts
by Chingduang Yurayong, Pui Yiu Szeto, Komkiew Pinpimai, Junyoung Park and U-tain Wongsathit
Histories 2026, 6(1), 6; https://doi.org/10.3390/histories6010006 - 13 Jan 2026
Viewed by 305
Abstract
In this study, we investigate the Suvarṇabhūmi area, corresponding to central–southern Mainland Southeast Asia. We test the hypothesis that this region, located to the south of the Himalayan foothills, can be characterised as a convergence zone in which diverse entities involving humans, animals, [...] Read more.
In this study, we investigate the Suvarṇabhūmi area, corresponding to central–southern Mainland Southeast Asia. We test the hypothesis that this region, located to the south of the Himalayan foothills, can be characterised as a convergence zone in which diverse entities involving humans, animals, and artefacts have significantly diverged from their related counterparts outside the area. We argue that this process of convergence was facilitated by the Maritime Silk Road trade networks, which were particularly active between the 3rd century BCE and the 9th century CE. Comparative data are derived from multiple scientific disciplines, including linguistic typology, onomastics, epigraphy, archaeology, and evolutionary biology. This includes typological features of language, toponyms, inscriptions, glass bead chemistry and related material culture, and phylogenetic data from patterns of endemism to illustrate parallel convergence scenarios observed for each data type. The results reveal recurring patterns of convergence. Linguistic, technological, and biological entities tend to diverge from their original forms and realign with predominant regional types when entering the Suvarṇabhūmi area. The spread of Indic and Sinitic linguistic and cultural elements, the adaptation and development of Brāhmī scripts into distinct local forms, the secondary manufacturing of glass beads, and unique genetic lineages in mammals, amphibians, reptiles, fish, and plants all point to the region’s role as a dynamic interaction sphere. We argue that Suvarṇabhūmi functions as an ecological system, in which trajectories of convergence are notable across a number of individual aspects of cultural and biological diversity. Altogether, these components have contributed to shaping the region’s distinctive natural and cultural history. Full article
(This article belongs to the Section History of Knowledge)
Show Figures

Figure 1

30 pages, 1179 KB  
Review
The Use of Nutritional Interventions to Enhance Genomic Stability in Mice and Delay Aging
by Ivar van Galen, Jan H. J. Hoeijmakers and Wilbert P. Vermeij
Nutrients 2026, 18(2), 246; https://doi.org/10.3390/nu18020246 - 13 Jan 2026
Viewed by 250
Abstract
Background/Objectives: Metabolism is fundamental to all living organisms. It comprises a highly complex network of fine-tuned chemical reactions that sustain life but also generate by-products that damage cellular biomolecules, including DNA, thereby contributing to aging and disease. As metabolism can be largely modified [...] Read more.
Background/Objectives: Metabolism is fundamental to all living organisms. It comprises a highly complex network of fine-tuned chemical reactions that sustain life but also generate by-products that damage cellular biomolecules, including DNA, thereby contributing to aging and disease. As metabolism can be largely modified by dietary alterations, it has the potential to positively or negatively affect health and disease. Interestingly, many aging-associated illnesses known to be influenced by diet also show a causal relation with DNA damage. As DNA keeps all instructions for life, and DNA lesions, if unrepaired, interfere with vital processes such as DNA replication and transcription, DNA damage may be an important mediator of the impact of nutrition on health and aging. Methods: Here, we discuss the genome-protective effects of various oral interventions in mice, aiming to elucidate which nutritional alterations lower DNA damage and promote overall health. Results: Our analysis covers a wide range of interventions with reported positive impacts on genomic stability, including modified diets (e.g., dietary restriction, probiotics, micronutrients, fatty acids, and hormones), NAD+ precursors (e.g., nicotinamide riboside), plant derivatives, and synthetic drugs. Among these, caloric and dietary restriction emerge as the most potent, generic modulators of DNA damage and repair processes, enhancing aspects of repair efficiency through metabolic recalibration and improved cellular resilience. Other interventions, like NAD+ precursors, activate partly similar pathways without necessitating reduced food intake. Conclusions: While many interventions show promise, their effects are often less pronounced or are process-specific compared to caloric or dietary restriction. Additionally, many substances lack comprehensive exploration of their genome-protective effects in mice, with often only a small number of studies examining their impact on genome stability. Moreover, the heterogeneity between studies limits direct comparison. However, the observed overlap in mechanistic effects between treatments lends credibility to their potential efficacy. Ultimately, a deeper understanding of these mechanisms could pave the way for translating these findings into, e.g., combination treatments to promote healthy aging in humans. Full article
(This article belongs to the Special Issue The Role of Healthy Eating and Physical Activity in Longevity)
Show Figures

Figure 1

29 pages, 8991 KB  
Article
Exploration and Preliminary Investigation of Wiled Tinospora crispa: A Medicinal Plant with Promising Anti-Inflammatory and Antioxidant Properties
by Salma Saddeek
Curr. Issues Mol. Biol. 2026, 48(1), 70; https://doi.org/10.3390/cimb48010070 - 9 Jan 2026
Viewed by 227
Abstract
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in [...] Read more.
Background and Rationale: Tinospora crispa (L.) Hook.f. & Thomson (T. crispa) is a climbing medicinal plant with long-standing ethnopharmacological use, particularly in inflammatory and hepatic disorders and cancer-related conditions. There is a knowledge gap regarding how wild versus cultivated ecotypes differ in chemotype, bioactivity, and safety, and how this might support or refine traditional use. Study Objectives: This study aimed to compare wild and cultivated ecotypes of T. crispa from the Nile Delta (Egypt) in terms of quantitative and qualitative phytochemical profiles; selected in vitro biological activities (especially antioxidant and cytotoxic actions); genetic markers potentially associated with metabolic variation; and short-term oral safety in an animal model. Core Methodology: Standardized extraction of plant material from wild and cultivated ecotypes. Determination of total phenolics, total flavonoids, and major phytochemical classes (alkaloids, tannins, terpenoids). Metabolomic characterization using UHPLC-ESI-QTOF-MS, supported by NMR, to confirm key compounds such as berberine, palmatine, chlorogenic acid, rutin, and borapetoside C. In vitro bioassays including: Antioxidant activity (e.g., radical-scavenging assay with EC50 determination). Cytotoxicity against human cancer cell lines, with emphasis on HepG2 hepatoma cells and calculation of IC50 values. Targeted genetic analysis to detect single-nucleotide polymorphisms (SNPs) in the gen1 locus that differentiate ecotypes. A 14-day oral toxicity study in rats, assessing liver and kidney function markers and performing histopathology of liver and kidney tissues. Principal Results: The wild ecotype showed a 43–65% increase in total flavonoid and polyphenol content compared with the cultivated ecotype, as well as substantially higher levels of key alkaloids, particularly berberine (around 12.5 ± 0.8 mg/g), along with elevated chlorogenic acid and borapetoside C. UHPLC-MS and NMR analyses confirmed the identity of the main bioactive constituents and defined a distinct chemical fingerprint for the wild chemotype. Bioassays demonstrated stronger antioxidant activity of the wild extract than the cultivated one and selective cytotoxicity of the wild extract against HepG2 cells (IC50 ≈ 85 µg/mL), being clearly more potent than extracts from cultivated plants. Genetic profiling detected a C → T SNP within the gen1 region that differentiates the wild ecotype and may be linked to altered biosynthetic regulation. The 14-day oral toxicity study (up to 600 mg/kg) revealed no evidence of hepatic or renal toxicity, with biochemical markers remaining within physiological limits and normal liver and kidney histology. Conclusions and Future Perspectives: The wild Nile-Delta ecotype of T. crispa appears to be a stress-adapted chemotype characterized by enriched levels of multiple bioactive metabolites, superior in vitro bioactivity, and an encouraging preliminary safety margin. These findings support further evaluation of wild T. crispa as a candidate source for standardized botanical preparations targeting oxidative stress-related and hepatic pathologies, while emphasizing the need for: More comprehensive in vivo efficacy studies. Cultivation strategies that deliberately maintain or mimic beneficial stress conditions to preserve phytochemical richness. Broader geographical and genetic sampling to assess how generalizable the present chemotypic and bioactivity patterns are across the species. Full article
(This article belongs to the Special Issue Advances in Phytochemicals: Biological Activities and Applications)
Show Figures

Graphical abstract

21 pages, 3421 KB  
Article
Bioactive-Rich Piper sarmentosum Aqueous Extract Mitigates Osteoarthritic Pathology by Enhancing Anabolic Activity and Attenuating NO-Driven Catabolism in Human Chondrocytes
by Yi Ting Lee, Mohd Heikal Mohd Yunus, Rizal Abdul Rani, Chiew Yong Ng, Muhammad Dain Yazid, Azizah Ugusman and Jia Xian Law
Biomedicines 2026, 14(1), 128; https://doi.org/10.3390/biomedicines14010128 - 8 Jan 2026
Viewed by 320
Abstract
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse [...] Read more.
Background: Osteoarthritis (OA) is a prevalent degenerative joint disease often causing functional disability. Current therapies provide only temporary relief and can cause adverse effects that frequently result in pain and disability. Current pharmacological options offer only temporary symptom relief and may cause adverse effects. Piper sarmentosum (PS), a plant traditionally used for its medicinal properties, has demonstrated antioxidant and anti-inflammatory activities that may counteract OA-related degeneration. This study provides preliminary insight into the therapeutic potential of PS aqueous extract in human OA chondrocytes. Methods: Compounds in the PS aqueous extract were profiled using liquid chromatography–tandem mass spectrometry (LC-MS/MS). Primary human OA chondrocytes (HOCs) were treated with 0.5, 2, and 4 µg/mL of PS aqueous extract for 72 h. Key OA-related parameters were assessed, including anabolic markers (sulfated glycosaminoglycan (sGAG), collagen type II (COL II), aggrecan core protein (ACP), SRY-box transcription factor 9 (SOX9)), catabolic markers (matrix metalloproteinase (MMP) 1, MMP13, cyclooxygenase 2 (COX2)), oxidative stress (nitric oxide (NO) production, inducible NO synthase (iNOS) expression), and inflammatory responses (interleukin (IL) 6). Gene expression was quantified using qPCR, and protein levels were evaluated using the colorimetric method, immunocytochemistry, and Western blot. Results: A total of 101 compounds were identified in the extract, including vitexin, pterostilbene, and glutathione—bioactives known for antioxidant, anti-inflammatory, and chondroprotective functions. PS-treated chondrocytes maintain healthy polygonal morphology. PS aqueous extract significantly enhanced anabolic gene expression (COL2A1, ACP, SOX9) and sGAG production, while concurrently suppressing COX2 expression and NO synthesis. Additionally, PS aqueous extract reduced COX2 and iNOS protein levels, indicating inhibition of the NO signaling pathway. Catabolic activity was attenuated, and inflammatory responses were partially reduced. Conclusions: PS aqueous extract exhibits promising chondroprotective, antioxidant, and anti-inflammatory effects in human OA chondrocytes, largely through the suppression of NO-mediated catabolic signaling. The presence of multiple bioactive compounds supports its mechanistic potential. These findings highlight PS aqueous extract as a potential therapeutic candidate for OA management. Further ex vivo and in vivo studies are warranted to validate its efficacy and clarify its mechanism in joint-tissue environments. Full article
Show Figures

Graphical abstract

32 pages, 4364 KB  
Article
Human–Plant Encounters: How Do Visitors’ Therapeutic Landscape Experiences Evolve? A Case Study of Xixiang Rural Garden in Erlang Town, China
by Er Wu and Jiajun Xu
Sustainability 2026, 18(1), 454; https://doi.org/10.3390/su18010454 - 2 Jan 2026
Viewed by 274
Abstract
In recent years, many locales featuring therapeutic landscapes have seen a rise in health tourism. Existing scholarship tends to either concentrate on specific types of landscape or analyze human emotional experiences separately, often overlooking how therapeutic landscape experiences arise from interactions among human [...] Read more.
In recent years, many locales featuring therapeutic landscapes have seen a rise in health tourism. Existing scholarship tends to either concentrate on specific types of landscape or analyze human emotional experiences separately, often overlooking how therapeutic landscape experiences arise from interactions among human and non-human actors. This study focuses on the relationship between tourists and non-human actors (plants such as rice and lotus leaves, etc.) through immersive interaction. This research is built on critical plant theory and draws on a case study of Xixiang Rural Garden, Erlang Town, China, to examine the co-evolution of therapeutic landscape experience and health tourism and its inherent dynamism. Utilizing qualitative methods, data were collected between October 2024 and September 2025 through participatory observation, semi-structured interviews, and policy document analysis, involving diverse stakeholders, including local government officials, project designers, villagers, and tourists. From a micro-level empirical perspective, the study examines the co-evolution of therapeutic landscape experiences and health tourism and its underlying dynamics. The results show that visitors’ therapeutic experiences deepen through a cyclical process of “therapeutic spatial practices–relational negotiations–experiential transformation.” Key mechanisms driving this process include plant agency, cross-cultural dialogue, and multisensory engagement, which collectively facilitate the transition from initial sensory perceptions to deeper ecological awareness and multispecies relations. Based on micro-level empirical analysis, this study offers concrete policy insights for local governments seeking to promote the sustainable development of therapeutic tourism. In response to practical challenges, specific pathways are proposed: constructing plant-led symbiotic environments, establishing multisensory activity mechanisms, and adopting community-driven management models. These recommendations provide practical guidance for enhancing therapeutic landscape experiences and promoting the sustainable advancement of rural health tourism. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

24 pages, 3824 KB  
Article
Scutellaria lateriflora Extract Supplementation Provides Resilience to Age-Related Phenotypes in Drosophila melanogaster
by Dani M. Long, Jesus Martinez, Amala Soumyanath and Doris Kretzschmar
Int. J. Mol. Sci. 2026, 27(1), 461; https://doi.org/10.3390/ijms27010461 - 1 Jan 2026
Viewed by 292
Abstract
The human lifespan has increased dramatically over the last few decades; however, reaching older age increases the risk of age-related diseases and ailments. To extend the healthspan, many have turned to supplements, including plant-based remedies used in traditional medicine, to promote healthy aging. [...] Read more.
The human lifespan has increased dramatically over the last few decades; however, reaching older age increases the risk of age-related diseases and ailments. To extend the healthspan, many have turned to supplements, including plant-based remedies used in traditional medicine, to promote healthy aging. One of these is Scutellaria lateriflora L. (S. lateriflora), native to North America, which has traditionally been used to treat anxiety, stress, and insomnia. However, clinical trials addressing its effects are very limited. Furthermore, plant material is intrinsically complex, and the preparation method affects the composition of extracts. We therefore used Drosophila to test whether S. lateriflora can confer resilience against age-related sleep and mobility deficits, using aqueous (SLAq) and ethanol extracts (SLE). Whereas both SLE and SLAq improved mobility, only SLE reduced sleep fragmentation in older males. By testing several flavonoids present in S. lateriflora, we found that the beneficial effects on mobility were mainly due to baicalin, whereas sleep was improved by a wogonin mix. Since neither the extracts nor the compounds extend the lifespan, this suggests that they improve neuronal health and function and do not generally slow down the aging process. This was supported by our finding that neuronal degeneration was reduced by S. lateriflora (SL) supplementation. Full article
(This article belongs to the Special Issue Drosophila: A Versatile Model in Biology and Medicine—2nd Edition)
Show Figures

Graphical abstract

14 pages, 3628 KB  
Article
Ethylene-Mediated VvERF003 Promotes Flavonol Accumulation by Upregulating VvFLS1 and VvCHI1 in ‘Chardonnay’ Grape Berry Skin
by Jinjun Liang, Meijie Wang, Yijun Wu, Chongxin Yang, Hui Shang, Pengfei Zhang and Pengfei Wen
Biomolecules 2026, 16(1), 69; https://doi.org/10.3390/biom16010069 - 1 Jan 2026
Viewed by 307
Abstract
Flavonols are an important secondary metabolite in grape, which play a crucial role in plant growth and development, human health, and wine making. Ethylene and its inhibitor 1-Methylcyclopropene (1-MCP) are widely used in grape berry production. However, the regulation mechanism of flavonol biosynthesis [...] Read more.
Flavonols are an important secondary metabolite in grape, which play a crucial role in plant growth and development, human health, and wine making. Ethylene and its inhibitor 1-Methylcyclopropene (1-MCP) are widely used in grape berry production. However, the regulation mechanism of flavonol biosynthesis by ethylene and 1-MCP remains elusive in yellow-green grape varieties. Here, the content of flavonols in ‘Chardonnay’ grape berry skin after ethylene treatment was significantly higher than the control, while 1-MCP treatment was lower than the control. The phenylpropanoid biosynthesis-related genes and a transcription factor VvERF003 were screened for possible involvement in ethylene-mediated flavonol biosynthesis by transcriptome sequencing. The role of VvERF003 was further proved to promote flavonol accumulation in the transient overexpression of grape fruits and leaves, and the upregulation of genes related to flavonol biosynthesis. Furthermore, VvERF003 promoted flavonol biosynthesis by directly binding to and activating the promoters of VvCHI1 and VvFLS1, and positively regulated their expression. These results indicated that VvERF003 was induced by ethylene and promoted the accumulation of flavonols in ‘Chardonnay’ grape berry skin by positively regulating the flavonol biosynthesis genes VvCHI1 and VvFLS1. Full article
Show Figures

Figure 1

18 pages, 5742 KB  
Article
Soil Geochemical Controls on Heavy Metal(loid) Accumulation in Tuber Crops from Basalt-Derived Soils and Associated Dietary Intake Health Risks on Hainan Island, China
by Liling Tang, Jianzhou Yang, Yongwen Cai, Shuqi Hu, Qiuli Gong, Min Zhang, Yong Li and Lei Su
Toxics 2026, 14(1), 48; https://doi.org/10.3390/toxics14010048 - 31 Dec 2025
Viewed by 401
Abstract
Tuber crops cultivated in basalt-derived soils are influenced by naturally high geochemical backgrounds, which may elevate heavy metal(loid) levels and associated health risks. To clarify the geochemical controls governing metal accumulation, this study analyzed rock, soil, and tuber (sweet potato and yam) samples [...] Read more.
Tuber crops cultivated in basalt-derived soils are influenced by naturally high geochemical backgrounds, which may elevate heavy metal(loid) levels and associated health risks. To clarify the geochemical controls governing metal accumulation, this study analyzed rock, soil, and tuber (sweet potato and yam) samples from the Qiongbei volcanic area of Hainan Island, China. Concentrations of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and 22 nutrient-related indicators (N, P, K, SOC, S, Se, Fe, Mn, and their available fractions) were determined. Soil contamination and potential human health risks were evaluated using the pollution index and the health risk model. The results showed that 11.1–55.6% of soil samples exceeded pollution thresholds for Cr, Cu, Ni, and Zn, reflecting typical basaltic high-background characteristics. In contrast, heavy metal(loid) concentrations in tuber crops were relatively low and jointly regulated by parent material composition and soil nutrient status. Non-carcinogenic risks (HI) were below 1, indicating acceptable exposure levels, while carcinogenic risks were mainly associated with Cd, Cr, and Pb, with total carcinogenic risk (TCR) exceeding 1 × 10−4, suggesting potential health concerns. Strong correlations between soil nutrients (N, P, K, SOC, S, Se, Mn, and Fe) and plant uptake of As, Cd, Cu, and Cr indicate that nutrient availability plays a crucial role in controlling heavy metal(loid) bioavailability. The volcanic soils exhibited a “high total content–low bioavailability” pattern. Enhancing soil Se, SOC, available N, and slowly available K (SAK) can effectively reduce Cd and other high-risk metal accumulation in tuber crops. These findings elucidate the key geochemical processes influencing heavy metal transfer in volcanic agroecosystems and provide a scientific basis for safe agricultural utilization and health risk prevention in high-background regions. Full article
Show Figures

Figure 1

19 pages, 1902 KB  
Article
Modulation of Mast Cell Activation via MRGPRX2 by Natural Oat Extract
by Susanne Kaesler, Désirée Argiriu, Shyami M. Kandage, Karla Schönfeldt, Shalva Lekiashvili, Ceren N. Dengiz, Neslim Ercan, Caterina Iuliano, Martina Herrmann, Maria Reichenbach, Dominik Cichowski, Magda Babina, Miriam Hils, Martin Köberle and Tilo Biedermann
Int. J. Mol. Sci. 2026, 27(1), 334; https://doi.org/10.3390/ijms27010334 - 28 Dec 2025
Viewed by 537
Abstract
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading [...] Read more.
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading to inflammatory and hypersensitivity reactions. In addition, MRGPRX2 mediates pain and itching sensations, leading to increased efforts to identify MRGPRX2 inhibitors, including plant-derived compounds. Components within oat extracts have been shown to mediate anti-inflammatory and itch-relieving properties, but a possible inhibitory effect on MRGPRX2 activation has not yet been investigated. We aimed to fill this gap and explored whether an oat kernel extract can modulate MRGPRX2 activation. For this purpose, we established a mast cell model with the human LAD2 cell line and used it to investigate the consequences of exposure to oat extract. While we did not observe any influence on cell viability, we analyzed the impact of oat extract on MRGPRX2-mediated mast cell activation and degranulation initiated by the three confirmed MRGPRX2 ligands c48/80, substance P, and cortistatin 14. Exposure to oat extract resulted in a significant reduction in mast cell degranulation for all three ligands, as assessed by the release of β-hexosaminidase, tryptase, cell surface expression of CD63 and CD107a, and phosphorylation of ERK. All results were confirmed with primary human mast cells. Thus, we demonstrated for the first time that oat extract leads to a significant reduction in MRGPRX2 activation, pointing to a previously unrecognized capacity of natural compounds to modulate this pathway. Full article
(This article belongs to the Special Issue Mast Cells in Human Health and Diseases—3rd Edition)
Show Figures

Figure 1

17 pages, 987 KB  
Review
Tannins: A Promising Antidote to Mitigate the Harmful Effects of Aflatoxin B1 to Animals
by Wenhao Sun, Ruiqi Dong, Guoxia Wang, Bing Chen, Zhi Weng Josiah Poon, Jiun-Yan Loh, Xifeng Zhu, Junming Cao and Kai Peng
Toxins 2026, 18(1), 15; https://doi.org/10.3390/toxins18010015 - 25 Dec 2025
Viewed by 485
Abstract
Aflatoxin B1 (AFB1), a major metabolite of aflatoxin, is a highly toxic carcinogen. It frequently contaminates feed due to improper storage of feed ingredients such as corn and peanut meal, with the contamination risk further escalating alongside the increasing incorporation [...] Read more.
Aflatoxin B1 (AFB1), a major metabolite of aflatoxin, is a highly toxic carcinogen. It frequently contaminates feed due to improper storage of feed ingredients such as corn and peanut meal, with the contamination risk further escalating alongside the increasing incorporation of plant-based proteins in feed formulations. Upon entering an organism, AFB1 is metabolized into highly reactive derivatives, which trigger an oxidative stress-inflammation vicious cycle by binding to biological macromolecules, damaging cellular structures, activating apoptotic and inflammatory pathways, and inhibiting antioxidant systems. This cascade leads to stunted growth, impaired immunity, and multisystem dysfunction in animals. Long-term accumulation can also compromise reproductive function, induce carcinogenesis, and pose risks to human health through residues in the food chain. Tannins are natural polyphenolic compounds widely distributed in plants which exhibit significant antioxidant and anti-inflammatory activities and can effectively mitigate the toxicity of AFB1. They can repair intestinal damage by increasing the activity of antioxidant enzymes and up-regulating the gene expression of intestinal tight junction proteins, regulate the balance of intestinal flora, and improve intestinal structure. Meanwhile, tannins can activate antioxidant signaling pathways, up-regulate the gene expression of antioxidant enzymes to enhance antioxidant capacity, exert anti-inflammatory effects by regulating inflammation-related signaling pathways, further reduce DNA damage, and decrease cell apoptosis and pyroptosis through such means as down-regulating the expression of pro-apoptotic genes. This review summarizes the main harm of AFB1 to animals and the mitigating mechanisms of tannins, aiming to provide references for the resource development of tannins and healthy animal farming. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 4310 KB  
Article
Resveratrol Prevents Breast Cancer Metastasis by Inhibiting Wnt/β-Catenin Pathway-Mediated Epithelial–Mesenchymal Transition
by Xue Fang, En Ma, Runshu Wang, Jingwei Zhang, Yirong Tang, Jinxiao Chen, Weidong Zhu, Da Wo and Dan-ni Ren
Pharmaceuticals 2026, 19(1), 41; https://doi.org/10.3390/ph19010041 - 23 Dec 2025
Viewed by 395
Abstract
Background: Breast cancer is the most prevalent cancer in women, and metastatic breast cancer remains a major cause of cancer-related deaths. Resveratrol (RSV) is a natural compound found in various plants and is known to exhibit various anti-cancer effects. The present study aims [...] Read more.
Background: Breast cancer is the most prevalent cancer in women, and metastatic breast cancer remains a major cause of cancer-related deaths. Resveratrol (RSV) is a natural compound found in various plants and is known to exhibit various anti-cancer effects. The present study aims to investigate the therapeutic effects and mechanisms of RSV in inhibiting breast cancer metastasis in a murine model of 4T1 breast tumor that shares close molecular features with human triple negative breast cancer. Methods: Murine breast cancer 4T1 cells were used to examine the effects of RSV on breast cancer metastasis and epithelial–mesenchymal transition (EMT). In vitro cell proliferation and Transwell migration assays and in vivo 4T1 tumor transplantation models were established in female Balb/c mice to determine the anti-metastatic effects of RSV and its mechanism of action. Results: RSV significantly inhibited 4T1 tumor cell migration and significantly decreased expression levels of EMT markers Snail and Vimentin, as well as the nuclear translocation of β-catenin both in vitro and in vivo. Knockdown of β-catenin similarly reduced the expression levels of EMT markers. RSV significantly decreased the number of lung metastases in 4T1-implanted mice by inhibiting Wnt/β-catenin signaling pathway activation. RSV (150 mg/kg/day) reduced the number of visible tumor metastatic nodules and the histological count of metastatic lung carcinomas by 51.82% and 62.58%, respectively, compared to vehicle administration. Conclusions: Our study provides important new mechanistic insight into the strong anti-cancer effects of RSV in inhibiting 4T1 breast cancer metastasis by preventing Wnt/β-catenin signaling pathway-mediated epithelial–mesenchymal transition. These findings suggest the therapeutic potential of RSV as a promising drug in the treatment of metastatic breast cancer. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop